
An Unsupervised Channel-Selection Method for
SSVEP-based BCI Systems

Ethan Webster∗, Hadi Habibzadeh∗, James J. S. Norton†, Theresa M. Vaughan†, Tolga Soyata∗
∗Department of Electrical and Computer Engineering, SUNY Albany, Albany, NY 12203

†National Center for Adaptive Neurotechnologies, David Axelrod Institute, Albany, NY 12208
{ewebster, hhabibzadeh, tsoyata}@albany.edu, {norton, vaughan}@neurotechcenter.org

Abstract—Brain-computer interface (BCI)-based systems have
been successfully implemented as a communication tool for
people with motor deficits that obstruct normal communication.
The accuracy of the algorithms used for determining user-selected
commands directly impact their practicality to the user. These
algorithms are divided into two prinicipal categories, supervised
and unsupervised. While the former achieves higher accuracy,
the latter is useful when training is not practical for the user.

In this paper, we introduce an unsupervised algorithm for
steady-state visual evoked potential (SSVEP)-based BCIs, which
works in three steps: (i) it selects multiple sets of EEG (electroen-
cephalogram) channels, followed by (ii) existing feature extraction
methods applied to each one of these channel sets. As its final
step, (iii) it combines the extracted features from these channel
sets by performing a majority vote, yielding a classification.
We evaluate the information transfer rate (ITR) attained using
our proposed method on a database of 35 subjects using three
different (CCA, FBCCA, MSI) feature extraction methods in
step (ii). We compare these results to existing methods in the
literature that use a single channel set without a majority vote.
The proposed method indicates an improvement in at least 7
subjects using any of the three feature extraction methods.

Index Terms—Brain-computer interface (BCI); canonical cor-
relation analysis (CCA); electroencephalography (EEG); filter
bank canonical correlation analysis (FBCCA); minimum energy
combination (MEC); multivariate synchronization index (MSI);
steady-state visual evoked potential (SSVEP).

I. INTRODUCTION

Brain-computer interface (BCI) systems provide a direct
link between a person and a computer. This creates an
alternative communication channel for people with severe
motor deficits such as locked-in syndrome [1] and may also
have applications for people without disabilities [2]–[4]. The
underlying premise of a BCI is that electroencephalography
(EEG)—or some other neuroimaging technology—is used to
measure the user’s brain activity in (near) real-time. This brain
activity is analyzed to determine the user’s intended actions
and a computer or robotic system is used to replace voluntary
muscle activity as a means of communication and/or control.

Repetitive visual stimulation is one well-established method
for eliciting brain signals for use in a BCI [5]–[7]. For
example, when a user attends a light source flashing at 12
Hz (a stimulus), a strong EEG signal can be observed at
that same frequency (as well as at harmonic frequencies [i.e.,
24Hz, 36Hz, etc.]) as the stimulus. This frequency-specific
response in the EEG activity is called the steady-state visual
evoked potential (SSVEP). Critically, when multiple stimuli

are present, the stimulus the user attends to elicits the strongest
SSVEP [8]. This can be recognized using signal processing
methods, which allows the user to make a selection; for
example, in a BCI speller [9] application, different stimuli
can be associated with different letters, which forms the basis
of a communication device that allows a person spell words
through SSVEP.

When developing an SSVEP-based BCI, one challenge is to
decide how many electrodes to record EEG from and where
to place these electrodes on the scalp. SSVEPs, for example,
are predominantly observed over the occipital region of the
scalp [10]. The performance of the signal processing system
and subsequently the BCI will be lower if one attempts to
measure SSVEPs using electrodes over other regions. Thus,
this decision—known as channel selection—can have a sig-
nificant impact on the overall performance of the BCI. The
two general strategies for channel selection are supervised and
unsupervised channel selection. While the former results in
higher performance (e.g., accuracy or ITR) [11], it requires
the collection of data from the user to determine the best set
of channels before they can use the BCI, which may render
the BCI system less practical.

In unsupervised channel selection, the set of electrodes
used are chosen without collecting any additional data. These
channels are often chosen based on a priori knowledge, such
as previous research on the scalp distribution of the SSVEP.
While unsupervised channel selection often results in lower
performance, it doesn’t require the collection of data from
each user to determine the best set of EEG channels. This
means that the BCI can be set up faster, which is particularly
advantageous in clinical settings, where time with a participant
may be limited.

One limitation of both strategies is that they assume that the
best set of electrodes is time invariant (i.e., stays the same).
It is possible, however, that due to factors such as participant
movements or transient artifacts in specific electrodes that the
best set of electrodes changes with time.

Here, we present an unsupervised channel selection method
that relaxes the assumption that the best set of electrodes is
time invariant. Our method achieves this by simultaneously
considering multiple different sets of electrodes at each time
interval. Data from each of these sets are independently
processed and a final selection is made using a majority vote.

The rest of this paper is organized as follows. Section II
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Fig. 1. A review of the BCI speller architecture. The stimulation component is a 5× 8 matrix that is displayed on a conventional monitor. This figure shows
the frequency (f , in Hertz) and phase (φ, in π radians) assigned to each letter (using an “f /φ” format). For example, the letter “N” is presented on a tile
flickering at 13.2 Hz with the delay of π radians. In the actual implementation, tiles assigned to each letter are uniformly separated by a blank space. The
data acquisition component collects EEG data using 64 electrodes, although we only use a subset of them in our analysis. Signal processing methods are used
to filter and extract features from raw EEG signals that can be used for classification. In our case, this process consists of finding an amount of correlation
between filtered signals and a template signal to assign a class to the signal. The classification result is then fed back to the user and their environment.

provides background information on SSVEP-based BCIs with
emphasis on the signal processing system that maps EEG
activity to computer commands. Section III provides a review
of the BCI speller system used to generate the SSVEP dataset
used in our analysis. Section IV details the signal processing
methods used for our channel selection method. Section V
presents experimental results that evaluate the performance of
our proposed work. Finally, Section VI concludes our paper
and includes additional remarks.

II. BACKGROUND AND RELATED WORK

The performance of any SSVEP-based BCI—represented
graphically in Figure 1—is based on the design of multiple
systems that work together to elicit brain activity (stimulation
system), measure that brain activity (data acquisition system),
process the acquired data (signal processing system), and then
provide feedback to the user (control/feedback system). These
systems are connected to together in a closed-loop and each
system is itself comprised of multiple components. Here, we
briefly introduce each of the systems and provide a more
in-depth review of ongoing research on feature extraction (a
critical part of the signal processing system).

(a) Stimulation: SSVEPs are elicited by an external stimulus
and manifest themselves as voltages (more specifically voltage
differences) between electrodes. Thus, a stimulation system
is a necessary part of any SSSVEP-based BCI. Stimulation
systems may be developed using different types of light
sources including computer screens or light emitting diodes.
In order to elicit an SSVEP, however, this lighting system must
flash at a constant rate (between 1–100Hz). Factors such as
the number of stimuli, the frequency of the flashes in each of
these stimuli, and even the color of the stimuli can all have
an affect on the overall performance of the BCI.

(b) Data Acquisition: In SSVEP-based BCIs, the signal
acquisition system is comprised of a set of electrodes (i.e.,
sensors, usually small metal discs), analog filters, an amplifier,
and an analog-to-digital converter. Electrodes measure weak

(in the µV range) neural signals from the surface of the scalp.
Multiple electrodes (1 to 512 electrode channels [not including
ground and reference electrodes]) are often used to measure
neural signals from multiple locations. These small signals
from the scalp are then filtered (to remove nuisance signals)
and amplified (to prepare them for digitization). Finally, the
signals are digitized so that they can be further processed using
a computer.

(c) Signal Processing: The signal processing system then
takes these digital signals and processes them in multiple steps.
First, the signals are preprocessed to reduce noise or eliminate
transient artifacts. Then features—numerical representations of
the data—are extracted. Finally, a classifier uses these features
to create a mapping from the EEG data to class labels (e.g.,
recognized letters in the case of a BCI speller).

Two major spatial characteristics of EEG can be utilized
to depress these fluctuations (the term “spatial” refers to
electrodes’ distribution over the surface of the scalp). First, the
spatial distribution of SSVEP differs from subject to subject.
Second, both the background activities of the brain (e.g.,
blinking, breathing, etc.) and the noise induced by external
sources are known to have a non-uniform impression on the
electrodes. Therefore, spatial filtering techniques are typically
employed to compute a linear combination of individual elec-
trodes (termed channels) that amplifies SSVEP and suppresses
none-SSVEP components.

Minimum energy combination (MEC) is a notable example
of spatial filtering [12]. In this method, the SSVEP elicited by
a target is modeled as a linear combination of a sinusoid’s
harmonics with the fundamental frequency of that target,
which is modeled as in (1). MEC computes the weights of the
spatial filter such that the energy of none-SSVEP components
is minimized in each channel (hence the name, minimum
energy combination). Since the attended target is unknown
during the classification, the process must be repeated for
every target. The one with the highest average SNR is then
selected as the output of the classifier. In their work, Friman



et al. show that MEC can achieve higher accuracy (84%) and
lower standard deviation than PSDA-based classification [12].

Lin et al. propose canonical correlation analysis (CCA)
as another alternative for spatial filtering and feature ex-
traction [5]. In CCA, a linear combination of the captured
signals is estimated to maximize the correlation coefficient
with a template signal. The template is defined similarly
to the method used in MEC. The correlation coefficients
are extracted as the features and the classification is carried
out based on the maximum coefficient. The authors report
a classification accuracy of ≈ 70% for nine targets and a
signal length of 1.5 seconds. Since its introduction, multiple
variants of CCA have been proposed in the literature, including
CCA-RV developed in [13] that simultaneously considers the
correlation coefficient of both target and non-target signals to
improve the classification accuracy as well as the Deep CCA
(DCCA), which combines deep learning with CCA to better
capture non-linear characteristics of EEG signals [14]. Another
notable example is the work of Chen et al. with Filter Bank
CCA (FBCCA). The proposed system yields an average ITR
of 267 bits/min [9].

Both MEC and CCA are linear filters, which may fail to
capture the non-linear quality of the EEG signals. To remedy
this drawback, Zhang et al. proposed the multivariate syn-
chronization index (MSI) [7]. This spatial filter employs non-
linear time series analysis techniques (the S-estimator [15])
to measure the synchronization between a template signal and
the captured EEG, where the former is constructed similarly
to CCA and MEC methods. When extended to include time
delay embedding, MSI can outperform traditional CCA algo-
rithms [16].

The aforementioned spatial filters can dynamically select a
suitable linear combination of a given group of electrodes for
every trial. This implies that the efficacy of these algorithms
hinges on the size and formation of the initial pre-selection of
electrodes. For example, increasing the number of electrodes
improves the chances of detecting oddly distributed SSVEP
(which is common among users with disabilities). However,
our analysis shows that extending the coverage over the
occipital and parietal regions of the scalp from ten electrodes
to twenty decreases FBCCA’s classification performance by
≈ 4 percent. Similar patterns can be observed for CCA,
MSI, and MEC as well. In many existing works, training and
careful observation of data determine the initial selection of
electrodes. However, there is still a need for an unsupervised
dynamic electrode selection for large feature spaces.

Randomizing electrode selection can be an effective candi-
date for feature reduction. For example, Sun et al. [17] propose
the random electrode selection ensemble (RESE) classifier,
where multiple random electrode combinations are fed to
Fisher discriminants (FD) to create an ensemble classifier. This
reduces the dimensionality of features and thus mitigates the
instability of FD against large features spaces. Additionally,
randomizing electrode selection increases the immunity of the
system against electrodes defects.

The last system involved in SSVEP-based BCIs is the

feedback system. The purpose of the feedback system is to
update the user on how the BCI is interpreting their brain
activity. This may include auditory sounds, changes to the a
visual user interface, or even the movements of a unmanned
aerial vehicle. This information then allows the user to change
their behavior (attend to a new stimulus) and start the process
of using the BCI over again.

III. BCI SPELLER AND BENCHMARK DATASET

Here we provide an overview of the cue-guided, SSVEP-
based BCI speller system used by Wang et al. [18] to generate
the benchmark dataset—that we use in our study—as well as
the format of the dataset itself.

A. Stimulation

As shown in Figure 1a, the target stimuli (flashing lights)
are presented on a computer monitor (23.6-inch LCD dis-
play). There were 40 stimuli in total, each flashing at a
unique frequency (fi ∈ {8.0, 8.2, 8.4, ..., 15.6, 15.8}) with
neighboring stimuli having different phases (using phases
φ ∈ {0, 0.5π, π, 1.5π}). These differences in both frequency
and phase are termed joint frequency and phase modulation
(JFPM) by Wang et al. in [18].

B. Data Acquisition

The data acquisition system (see Figure 1b) includes 64
electrodes positioned over the scalp according to an extended
10/20 system [19]. The Synamps2 EEG system (Neuroscan®,
Inc.) was used to record EEG data, which was digitally
sampled at 1 kHz. A notch filter was applied at 50 Hz to
remove power-line interference.

C. Signal Processing

The data was first preprocessed by downsampling the data
from 1 kHz to 250 Hz. The CCA and FBCCA methods were
used to extract features (see Section IV-B1 and IV-B2). Signal
classification was done with the maximum feature classifier,
which selects the target index corresponding to the maximum
correlation between a template signal and an EEG signal.
Refer to Figure 1c for a depiction of the signal processing
stage.

D. Control and Feedback

The control and feedback stage (Figure 1d) of the BCI
speller consists of a cue (i.e., alphanumeric character) being
displayed on the monitor first, then the estimated target is
displayed after the classifier makes a decision. The estimated
target is recorded for analysis.

E. Benchmark Dataset

The benchmark dataset is comprised of experimental data
collected from 35 participants. Each of the participants was
asked to complete a cue guided target selection task. A cue
was first displayed on the screen and then the user was asked to
gaze at that character (i.e., the target). This data was recorded
in 6 s epochs (i.e., trials). The cue was displayed for 0.5 s, the
participant was given 5 s to gaze at the target, and then the



subject was given 0.5 s to rest their eyes. Six blocks of data
were collected, each including data obtained from 40 trials,
where each of the trials involved the cue of one of the 40
stimuli.

IV. METHODS

Here we detail the signal processing techniques we used to
evaluate our majority vote channel selection method.

A. Preprocessing

We applied a zero-phase 7-90 Hz Butterworth infinite im-
pulse response (IIR) filter of order 20 to EEG signals. The
first cut-off frequency is set to 7 Hz, which is the lowest
target frequency. The second cut-off frequency is set to 80 Hz
to include the fifth harmonic of the maximum stimulation
frequency (fmax × 5 < 80).

B. Feature Extraction

We chose three well-known multichannel feature extraction
methods to evaluate our majority voting scheme; namely,
CCA [5], FBCCA [6], and MSI [7].

All three of these feature extraction methods involve finding
a measure of correlation between template signals and EEG
signals. These template signals are defined as:

Yi =


sin(2π · fi · t)
cos(2π · fi · t)

...
sin(2π ·Nh · fi · t)
cos(2π ·Nh · fi · t)

 , t =
1

Fs
,

2

Fs
, . . . ,

Nt

Fs
, (1)

where fi is the SSVEP stimulation frequency to model, Fs is
the sampling frequency of the SSVEP data, Nh is the number
of harmonics to consider (Nh = 5 in this study), Nt is the
number of signal samples, and t is the vector of time points.
A reference signal is found for N stimulation frequencies as
Y ∈ Y1, Y2, . . . , YNf

.
1) CCA: For SSVEP detection, CCA [5] is a statistical

method that finds an optimal linear combination to maximize
the correlation between a set of template signals (Y ) and
multichannel EEG signals.

Let X ∈ RNc×Nt be a multichannel EEG signal and Y ∈
RNm×Nt be a corresponding reference signal, where Nc is the
number of electrode channels used for analysis and Nm =2Nh.
The weights Wx and Wy are found in order to achieve the
maximum correlation between x = XTWx and y = Y TWy .
These weights are found by solving the following problem:

max
Wx,Wy

ρ(x, y) =
WT

x ·XY T ·Wy√
WT

x ·XXT ·Wx ·WT
y · Y Y T ·Wy

. (2)

A solution to (2) is found using the singular value decompo-
sition (SVD) of

Ω = C
−1/2
XX · CXY · C−1/2Y Y , (3)

where C is the correlation matrix of X and Y, detailed in
(6). The singular values ρ1, ρ2, . . . , ρM of matrix Ω are the

canonical coefficients (M is the smaller of Nc and Nm). The
maximum canonical coefficients correspond to the maximum
correlation between X and Y, thus κi = ρ̂i = ρmax are used
as features for N stimulus frequencies.

2) FBCCA: FBCCA [6] extends CCA [5] by combining
the maximum CCA coefficients from multiple frequency sub-
bands of EEG. These sub-bands of EEG are extracted using
a filter bank. The maximum coefficients ρ̂1i , ρ̂

2
i , . . . , ρ̂

Ns
i are

combined according to [6]:

ρ̄i =

Ns∑
n=1

w(n) · (ρ̂ni )
2
, (4)

where n is the index of Ns sub-bands and

w(n) = n−a + b, n ∈ [1, 2, . . . , Ns]. (5)

The parameters a and b can be determined using a grid search,
and were set to 1.25 and 0.25, respectively (according to
previous research [6]). The weighted coefficients κi = ρ̄i are
used as features for N stimulus frequencies.

3) MSI: MSI is a measure of synchronization between two
signals [7]. In this method, the correlation matrix between X
and Y is found as:

C =

[
CXX CXY

CY X CY Y

]
. (6)

To reduce autocorrelation within X and Y (which can cause
false detections of SSVEP), the correlation matrix is whitened
using the following linear transformation (zero-phase compo-
nent or ZCA whitening [20]):

U =

[
C
−1/2
XX 0

0 C
−1/2
Y Y

]
. (7)

The whitened correlation matrix is calculated as

C ′ = UCUT . (8)

The eigenvalues λ1, λ2, . . . , λG (where G = Nc +Nm) of C ′

are then normalized according to

λ′k =
λk

tr(C ′)
. (9)

Finally, the synchronization index is:

β = 1 +

∑P
k=1 λ

′
k log(λ′k)

log(G)
. (10)

The synchronization indexes calculated for N stimulus fre-
quencies κi = βi are used as features.

C. Classification

The third and final signal processing step is classification.
The features are used by the classifier to assign a class label
(a number) between 1 and N to the filtered signals. Here,
we review the maximum feature classification method used
by [5]–[7] and describe our majority voting classification
method to combine the classification results obtained using
the signals from multiple sets of EEG electrode channels.
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Fig. 2. Majority vote classification process for our channel selection method.
Each of the electrode channel combinations {E1, E2, . . . EV } is fed into a
classifier, and the majority vote of the class labels output by these classifiers
is the final classification result. For example, one combination includes the
signals from channels {Oz, POz,. . ., P1}, and the classifier uses these signals
to estimate a class label Ln, n ∈ [1, 2, . . . , V ]. This class label is added to
a pool of V votes, and the majority is chosen as the estimated target.

1) Maximum Feature Classification: The maximum feature
method uses the maximum feature extracted using N template
signals for classification (this is referred to as the original
classifier hereafter). The target frequency is estimated as

f̂target = max
i

κi, i = 1, 2, . . . , N, (11)

where κi are the features extracted from the N template
signals corresponding to each of the target stimulus frequen-
cies. The numeric index of the estimated target frequency
is the class label output by the maximum feature classifier
(L1, L2, . . . , LN ).

2) Majority Voting Classification: Majority voting is a
method for combining the outputs of multiple classifiers [21].
For example, consider three classifiers for use in an SSVEP-
based BCI: one using CCA, another using FBCCA, and a
third using MSI. For a given target, each classifier outputs a
class label (L1, L2, L3). The majority vote is the class label
occurring the most frequently in that set.

We use majority voting to combine the outputs of multiple
classifiers, each using a different electrode set (but the same
feature extraction method). Each electrode combination set
{E1, E2, . . . , EV } was constructed by first including the three
most central occipital electrode channels: Oz, O1, and O2
(previous research has confirmed that these three channels
normally have the strongest SSVEP for healthy subjects [22]).
The electrodes selected to complete each of the 8-electrode
sets were determined by finding all unique combinations of
Q = 7 electrodes (PO3, PO4, PO5, PO6, POz, CB1, CB2)
taken K = 5 at a time. The number of these possible
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combinations is

V =
Q!

K!(Q−K)!
=

7!

5!(2)!
= 21. (12)

The enumeration of these sets was found using the function
combnk in MATLAB® [23]. For a given target, each of the
classifiers corresponding to a single electrode combination out-
puts a class label. The final classification result is determined
as the majority vote of the 21 labels (see Figure 2).

V. EXPERIMENTAL RESULTS AND INSIGHTS

A. Experimental Setup

The algorithms explained in Section IV were implemented
using MATLAB® [23]. The built-in canoncorr and eig are the
principal functions used for the CCA and MSI algorithms,
respectively. The scripts were run remotely on an Oracle®

Linux Server (Release 7.5) powered by two Intel® Zeon®

E5-2680 v4 processors, 256 GB of memory, and two Nvidia®

Tesla® K80 GPUs with driver version 396.26.

B. Performance Evaluation

The performance metric used in this study is the information
transfer rate (ITR) [24], which was calculated for each subject
on a per-trial basis. The formula for ITR is

R = log2N + P · log2P + (1− P ) log2

1− P
N − 1

, (13)

where R is the ITR (bits/target) and P is the target classi-
fication accuracy for a single subject. The ITR (bits/min) is
calculated as R ·60/T , where T is the total classification time
in seconds, and is equal to the gaze shifting time added to the
stimulation time needed for a classification. In this analysis,
the time required for a subject to shift their gaze to a symbol
following the cue was assumed to be 0.55 s. The size of the
EEG signal time interval (∆ t) used for classification was
ranged from 0.25 s to 5 s in 0.25 s intervals.



TABLE I
SIGNIFICANCE OF PER-SUBJECT ITR DIFFERENCES BETWEEN MAJORITY
VOTE (MV) CLASSIFIERS AND ORIGINAL CLASSIFIERS. TWO-SIDED SIGN

TESTS WERE USED TO DETERMINE SIGNIFICANCE AT THE 5% LEVEL

FBCCA vs

MV-FBCCA

CCA vs

MV-CCA

MSI vs

MV-MSI

Significantly Improved 7 10 7

No Significant Change 25 19 26

Significantly Reduced 3 6 2

C. Results

The classification results from the majority vote classifier
and the original classifier were found for each of the three
feature extraction methods under study (a total of six unique
methods). The majority vote classifiers are denoted as MV-
CCA, MV-FBCCA, and MV-MSI (MV for majority vote).
The average ITR for all classifiers is shown in Figure 3.
These results show that the average ITR of the majority vote
classifiers is ≈ 4% higher than that of the standard classifiers.

Figure 4 depicts individual differences in performance be-
tween the majority vote classifiers and the standard classifiers.
Refer to Table I for significance test results of these differ-
ences. The statistical distribution of ITR among test subjects
is shown in Figure 5. Outliers are data points that fall outside
the inner fence of 1.5×IQR, where the interquartile range
(IQR) is the likely range of variation.

The Lilliefors test for normality [25] was applied to the
per-trial ITR distribution for each subject, and it indicated
that these distributions were not normal at the 5% significance
level. Therefore, to evaluate the significance of the ITR differ-
ences between the majority vote classifiers and the original
classifiers for each subject, two-sided sign tests were used
to calculate the p-value of these difference distributions. The
p-values of these tests were used to determine whether the
majority vote channel selection method significantly improved
or decreased the ITR distribution for each subject. We report
this improvement or reduction as significant if p < 0.05. No
significant change is reported if the per-subject ITR distribu-
tion was not significantly improved or reduced. The results for
this individual analysis are shown in Table I.

The differences in cumulative ITR between the majority
vote classifiers and original classifiers are evaluated using
paired t-tests, to determine if the majority vote channel se-
lection method significantly improves overall ITR. When all
subjects are included in analysis, the only classifier showing
a significant improvement is CCA, with p < 0.01. Because
the performance for subject 18 can be considered as a signif-
icant outlier, the paired t-tests were also performed with the
exclusion of that subject. This provides values of p<0.05 for
FBCCA and p<0.01 for MSI.

VI. DISCUSSION AND CONCLUSION

In situations when a patient needs access to a BCI system
and there is not adequate time for finding optimal electrode
channel selections, the proposed majority vote channel selec-
tion method can prove useful by utilizing the information from
a large set of possible electrode channel combinations rather
than a single combination chosen a priori. It could also benefit
people with neurological diseases that significantly alter scalp
distributions of EEG signals. One of the next steps in this
research is to test our channel selection method on a dataset
of EEG signals taken from people with these types of diseases.

As we observed with the performance of some test sub-
jects, notably subject 18, the method fails in cases when
maximum features extracted from the majority of electrode
combinations consistently produce the same wrong result. Our
hypothesis is that a soft voting process like a random forest
would improve the worst cases observed for our majority
vote classifier without negatively impacting the best cases.
An implementation of this would involve applying weights to
the maximum features extracted from the multiple electrode
combinations. Another possibility to enhance the performance
of our method is increasing the number of electrode channel
combinations. This will be the topic of future research.

In this paper, we proposed a majority vote classifier based
on a new channel selection method for SSVEP-based BCIs
that does not require calibration data or optimization, and
our evaluation using a benchmark dataset shows that this
new method can significantly outperform the a priori channel
selection method when using CCA for feature extraction.
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