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Incorporating Interconnect, Register, and Clock
Distribution Delays into the Retiming Process

Tolga Soyata,Member, IEEE, Eby G. Friedman,Senior Member, IEEE, and James H. Mulligan, Jr.

Abstract—A retiming algorithm is presented which includes
the effects of variable register, clock distribution, and inter-
connect delays. These delay components are incorporated into
the retiming process by assigning register electrical character-
istics (REC’s) to each edge in the graph representation of a
synchronous circuit. A matrix, called the sequential adjacency
matrix (SAM), is presented that contains all path delays. Timing
constraints for each data path are derived from this matrix.
Vertex lags are assigned ranges rather than single values as in
existing retiming algorithms. The approach used in the proposed
algorithm is to initialize these ranges with unbounded values
and to continuously tighten these ranges using localized timing
constraints until an optimal solution is obtained. A branch and
bound method is offered for the general retiming problem where
the REC values are arbitrary. Certain monotonicity constraints
can be placed on the REC values to permit the use of standard
linear programming methods, thereby requiring significantly less
computational time. These conditions and the feasibility of their
application to practical circuits are presented. The algorithm is
demonstrated on modified benchmark circuits and both increased
clock frequencies and the elimination of all race conditions are
observed.

Index Terms—Clock distribution networks, clock scheduling,
clock skew, clocking, interconnect delay, retiming.

I. INTRODUCTION

RETIMING is a sequential optimization technique used
to increase the clock frequency of synchronous circuits

by relocating the registers in the circuit while maintaining the
original function and latency of the system. Earlier retiming
algorithms have assumed ideal conditions for the nonlogical
portion of the data paths, specifically ignoring the temporal
characteristics of the registers, the interconnect, and the clock
distribution network. The authors are unaware of any retiming
algorithms that consider variable register, clock distribution,
and interconnect delays. Without including these delay compo-
nents, existing retiming algorithms are not sufficiently accurate
for their use in the development of practical high speed
circuits. For this reason, clock distribution, variable register,
and interconnect delays must be integrated into the retiming
process in order to ensure that retiming becomes a practical
and useful design methodology.

Manuscript received October 11, 1994; revised October 23, 1996. This work
was supported by the National Science Foundation under Grant MIP-9208165.
This paper was recommended by Associate Editor, M. Fujita.

T. Soyata and E. G. Friedman are with the Department of Electrical
Engineering, University of Rochester, Rochester, NY 14627 USA.

J. H. Mulligan, Jr., deceased, was with the Department of Electrical and
Computer Engineering, University of California, Irvine, CA 92717 USA.

Publisher Item Identifier S 0278-0070(97)01279-7.

Both register and interconnect delays are similar in magni-
tude to the delay of the logic elements. Also, variations in
clock delay between widely separated registers may create
clock skews which can drastically affect circuit operation.
Undesirable clock skew can produce a net negative delay
within a local data path. This implies the existence of a race
condition, which must be avoided as a condition imposed on
the retiming process.

In most retiming algorithms proposed to date, registers are
assumed to have zero delay (e.g., [1], [2]) or equal delay
(e.g., [3]). In [3], the setup and hold times are
nonzero constant values, creating an effective clock period of

where is the worst case path delay of the
synchronous circuit. Since constant register delays are assumed
throughout the circuit, is added to each individual local
data path, biasing the clock period by this amount. However,
this simple summation is not sufficiently accurate since each
local data path typically has a different register delay.

Integrating clock skew into the retiming process was first
proposed in [4] and [5]. The authors of this paper originally
introduced the strategy of integrating clock skew and variable
register delays into retiming by attaching electrical information
describing the register to the edges of the graph representing
the synchronous circuit [6]. These delay parameters are defined
as register electrical characteristics (REC’s) in this original
work and are adhered to herein. Following this work, the
integration of clock skew into retiming was discussed in
[7]. In this paper, constraints are placed on the clock skew
to permit the use of standard linear programming methods.
Variable register and interconnect delays were not considered.
In [8], a branch and bound algorithm is briefly introduced to
solve the general retiming problem while considering variable
nonzero clock skew and register and interconnect delays and
is explained in greater detail in [9]. In general, there has been
a growing interest in making retiming into a more practical
and useful design methodology, as evidenced by [1]–[11].

The synchronous circuit optimization problem is approached
in this paper as a two-step process:

1) optimization of the clock distribution network by buffer
insertion and clock tree synthesis to meet a specified
clock skew schedule [12]–[15];

2) optimization of the synchronous circuit via retiming
given that the clock scheduling process has previously
been performed to satisfy a specific set of clock skew
specifications [6], [8], [9], [16].

Optimizing the clock distribution network followed by
retiming may create a suboptimal result. This suboptimality
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manifests itself in many practically applied algorithms, since
optimality is sacrificed to prevent excessive computational
times in existing algorithms. Ishiiet al. published research
results in simultaneous retiming and clock tuning [2]. Ishii
et. al. report an algorithm to perform simultaneous
retiming and clock tuning and comment that this problem
is far too complicated to be practical unless optimality is
sacrificed. They present a suboptimal

algorithm which calculates the re-
timing result with % accuracy, where is a user-selected
error factor [2]. In this paper, the following methodology is
assumed: clock skew scheduling followed by retiming.

A retiming algorithm is presented in this paper which
incorporates variable register and interconnect delays and
nonzero localized clock skew. Either rising edge or falling
edge triggered D flip flops and a single phase clock are
assumed throughout the synchronous digital circuit. To ac-
complish the integration of variable clock distribution, in-
terconnect, and register delays into the retiming process, a
path between logic elements is defined in this paper as the
traversal from weighted edge to weighted edge, an edge
being interpreted as a connection between logic elements
containing zero, one, or more registers. With this definition,
clock, register, and interconnect delays are assigned to each
edge. Thus, as registers are shifted from edge to edge, different
clock skews and register delays are considered in each of
the local path delays. This permits both maximum clock
periods and race conditions to be detected on a path-by-
path basis. Estimates of register delays on zero weight edges
(i.e., interconnections between logic elements that contain no
registers) derived from the circuit layout are required in order
to include the effects of variable register delays on the retimed
circuit. This approach, therefore, initially requires approximate
(or estimated) values of the register, clock distribution, and
interconnect delays which can be replaced with more accurate
values as the exploratory retiming process becomes better
specified [6], [8], [9]. A simple strategy for estimating the
clock delays is provided as an appendix.

The retiming algorithmRETSAMpresented in this paper
uses a branch and bound approach. AlthoughRETSAMdeter-
mines a retimed circuit that will operate at its maximum clock
frequency, enhanced computational efficiency can be obtained
by placing certain conditions related to the monotonicity of the
path delays on the REC values. These monotonicity conditions
permit the use of standard linear programming methods during
the retiming process. These conditions and the feasibility
of their application to practical circuits are presented in an
appendix to this paper.

The paper is organized as follows. The background and
definitions of important terms used throughout the paper are
provided in Section II. In Section III, models of nonzero
clock skew, variable register delay, and interconnect delay
are presented. In Section IV, the sequential adjacency matrix
(SAM) is introduced. Timing constraints, derived from the
SAM, are described in Section V. The proposed retiming
algorithm RETSAMis presented in Section VI. Monotonicity
restrictions that may be placed on the REC’s to permit the use
of standard linear programming methods to perform retiming

with the additional electrical delay information are described
in Section VII. Results of applying the proposed algorithm
RETSAMto benchmark circuits are presented in Section VIII
and some conclusions are drawn in Section IX. A strategy for
estimating the clock delays is presented in Appendix A. In
Appendix B, the derivation of the monotonicity constraints is
provided.

II. BACKGROUND AND DEFINITIONS

The absolute delay of the clock signal from the global
clock source to a specific register (or memory element) is
the clock delay and is denoted as The difference
between the clock delay of any two registers is theclock
skew between these registers, denoted as The notion
of localized clock skewand its application to increasing the
clock frequency within pipelined systems was introduced by
Friedman and Mulligan in [17]. They show that only the
clock skew betweensequentially adjacent registers(registers
that receive information at successive clock intervals and are
either directly connected or connected by logic elements) is
significant in pipelined systems. Alocal data path is formed
between two sequentially adjacent registers. The local data
path with the greatest delay is thecritical data path , whose
delay defines the minimum clock period of the circuit.

The definition of sequential adjacency is extended in this
paper to edges on a graph.Sequentially adjacent edgesare
those edges that are connected via a fully combinatorial path.
The last register of the initial edge and the first register of the
final edge are sequentially adjacent, thereby making the edges
sequentially adjacent.

The clock skew between two sequentially adjacent
edges and is defined as

(1)

If the clock skew between registersand
is defined as being negative.Negative clock skewoccurs if the
initial clock signal leads the final clock signal of a local data
path. If the clock skew between registers

and is positive.Positive clock skewoccurs if the initial
clock signal lags the final clock signal of a local data path.
In the case that equals i.e., the clock signal
reaches the clock input of the two registers at precisely the
same time, the clock skew is zero [18], [19].

Positive clock skew increases the path delay of a local data
path, potentially making its local data path a critical path,
whereas negative clock skew may improve circuit speed in
critical paths [5], [18], [19]. However, it may also create neg-
ative path delays, resulting inrace conditions. Race conditions
are caused byearly-clocking, i.e., clocking of registers before
the relevant data is successfully latched. A race condition
occurs if the skew is negative and greater in magnitude than
the total local data path delay [5], [17]–[19]. Those paths
with negative delay are calledshort paths [20]. Similarly,
a long path designates those paths with a delay greater than
the desired clock period of the circuit.

A synchronous circuit can be modeled by a graph composed
of a vertex set and an edge set and refer to
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Fig. 1. The lag function changes the edge weights while preserving the
circuit function. Increasing the lag of a vertex by one has the effect of
increasing the weights of all edges by one connected in front of this vertex
and decreasing the weights of all edges by one connected behind this vertex.

the cardinalities of these sets, i.e., the number of vertices and
edges in the graph, respectively. Vertices denote logic elements
and edges denote the connections between vertices.and
represent vertex and edge respectively. Every edge
connects two vertices. These two vertices are called the start
vertex and the end vertex of and are denoted as
and respectively.

The logic element delay represented by is and
is measured intime units (tu). The number of registers on
an edge between two vertices is represented by the weight of
the corresponding edge and is denoted by Edge-to-
edge and vertex-to-vertex paths are represented by
and respectively.

The lag of a vertex is defined in [1] and adhered
to herein. The vertex lag function plays a fundamental
role throughout the entire retiming process and is therefore
repeated here. The retiming process does not change the vertex
delays however, the weights of the edges are changed
according to the lags assigned to the vertices based on the
following formula

(2)

where is an edge, and and are the weight of
edge before and after retiming, respectively. Therefore, the
retiming process can be thought of as determininginteger
vertex lags, according to the retiming rules
defined in [1]. An observation of (2) shows that instead of
calculating edge weight values during retiming, vertex
lags are calculated. Although the result is identical and yields
a functionally equivalent circuit, the computational effort is
significantly reduced since typically is much less than

, and the CPU time of these retiming algorithms depend
polynomially on both of these unknowns, and The

function is utilized since the edge weights do not change
independently during the retiming process. The function
represents the lags attached to the vertices denoting the relative
edge weight adjustments, as shown in Fig. 1. Let denote
the lag of vertex 1. As shown in Fig. 1, changing the lag of the
vertex from zero to one affects the weights of all of the edges
connected to this vertex. Increasing the lag of a vertex by one
has the effect of decreasing the weights of all the edges in
front of the vertex by one and increasing the weight of all the
edges behind the vertex by one. The retiming process consists
of applying these vertex lag adjustments throughout the entire
synchronous circuit to minimize the imbalance among all the
path delays.

A matrix, defined in [1], contains all vertex-to-vertex
path weights. The elements of this matrix, can be

calculated as

(3)

This matrix can be calculated using an all-pairs shortest path
algorithm, such as the Floyd–Warshall algorithm [21]–[23].
Also, in this paper, a matrix is defined as the matrix
after the retiming process has been applied to the circuit.

Each edge in the graph has a certain number of registers.
Assume that has registers located on it. To distinguish
between each register, the notation is introduced to
denote the register located on edge

An interconnect section between two nodes in a circuit has
a delay with a distributed resistance-capacitance (RC)
impedance with distributed resistance and distributed
capacitance respectively. Since each edge in the graph
represents an interconnect line, every edgecan be thought
of as being a distributedRC line with a delay of
with a distributed resistance and capacitance of and

respectively. In the event that a register separates the
interconnect line, the interconnect delay of edgeis assumed
to be separated into two values of and
where and are the preregister and postregister
delays, respectively. Three simplifying assumptions for the
interconnect delays are the following.

1)
2) and are constant for .
3) The interconnect delay is negligible between multiple

registers on the same edge.

Increased generality and accuracy can be obtained by elim-
inating one or more of these assumptions at the expense of
increasing the computational run time of the algorithm.

III. REGISTER ELECTRICAL CHARACTERISTICS (REC’s)

In order to consider the effects of clock distribution, variable
register, and interconnect delays, a number set, the REC, is
assigned to each edge of the graph in the following form:

- — is the clock delay
from the global clock source to each register, - is the
time required for the data at the input of a register to latch,

is the time required for the data to appear at the output
of the register upon arrival of the clock signal, and is the
total interconnect delay along that edge and can be considered
as being composed of two parts, and if there is
more than one register along that edge.

By attaching delay components to registers located on edges
(connections between logic elements), the local path must be
defined from edge-to-edge [6], [9] rather than vertex-to-vertex,
as in existing retiming algorithms [1]. The original digital
correlator introduced in [1] is depicted in Fig. 2. A modified
version of this graph in which an REC is assigned to each edge
is shown in Fig. 3. By assigning a clock delay to each edge
(see Appendix A), the circuit is assumed to be partitioned into
regions of similar clock delay, i.e., registers that are located
on the same edge are physically located within the same clock
delay region. Therefore, registers that end up on the same
edge after retiming are assumed to have similar clock delay.
Registers that move to different edges are assumed to have
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Fig. 2. Graph of the digital correlator in [1].

Fig. 3. Graph of the digital correlator [1] with added REC values.

the clock and register delays of the new edge. Since registers
on different edges may be considered to have different clock
and register related delays, moving a register from one edge
to another edge during retiming will not only create different
local data paths with different logic, register, and interconnect
delays, but may also change the localized clock skew of the
new local data paths.

The clock-to-Q delay is edge dependent since
each edge is connected to a different vertex, thereby changing
the capacitive loading on the registers located on each edge.
This variation occurs since each vertex represents a variety of
possible logic elements, placing a different output load on the
register driving the vertex. Hence, the same registers driving
different vertex inputs will have different delays.
Furthermore, a variety of register types selected prior to the
retiming process may be used at different locations within the
circuit, due to the specific speed, power, and area tradeoffs
peculiar to that portion of the circuit. - may also change
for different register cell instances. Thus, - can vary
per edge. Therefore, selecting a specific register to satisfy a
set of performance-based design requirements will change the
value of - for each edge. A similar discussion is valid
for The varying loading exacerbates this delay
variation, thereby requiring that variable register delays be
considered during the retiming process.

The local data path delay from edges to is

- (4)

where is the delay of the logic elements between
and including the interconnect delay of the zero weight

edges along the path between these edges. If parallel paths
exist, minimum and maximum local data path delays,
and are defined. If a race condition

between and exists since in this local data path the
final register is clocked before the data signal arrives and is
successfully latched.

If registers and are located on the same edgeand
are sequentially adjacent, then, according to the definition of
the REC’s, the clock skew between and is zero from
(1) since the clock delays of both registers are the same. This
assumption is made since registers on the same edge would
typically be physically close, and, therefore, the difference in
clock delay to each register and the interconnect delay between
these registers would be negligible. Furthermore, since no
vertices (logic elements) exist between registersand
when both are on the same edge, the logic delay between the
two registers is zero. Since all registers located on the same
edge are defined to have the same timing characteristics (REC
values), all sequentially adjacent registers located on the same
edge have a similar internal path delay. A path composed of
multiple registers on an edge could possibly be the critical
worst case path of the overall circuit and its delay is defined
as given by

- (5)

Although the likelihood that the delay of an internal path
will be greater than the largest register-logic-register path delay
is small, the worst-case delay of an internal path is considered
in this paper for completeness. Certain circuits exist, such
as a counter or shift register, in which this type of direct
register-to-register path is common.

IV. SEQUENTIAL ADJACENCY MATRIX (SAM)

The sequential adjacency matrix (the SAM or thematrix)
is an matrix whose element is the path delay
from to The matrix element, is calculated from

(6)
If parallel paths exist between any two edges, thematrix is
composed of two matrices, and Equations (7) and
(8) are used to calculate the values of these two matrices. In
order to reduce the number of matrices, a combined matrix,

is used. contains if contains
a zero or negative entry and contains if no zero
or negative entry exists. The importance of is
determined by whether a zero or negative entry exists, thereby
denoting a race condition. If is completely positive,
the maximum valued entries in limit the maximum
speed of the circuit. Equation (9) is used to calculate the
combined matrix,

(7)

(8)
if
if .

(9)

Note that the matrix contains information for only
those paths that can potentially cause the circuit to function
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TABLE I
THE SAM FOR THE GRAPH OF FIG. 3. LIGHT SHADED ENTRIES REPRESENTSHORT PATHS, WHEREAS DARK

SHADED ENTRIES REPRESENTLONG PATHS FOR c = 24 tu. UNSHADED ENTRIES DENOTE PERMISSIBLE PATHS

improperly. Therefore, the zero and negative entries in the
matrix override the positive entries in the corresponding
matrix during the calculation of the matrix. This

occurs since negative entries flag race conditions, and zero
entries flag marginal race conditions and are not permitted to
exist in the retimed circuit. To maintain a sufficient margin
within the circuit, entries below a specific process dependent
parameter are not permitted. Paths with delays less than
or equal to tu may create race conditions due to statistical
process variations within the integrated circuit and, therefore,
are not permitted.

For the remainder of the paper, the notation for the com-
bined matrix is denoted as for simplicity. The matrix
of the graph of Fig. 3 is shown in Table I. The light shaded
elements of the table indicate those paths with race conditions
(negative values), and the dark shaded elements indicate those
paths with a path delay greater than the desired clock period.
In this example, a target clock period of 24 tu is assumed.
Paths with zero delay are marginal race conditions that are not
permitted and would appear as light shaded. The unshaded
elements of the table indicate those paths that neither limit
the maximum performance of the circuit nor create race
conditions.

V. TIMING CONSTRAINTS

A branch and bound algorithm is presented in this paper
in which unbounded values are initially assumed for the lag
ranges. These lag ranges are tightened using timing constraints
derived from the SAM. There are four different types of timing
constraints: negative edge weight, long path, short path, and
internal path. These different types of constraints are explained
in greater detail in the following subsections.

A. Negative Edge Weight Constraints

As introduced in [1], a properly retimed graph contains no
negative edge weights. Negative edge weights are permitted

for peripheral edges in [24] in order to shift the registers to
the periphery of a synchronous circuit. This approach permits
combinatorial optimization to be performed on the circuitry
placed between the peripheral edges. However, since the
retiming algorithm described in this paper does not exploit this
feature ofresynthesis, negative edge weights are disallowed.
Using (2), the negative edge weight constraint can be written
as

(10)

B. Long Path Constraints

If a clock period is desired, then all paths with a delay
greater than must be eliminated. Long paths are represented
by entries in the matrix that exceed a desired clock period

In Table I, long paths for tu are depicted using dark
shaded elements. In order to eliminate these long paths, the
two edges that create the long path are made nonsequentially
adjacent.

Two registers are sequentially adjacent if there exists a
zero weight path between them. According to this definition,
in order to make two edges, and nonsequentially
adjacent, three approaches are possible: 1) the source or 2) the
destination edges can be made zero weight, i.e., all registers
can be removed from these edges, or 3) one or more registers
can be placed within each zero weight path between the source
and destination registers. The first two conditions exist since
by eliminating the initial and/or final register of a local data
path, a longer path is created which may have a smaller delay
(due to negative clock skew). Using the definitions for
and described in Section II, these three conditions can be
written in terms of path and edge weights as follows:

(11)

(12)

(13)
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Fig. 4. The internal path delay between registers located on the same edge,
TPD ; is equal due to the definition of the REC’s. This example
demonstrates the case wherew(e3) = 3:

If (11) or (12) is satisfied, then no registers exist on edge
or respectively, and, therefore, all local data paths between
edges and are eliminated. If (13) is satisfied, all possible
paths between edgesand have a weight of at least one. This
violates the definition of sequential adjacency, i.e., no paths
exist with a zero weight between these two edges. Intuitively,
it is stated in (11)–(13) that either the initial or the final edge
does not have any register located on it, or there is at least
one register along every path between these two edges.

C. Short Path Constraints

Short paths appear as zero or negative entries in the
matrix. indicates a short path originating at
and terminating at If and form a short path, then
the initial and final registers of this path must be made
nonsequentially adjacent. Equations (11)–(13) are used to
eliminate any catastrophic short paths (or race conditions).

D. Internal Path Constraints

Internal long paths are created between two sequentially
adjacent registers on the same edge when the edge weight is
greater than one, and the internal path delay is greater than a
specified clock period Internal long path constraints can be
formulated using (5) as

(14)

which suggests that if the internal path delay of an edge is
greater than the desired clock period, the weight of that specific
edge must be either zero or one to prevent internal long paths.

An edge with a weight of three is depicted in Fig. 4. More
precisely, edge of Fig. 2 which connects vertices and

is shown under the assumption, In Fig. 4, the
internal path delay on edge (the delay between register
pairs and is constant since multiple registers on
the same edge are assumed to have the same delay, and the
interconnect delay between internal registers is assumed to be
negligible (see assumption 3 in Section II). Since the electrical
characteristics of the vertices and registers do not change, the
internal path delay is calculated from (5) only once before the
retiming process is applied. This procedure ensures that before
the retiming process starts, unnecessary internal long paths due
to excessive internal path delays are not created. An example
graph in which the internal path delay of edge exceeds
the path delay between edges and thereby causing an
internal long path, is shown in Fig. 5. It can be observed from
Fig. 5 that the internal long path delay exceeds the path delay
between and since the negative clock skew between
these registers decreases the path delay, lowering
below the internal path delay.

Fig. 5. An example graph in which the internal path delay on edgee2

exceeds the path delay betweene2 and e3: This graph exemplifies the
importance of considering internal long paths before the retiming process
is initiated.

Note that internal short paths are not possible since the
clock skew between any two registers on the same edge cannot
be negative (the clock skew must be zero). Therefore, internal
short paths are not considered in this paper.

E. Constraints Due to Vertex Lags

Constraints (10), (11), (12), (13), and (14) are written in
terms of edge weights. These constraints can be rewritten as
(15), (16), (17), (18), and (19), respectively, to reduce the
number of necessary operations.

(15)

(16)

(17)

(18)

(19)

In order to provide some intuition to (15), (16), (17), (18),
and (19), note that, given two vertices and the value

can be thought of as “the number of registers
taken out of the path ” Given this interpretation,
it is implied in (15) that “the number of registers taken from
an edge cannot be greater than the original weight of the
edge,” i.e., none of the edge weights can be negative. In a
similar manner, it is stated in (16) and (17) that “the number
of registers taken from edge and respectively, must be
equal to the original weight of this edge,” implicitly stating that
this edge should be made zero weight. In (18) it is stated that
“the registers taken from the path must be less than
the original weight of this path minus one,” implicitly stating
that at least one register should be left along any path between
registers and thereby making this path nonsequentially
adjacent. Finally, in (19) it is implied that either zero or one
register should be left on an edgethat contains an internal
long (worst case) path.

VI. RETIMING ALGORITHM

In this section three algorithms are introduced: 1) Algorithm
RETSAM to perform retiming of synchronous circuits, 2)
Algorithm CHECKCP to check the feasibility of a specific
clock period, and 3) AlgorithmSOLVELAGSto determine the
vertex lags based on a branch and bound method. These three
algorithms are explained in the following subsections.
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Fig. 6. Pseudocode forRETSAM.

Fig. 7. Pseudocode for clock period feasibility test, CHECKCP.

A. RETSAM: Retiming Algorithm for Synchronous
Circuits with Attached Electrical Information

Retiming a synchronous circuit is achieved by performing a
binary search of all possible clock periods on a specific circuit
graph. The pseudocode of the retiming algorithm is shown in
Fig. 6. The lower and upper bounds of the binary search are

and respectively. Initially the lower bound is
zero (Step 1). If the original graph does not contain any race
conditions, the critical path delay of the original graph defines
the upper bound of the binary search (Step 2). The SAM is
calculated in Step 3 and used throughout the algorithm. If
the original graph contains one or more race conditions, the
maximum value in the SAM is used as the upper bound (Step
4). During the binary search, a specific clock period,
is checked for feasibility using algorithmCHECKCP(Steps 5
and 6). Depending on whether a solution exists (Step 7) or not
(Step 8), the lower and upper search bounds are adjusted, and
the binary search continues until the minimum clock period is
determined (Step 9). An approximate solution can be obtained
for the minimum clock period ifRETSAMis terminated once
the binary search bounds become sufficiently tight. This may
significantly reduce the run time requirement of the algorithm,
since target clock periods close to the minimum clock period
may require excessive computational time.

B. CHECKCP: Clock Period Feasibility Check

A feasibility check for a specific clock period is
achieved by solving the set of nonlinear inequalities for the
vertex lag ranges. If all the constraints are satisfied for every
path in the graph, the clock period is considered feasible.
Pseudocode for the algorithm that determines the feasibility
of a clock period is shown in Fig. 7. Lag ranges are stored in
an array called The timing constraints are derived from
the SAM.

The most important step inCHECKCP is solving for the
vertex lags using AlgorithmSOLVELAGS. The objective
of the retiming algorithm is to yield a set of vertex lags
that satisfy (15)–(19). To achieve this objective, the vertex
lag ranges are initialized with unbounded values
Timing constraints are continuously applied to these vertex
lags in order to tighten the ranges until eventually all the
constraints are satisfied. Once the vertex lags are each defined,
these lag values are used to determine the edge weights of the
retimed graph according to (2).

C. SOLVELAGS: Determination of the Vertex Lags
Using a Branch and Bound Approach

The following types of equalities and inequalities are created
from the aforementioned timing constraints:

(20)

(21)

or (22)

or (23)

or or

(24)

where are vertex lags and are constants. Theor
statements that appear in (22), (23), and (24) prohibit the use
of standard linear programming methods [21] and necessitate
the use of branch and bound techniques for the general
unconstrained retiming problem. However, it is shown in
Section VII that a polynomial-time suboptimal solution is
feasible when the path delays are constrained to monotonically
increasing delay values.

Note the existence ofmultiple choicesin each inequality
in (22), (23), and (24) in the form of or or where

and are different choices. (nonexistant)
implies the form shown in (22) and (23), whereas and

imply the form shown in (20) and (21). Notationally,
s1 must always exist, and and is not
permitted. Therefore, (24) is characterized by Note
that it is possible toreducethe complexity of a multiple choice
inequality by either eliminating or Thus, an inequality
originally in the form of (24) can be converted to the form of
(22), thereby reducing its complexity.

To gain insight into how these multiple choice inequalities
are created, consider retiming the graph of Fig. 3, for which the
SAM is shown in Table I. To achieve a clock period of
tu, the dark shaded and light shaded paths must be avoided,
since they represent long paths for tu and short paths,
respectively. To avoid, for example, the path there
exists three possible choices, derived from (11), (12), and (13),
resulting in the multiple choice inequality

or or

(25)

which states that to eliminate the path starting at and
terminating at either or must be zero weight, thereby
making the path nonexistent, or at least one register
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Fig. 8. Pseudocode for the branch and bound algorithmSOLVELAGSthat calculates the vertex lags.

must be placed between the initial and terminating vertices of
the path

The pseudocode of the branch and bound algorithmSOLVE-
LAGS that calculates the vertex lags is shown in Fig. 8. A
list is maintained to store the timing constraints derived
from the SAM (Step 1) which are individually eliminated
until no more constraints remain unevaluated (Steps 2 and
18). Within this loop, each constraintis evaluated separately
(Step 3) to determine if (Step 4) or (Step 12) is
nonexistant.

If can be eliminated (i.e., can never be satisfied using
the current vertex lag list), the complexity of the constraint
can be reduced (Steps 5–7). Alternatively, if is satisfied
using the current vertex list without further tightening the
boundaries of the vertex lag list, the constraintcan be
eliminated (Steps 8–11). The same operations are performed
on condition between Steps 12 and 13.

After and are evaluated, the lags are adjusted to satisfy
constraint (Step 14). If cannot be satisfied, a vertex lag
set does not exist that satisfies all constraints (Steps 15 and
16), since is the last possible solution in theor chain. If a
vertex lag set can be found that satisfiesthe vertex lag that
satisfies is used (Step 17). After is completely evaluated
and the entire list of constraints is satisfied, a solution exists
and the current status of the vertex list is the set of final vertex
lags (Step 19).

The solution method for determining the vertex lags of the
graph shown in Fig. 3 is exemplified in Table II. The target
minimum clock period in this example is 24 tu. To solve for a
set of vertex lags that provide a proper retiming, an inequality
similar to (25) is written for each short or long path shown in
Table I. In this algorithm, the unbounded value
is initially assigned to each vertex lag range. Only one vertex
lag for simplicity) is initialized to zero and the other
lags are calculated relative to Bounds of the vertex lag
ranges are continuously tightened to determine a set of vertex
lag ranges that satisfies all of the constraints.

In Table II, the vertex lag nonnegativity constraint from
(15) is applied to each vertex to further tighten the vertex lag
ranges (shown in the first three rows). When the constraint
from (15) cannot be used to further tighten the vertex lag
ranges, the long path constraints from (16), (17), and (18)
are used (see row 4). Short paths are also eliminated using
(16), (17), and (18). Each time the bounds are tightened by
applying long (or short) path constraints, (15) is applied to
the new set and the neighboring vertex lag ranges to ensure
nonnegative edge weights on each edge. The algorithm may
reach a point where the application of the constraints can no
longer tighten the bounds (the dark shaded row). Once this
occurs, all possible values for each vertex lag are tested. On
the first dark shaded row in Table II, there are two unfixed
lags with cardinalities two and three, respectively. Therefore,

possible solutions exist and must be evaluated.
If a solution is reached, the algorithm is terminated and the
resulting vertex lag ranges are used to determine the edge
weights of the retimed graph. If all possible solutions are
considered and a set of vertex lag ranges cannot be determined
that satisfy all constraints, a solution for that specific clock
period does not exist.

VII. PATH DELAY MONOTONICITY CONSTRAINTS

The algorithmRETSAMis capable of including arbitrary
register properties, including clock delays. In the event, how-
ever, that the design freedom permits consideration of the REC
delay values as part of the design process, certain constraints
can be placed on the REC values which will permit the
use of standard linear programming techniques, such as the
Bellman–Ford method [21], for solving for the vertex lags.
This process yields more computationally efficient results.
In the following subsections, the path delay monotonicity
constraints that must be applied to the REC values to per-
mit computationally efficient retiming are introduced, design
issues relating to the clock distribution network with respect
to satisfying the monotonicity constraints are described, and
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TABLE II
EXAMPLE SOLUTION FOR c = 24: A SINGLE VALUE IS SHOWN FOR EQUAL, LOWER, AND UPPER BOUNDS

the feasibility of applying these monotonicity constraints to
practical circuits is discussed.

A. Path Delay Monotonicity Constraints

In practical integrated circuits, variations in clock delay
between widely separated registers may create clock skews
which can drastically affect circuit operation. An observation
of (4) is that arbitrary clock skews (in particular, negative clock
skews) may cause longer data paths (paths with more edges
and vertices) to have less delay than shorter data paths (paths
with less edges and vertices). Therefore, unless constraints are
placed on the possible clock delays, the data path delays are
arbitrary and can quite possibly be negative. This decrease in
path delay can occur either due to negative clock skew or to the
delay components of the newly placed register being less than
the delay components of the original register. Thus, a subpath

of a longer path (composed of added edges and vertices)
may have a delay greater than pathAn example graph in

Fig. 9. An example graph in which the path delays do not monotonically
increase. The subpathp1 has a delay greater than its original pathp: The cause
of this nonmonotonic behavior is due to the negative clock skew between
edgese1 and e2:

which this occurs is depicted in Fig. 9. In this graph, the
subpath has a greater delay than pathThe primary cause
is due to the effect of negative clock skew which effectively
subtracts delay from the local data paththereby causing the
subpath to have greater delay (or the longer pathto have
less delay). In the specific example shown in Fig. 9, subpath

is 1 tu greater than path This 1 tu difference results
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Fig. 10. Pseudocode version of algorithm for designing the clock distribution network.

from the negative clock skew between edgesand i.e.,
tu.

When a subpath of a larger path has a greater delay, there
are three choices for removing that path. These choices are
the following.

1) Place a register between the initial and the terminal
edges, since a shorter path may have a smaller delay
(or a short path may have a larger delay).

2) Remove the initial edge so that the path becomes longer
(more edges and vertices). This longer path may have a
smaller delay.

3) Remove the terminal edge so that the path becomes
longer. This longer path may have a smaller delay.

Conditions 2) and 3) are required since the data path delays are
completely arbitrary, and any of these conditions may possibly
remove the undesirable path. Since these three conditions are
used inRETSAM, standard linear programming techniques are
not possible due to the booleanor operation, thereby resulting
in the multiple-choice inequalities in (20)–(24).

A strategy to improve the time efficiency of the retiming
algorithm is as follows: If certain temporal constraints are
placed on the clock delays, it is possible to guarantee that a
subpath of a larger path will always have a larger delay,
thereby removing the aforementioned conditions 2) and 3).
This simplification permits using the standard Bellman–Ford
method, since by removing conditions 2) and 3), the remaining
inequalities are linear in the form of since no
booleanor operation is being performed.

Assume a path with two edges and respectively, and
a vertex between these edges. The following condition to
ensure monotonically increasing path delays is as follows:

(26)

where and are the sum of the setup and
clock-to- delays of the registers located on edgesand
respectively. Details of the derivation of (26) can be found in
Appendix B.

Equation (26) guarantees monotonically increasing delays
for each edge-to-edge local data path. If (26) is satisfied
and all path delays increase monotonically, standard linear
programming methods can be applied when retiming a graph,
thereby dramatically improving the computational efficiency
of the retiming process. Relationship (26) does not permit
race conditions since race conditions may create subpaths
with delays larger than the original paths. Therefore, race
conditions must be eliminated in advance to permit the use of
the Bellman–Ford method. Therefore, this strategy does not
verify the existence of race conditions but instead assumes
that all race conditions have been eliminateda priori. Given

that (26) is satisfied for each path in the synchronous circuit,
inequalities for longer paths can be written and solved using
the Bellman–Ford method. Equations (27) and (28) must be
satisfied to ensure that a proper retiming with REC’s has been
accomplished. These conditions are similar to those derived
in [1]

(27)

(28)

B. Designing the Clock Distribution Network

In a practical integrated circuit, clock delays to each in-
dividual register may vary significantly due to the layout
characteristics of the clock distribution network, creating local-
ized clock skew between sequentially adjacent registers. These
initial clock delay values can be changed by redesigning the
clock distribution network, for example, by inserting buffers
into certain clock paths. By applying this type of methodology,
a clock distribution network can be designed which maintains
monotonically increasing path delays, thereby satisfying (29)
and (30)

(29)

(30)

Equations (29) and (30) represent the minimum and max-
imum clock skew that each individual local data path may
have without causing improper circuit operation. As described
in Appendix B, and are the negative clock
skew tolerance and the positive clock skew tolerance of path

respectively.
Careful observation of (29) and (30) will show that these

expressions represent a family of inequalities which can be
solved using the Bellman–Ford method [21]. Therefore, a
clock distribution network can be systematically designed with
this methodology, as shown by the pseudocode algorithm
presented in Fig. 10. The process described in Step 5, design-
ing the clock distribution network from the individual clock
delays, is discussed in greater detail in [12]–[15].

In the event that no solution for this set of inequalities
exists, a clock distribution network design is not feasible. If
this occurs, these monotonicity conditions cannot be satisfied,
and the algorithmRETSAMcan be used.

A key aspect of the results of this research is the close
interaction that exists between the design of the clock dis-
tribution network and the computational efficiency of the
retiming process. It is shown herein that if the clock dis-
tribution network is poorly designed, the retiming process
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may be greatly degraded. Alternatively, a well designed clock
distribution network may significantly enhance the efficiency
of the retiming process.

C. Feasibility Check for the Clock Distribution Network

To verify whether the conditions imposed on the clock
delays are feasible in practical circuits, typical values for the
REC’s are used to exemplify the design process. The original
digital correlator presented by Leiserson-Saxe and shown in
Fig. 2 is used as an example circuit. The logic elements on the
vertices and are comparators and are modeled
as XNOR gates with a nominal delay value of 3.5 ns. The
logic elements on vertices and are full adders with
a nominal delay value of 4.0 ns. Typical register setup and
clock-to- times of 4.0 ns and 3.0 ns are used. These temporal
values are derived from industrial-based standard cell libraries.
Initially, zero clock skew is assumed to predict the negative
clock skew tolerance of a path.

The parameters are provided below for an arbitrary path
in Fig. 2. Interconnect delays and are

assumed to each be 1.4 ns, approximately 20% of the register
delays. In this case, for edgesand the register delays are

ns

and, therefore

ns

Assuming zero clock skew, i.e., the path
delays are

-

ns

According to (26)

(31)

which is satisfied since

ns ns

It can be shown that these conditions are satisfied for all paths
in the digital correlator circuit shown in Fig. 2. Therefore, as
long as the clock skew is zero, (26) is satisfied, and the digital
correlator has monotonically increasing path delays throughout
the entire circuit. Now let
in Fig. 2 be negative. Positive clock skew is not considered
here since it does not affect the monotonicity constraint.
Applying negative clock skew, the inequalities become

ns ns

or

ns

Thus, the negative clock skew tolerance of the local data path
is 6.3 ns, i.e., negative clock skew is permitted, however,

it cannot exceed a magnitude of 6.3 ns. A methodology
for designing clock distribution networks based on nonzero
localized clock skew is described in greater detail in [12]–[15].

VIII. E XPERIMENTAL RESULTS

The retiming algorithmRETSAMis implemented in C on
a SUN 4 workstation. To permit evaluating the proposed
retiming algorithm, modified Microelectronic Center of North
Carolina (MCNC) benchmark circuits [25], [26] have been
analyzed with this algorithm and an implementation of the
Leiserson-Saxe retiming algorithm [1]. The resulting minimum
clock period for each of the retimed benchmark circuits is
reported.

To evaluate the proposed retiming algorithm, 1989 and 1991
MCNC LGSynth benchmark circuits [25] and [26] have been
modified to include the effects of variable register, clock, and
interconnect delays. To incorporate these delay components
into the benchmark circuits, REC’s are artificially generated
using a random number generator. However, to better simulate
the effects of the actual clock distribution, interconnect, and
register delays, the uniformly distributed numbers generated
by the C library functionrandom are converted to a
normal Gaussian distribution [27]. For clock delays, a uni-
form distribution is applied, since the registers are typically
distributed over the entire integrated circuit. Physically distant
registers may have very different clock delays, since the
interconnect impedance between the clock source and these
registers and the capacitive loading of the registers may vary
over a wide range. This suggests a wide spectrum of clock
delay values, and, therefore, a uniform distribution is applied.
For interconnect delays, a uniform distribution is also used,
since the distance between the registers and the logic elements
is assumed to vary uniformly. A Gaussian distribution is
used for the register delays, since similar instances of the
same register cell or register cells of similar delay are most
often used; therefore, the delays are approximated as being
normally distributed. For those instances in which a negative
value for the clock, register, or interconnect delays is obtained
from the Gaussian distribution, the approach applied in these
experiments is to discard the negative values and redo the
sample. The “truncation toward zero” approach (i.e., mapping
of negative values to zero) is not applied since this would
bias the probability of obtaining zero values (specifically, the
probability of obtaining a zero sample would be the integral
of the Gaussian distribution from to zero).

As described in Section IV, a process-dependent parameter
is used to prevent marginal race conditions. Paths with a

delay less than or equal to this parameter are not permitted.
In the benchmark circuits, is used, therefore, paths with
zero or negative delay are not permitted. In these circuits, the
average register delay - of each circuit is
added to each local data path to compensate for the effects of
the variable register delays, i.e., the register delay of each local
data path is assumed to be constant and equal to the average
register delay of the retimed circuit with variable REC values.

The application ofRETSAMto the example MCNC bench-
mark circuits are described in Table III. The initial five
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TABLE III
RESULTS OF THEAPPLICATION OF THE RETIMING ALGORITHM TO MCNC BENCHMARK CIRCUITS

columns describe the properties of the modified benchmark
circuits. These properties are:

1) the name of the benchmark example as it appears in the
MCNC archive;

2) the number of edges;
3) vertices in the graph of each circuit;
4) the latency of the circuit;
5) the original clock period.

The minimum clock period of the retimed circuit using algo-
rithm RETSAMis shown in the sixth column. In the seventh
column, the minimum biased with using algorithm
FEAS [1] is presented. The parameter is the average
register and interconnect delay in the circuit and is included
to provide a fairer comparison.

The sequential circuit represented by the retimed graph
contains registers with various REC values. If the regis-
ter delays in the circuit are different, as shown in Fig. 11

- tu vs. tu), - for
the initial register and for the final register must be
considered when calculating the path delay. In the unusual
case where all register delays are equal, can be used as a
global parameter, as is assumed in [3]. The greater the variance
between the register delays and between the clock delays (the

Fig. 11. A path containing two registers and a vertex between the two
registers. The path delayTPD contains components related to the register
delays. If all registers in the circuit are similar, the register delay components
would be equal.

more significant the affect of negative clock skew), the greater
the minimum clock period becomes, as exemplified by the
minimum clock period of certain benchmark circuits listed in
the sixth column. This increased delay is due to theimbalance
among the path delays, thereby increasing the worst case path
delay, requiring a larger minimum clock period. Since the
circuits listed in Table III are relatively balanced, negative
clock skew does not significantly impact most of the circuits
listed in Table III. Thus, only one circuit (the majority circuit)
exhibits a minimum clock period (listed in column six) which
is less than the clock period shown in column seven.
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To provide a comparison between the central processing
unit (CPU) efficiency of the retiming process on a SUN4
workstation with and without monotonic delays, the CPU times
are included in columns 8 and 9 of Table III. The CPU times
required to retime a circuit with monotonic path delays using a
linear programming based algorithm similar toFEASproposed
in [1] is listed in column 8. The CPU times usingRETSAM
are listed in column 9. Note the dramatic improvement in
CPU efficiency when a linear programming based algorithm is
used. This emphasizes the importance of applying path delay
monotonicity constraints when retiming a high complexity
circuit.

As shown in Table III and noted earlier, the minimum
clock period of the majority circuit from LGSynth89 retimed
with RETSAMis less than from existing retiming algorithms.
This occurs since localized negative clock skew [5] and [18]
subtracts delay from the critical path such that the worst case
path delay is smaller, thereby causing the minimum clock
period to be less. Also, note that no race conditions exist in
those circuits retimed byRETSAM, a conclusion that cannot
be drawn with other retiming algorithms.

IX. CONCLUSIONS

A retiming algorithm is presented which considers variable
clock distribution, register, and interconnect delays. To per-
mit the consideration of these delay components, REC’s are
attached to each edge of the graph representing the circuit,
and the original path delays are redefined to be from edge-
to-edge rather than vertex-to-vertex. A set of inequalities are
created based on these edge-to-edge path delays, permitting a
retimed version of the circuit to operate at the minimum clock
period. A general algorithm,RETSAM, is presented which
supports arbitrary REC values, including excessive negative
clock skew. An iterative method using ranges of vertex lags
rather than constant vertex lags is used within this retiming
algorithm to solve for the edge weights.

A set of monotonicity conditions may be imposed on the
REC values to improve the computational efficiency by per-
mitting the use of standard linear programming methods. These
monotonicity conditions place constraints on the magnitude of
the negative clock skew of each local data path, thereby no
longer permitting the clock delays to be of arbitrary value. The
feasibility of applying these conditions to practical circuits is
discussed. It is shown that retiming cannot be efficiently and
accurately performed on a circuit with an improperly designed
clock distribution network. Thus, the quality of the design
of the clock distribution network can significantly affect the
automated design of high-performance synchronous circuits
when utilizing retiming as a synthesis methodology.

The limitations and advantages of the proposed retiming
algorithm are compared with existing retiming strategies using
a set of modified MCNC benchmark circuits. The results of
applyingRETSAMto the benchmark circuits show that a more
accurate retiming can be performed than with existing retiming
algorithms which do not consider variable clock distribution,
register, and interconnect delays. Additionally, the clock pe-
riod can be further minimized due to localized negative clock

skew. Finally, clock skew induced race conditions are detected
and eliminated.

Summarizing, a new retiming algorithm which considers the
effects of variable clock distribution, register, and interconnect
delays has been presented. This algorithm represents a signif-
icant extension of existing retiming algorithms, permitting the
use of retiming for the automated synthesis of higher speed
and more reliable pipelined digital systems.

APPENDIX A
ESTIMATING THE CLOCK DELAYS

As described in Section I, the retiming process requires
an initial estimate of the register, clock distribution, and
interconnect delays which can be replaced with more accurate
values as the exploratory retiming process becomes better
specified. Therefore, an important aspect of this research
effort is that the retiming process and the clock distribution
design are closely related, i.e., a careful design of the clock
distribution network will improve the results of the retiming
process. The retiming process can also be used to improve the
design of the clock distribution network.

Although optimal retiming and clock distribution design
may be performed separately, simultaneous clock distribution
design and retiming may be highly CPU intensive. Therefore,
estimating the delay characteristics of the clock distribution
network and integrating these delays into the retiming process
may be more suitable for designing practical circuits. This
issue is a topic of considerable focus within the academic and
industrial research communities.

A procedure is described to demonstrate how clock de-
lays can be estimated for a practical circuit. As previously
mentioned, it is assumed that an integrated circuit can be
partitioned into regions of similar clock delay. Each clock
delay region is composed of both a deterministic and a
probabilistic delay component, as shown below

(A.1)

where is a uniformly-distributed random variable, and
is the deterministic clock delay at-

tached to region
The nondeterministic statistically based component of the

clock path delay, represented by the delay componentis
due to variations in process parameters within the integrated
circuit. Since transistor parameters, such as channel mobility,
threshold voltage, and oxide thickness, may vary across the
die, some variations of the clock delay are expected. This
variation, however, tends to be small for registers belonging
to the same local data path (and, therefore, physically close
to each other). Methods have been proposed in the literature
for reducing the process dependence of the clock skew to less
than 10% of the total path delay [28].

The deterministic component of the clock delay for a
region can be calculated based
on geometric distance information derived from the circuit
layout. The distance information from a source node to any
sink node in an integrated circuit (IC) layout can be obtained
either from routing information or using exploratory Steiner
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Fig. 12. A block diagram of an example integrated circuit layout. The chip
area is assumed to be partitioned into regions of similar clock delay.

tree approaches [29], [30]. Calculation of the interconnect
resistances and capacitances directly from the IC layout or
Steiner tree can be achieved with standard circuit extraction
techniques [31]. With this information, well-known techniques
can be employed to estimate the individual clock delays (e.g.,
[13], [32]–[35]).

As observed from (A.1), each region is attached a
deterministic clock delay characterizing that region.
A floorplan of a simple integrated circuit consisting of six
clock delay regions is depicted in Fig. 12. As an example,
assume that the total interconnect capacitance of the clock
line driving region A is fF, the total interconnect
resistance of the clock line is the on-resistance
of the clock source is and this clock line
drives 100 registers (four NMOS and four PMOS devices
per register). The geometric size of the NMOS and PMOS
devices are 10 m 1 m and 20 m 1 m, respectively.
Therefore, the total load capacitance of the module A can
be approximated by (ignoring bulk capacitance)

(A.2)

where and are the gate widths of the PMOS and
NMOS load transistors, and are the gate lengths of
the PMOS and NMOS load transistors, is the permitivity
of the gate oxide, and is the gate oxide thickness (a value
of 200Å is assumed). Therefore, the deterministic component
of the clock delay (defined at the 50% point) from the clock
source to module A can be estimated as [33], [34]

ns

(A.3)

This simple example presents an initial approach for estimating
the delays within a clock distribution network. Research is
currently under way for developing more accurate models for
estimating these REC values. More sophisticated approaches
for estimating IC area and performance characteristics can be
found in [36]–[38].

APPENDIX B
DERIVATION OF THE MONOTONICITY CONSTRAINTS

In Section VII, the importance of monotonically increasing
path delays is described. Computationally efficient retiming

Fig. 13. A pathp with three registers and two vertices.

cannot be guaranteed on a synchronous circuit with arbitrary
clock delays yielding arbitrary data path delays. It may be
preferable to design the clock distribution network to improve
the computational efficiency of the retiming algorithm by
ensuring that all path delays are monotonically increasing.
In Section VII-B, inequalities are presented that must be
satisfied by each individual data path to ensure monotonically
increasing path delays. The derivation of these inequalities,
(29) and (30), are provided in this appendix.

In Fig. 13, a path with three registers and two vertices with
delays and is depicted. For this path consisting
of three registers, and necessary conditions for mono-
tonically increasing path delays (smaller delays for subpaths
of larger paths) are

(B.1)

(B.2)

To provide intuition into how these inequalities are created,
consider the graph of Fig. 9. In this figure, (B.1) and (B.2)
can be used to ensure that the subpathsand each have
a delay less than the longer pathMore generally, (B.1) and
(B.2) ensure that paths and each have a
delay less than the longer path

Using (4), the following inequalities can be derived from
(B.1) and (B.2)

-

-

(B.3)

-

-

(B.4)

Defining and as the total setup and clock-
to- delays of edges and respectively

-

- (B.5)

the following inequalities are obtained from (B.3) and (B.4)

(B.6)

(B.7)

These two conditions, (B.6) and (B.7), can be transformed
into a simpler form by combining them. Assume a path with
two edges and , respectively, and a vertex between these
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edges. The following condition is required to ensure that the
path delays increase monotonically with increasing path length

(B.8)

Equation (B.8) sets a lower limit on the delay of a local
data path to ensure that only one inequality is required,
making the system of inequalities linear, thereby permitting
the Bellman–Ford method to be used. There is also an upper
limit that can be defined as

(B.9)

where is the maximum permitted clock period of the circuit.
This upper limit is used to guarantee that each local data path
has a delay smaller than the maximum permitted clock period
of the synchronous circuit. Since monotonicity is guaranteed
by (B.8), a longer path will have a greater delay. Therefore,
the upper limit of (B.9) must be imposed on each local data
path, since if (B.9) is not satisfied for each local data path, the
excessively long local data path delay will place a new lower
limit on the clock period of the circuit. If this upper limit is
greater than required, the long path must be removed.

Since depends on the clock delays driving the
initial and final registers of the local data path between edges

and (B.8) is a constraint which is imposed on the
clock distribution network. Equation (B.8) can be expanded
into (B.10) and (B.11). Equation (B.11) describes a specific
constraint that must be placed on the individual clock delays

-
(B.10)

(B.11)

In (B.11), denotes a constant depending only on the
REC parameters of edgesand can be calculated
from (B.12) and is the “negative clock skew tolerance of the
local data path from edge a to edge b”

-
(B.12)

Note that in the more general case where the process
dependent parameter is nonzero, must also be included
in (B.12), i.e., is used rather than as
the negative clock skew tolerance. Also note that sinceis
always greater than zero, the negative clock skew tolerance
of the local data paths decreases with increasing values of
thereby further constraining the design of the clock distribution
network.

Another interpretation of (B.11) and (B.12) is that “the
clock skew of any local data path cannot be more negative
than the clock skew tolerance of that local data path.” An
observation of (B.8) is that strictly positive local data path de-
lays are required, i.e., “computationally inexpensive retiming”
cannot be performed with the existence of race conditions.
This characteristic is a profound result in that it states that
computationally efficient and accurate retiming cannot be
performed on a circuit with an inefficiently designed clock

distribution network. In other words, the process of retiming
and clock distribution network design are closely related. The
clock distribution network must be designed to satisfy (B.11).
For computational efficiency, retiming is best performed on
a synchronous digital system with a properly designed clock
distribution network in which the negative clock skew of a
local data path does not exceed the maximum tolerance of
that path, as determined by (B.12).

Assuming (B.11) is satisfied, it may be possible to design
a clock distribution network which permits computationally
efficient retiming. Equations (B.11) and (B.9) can be rewritten
as (B.13) and (B.14), respectively

(B.13)

(B.14)

where

- (B.15)

is the “positive clock skew tolerance of the local
data path from edge a to edge b.”
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