
pbCAM: probabilistically-banked Content
Addressable Memory

Tolga Soyata, John Liobe
University of Rochester, Dept. of Electrical and Computer Engineering, Rochester, NY 14627

{soyata, liobe}@ece.rochester.edu

Abstract—Content Addressable Memories find wide use in
network routers and certain image processing applications.
However, their use is limited due to their high power demand
resulting from their high activity factor. A banked CAM, on the
other hand, partitions the entire CAM into smaller banks to cut
down on excessive searches, while it may reduce the effective
CAM size when the data entries are unevenly distributed. A new
banked CAM design is introduced in this paper which achieves
significant energy and power savings through the use of Bloom
Filters by effectively decoupling data elements from their bank
index. Simulation results show energy savings of nearly an order
of magnitude.

I. INTRODUCTION

A CAM facilitates search operations based on the content,
rather than the physical location of the data. This allows for
much faster database operations, such as insertion, deletion,
and search. The speed improvement primarily comes from
the ability to search multiple entries in parallel. Although the
speed of the operation is improved, very large CAMs cannot
be built due to the energy and power limitations. This is due
to the 100% activity factor CAMs have during their search
operation. At some point, it becomes technologically infeasible
to dissipate the amount of power required for the CAM. For
example, the state of the art CAM consumes 6fJ per search
per bit as per 2006 data [1], and the straightforward scaling
of this number based on ITRS projections [2] yields a 150W
power consumption projection for a 256KB CAM by 2012,
nearly at the limit of conventional cooling for any IC. Although
sophisticated circuit design techniques, such as pipelining and
banking can reduce this number to a smaller value, such as,
50W, it is still evident that, a CAM in the order of Gigabytes
is not feasible using today’s technology. Using ITRS [2] and
Moore’s law, one can predict that in 2025, a CAM will only
have 1M entries for the same power consumption.

A variant of CAM, the ternary CAM (or TCAM) stores
each element in two bits, allowing three-valued (i.e., ’0’, ’1’,
’x’) logical operations. This style CAM enables additional
operations at the expense of storage area and power penalty.
Due to the size limitation, CAM/TCAMs have been confined
into a limited application space, such as, network routers, to
perform packet classification and routing. In network router
applications, much smaller (T)CAMs are needed and the
search speed is of primary concern, reducing the negative
impact of the high power consumption.

There has been considerable work in the area of CAM
design to reduce the power and/or energy consumption of

(T)CAMs [3]–[5]. Although numerous techniques have been
proposed to make CAMs more energy-efficient, the power
savings have been limited, thereby significantly narrowing the
application space of CAMs. In this paper, we propose an
energy-efficient CAM that eliminates one of the most impor-
tant hurdles in building large banked-CAMs: bank conflicts.
Our proposed pbCAM design de-couples data values from
their physical location, thereby permitting much larger CAMs
to be constructed within the same power budget.

This paper is organized as follows. In Section II, background
information is provided for CAMs and Bloom Filters. Sec-
tion III and Section IV provide an overview and operational
details pbCAM, respectively. Our concept is simulated and
evaluated using Cadence design tools in Section V. Related
work is provided in Section VI and conclusions and future
work are given in Section VII.

II. BACKGROUND AND MOTIVATION

A. Content Addressable Memory (CAM)

CAMs provide the payload associated with a key [1]. As
an example, if one was to use a CAM to store zip codes and
their associated city names, the key would be the city names,
and the zip codes would be the payload (i.e., the result of the
search). A traditional CAM is shown in Figure 1, where the
term tag is used interchangeably with the key. A traditional
N -entry CAM searches all N elements in a single cycle to
match a single key, thus performing N−1 wasteful searches.
Therefore, this approach is very energy inefficient.

One potential improvement is to use a banked CAM struc-
ture as shown in Figure 2, where the prefix of the data element
(e.g., the MSB 4 bits) is used to pre-eliminate a large portion
of the banks (e.g., 15). Only a single bank actually performs
the query. This approach has a drawback: Since certain data
elements can only reside in certain banks, the effective size
of the CAM could be drastically reduced for non-uniformly
distributed data elements (e.g., having a lot more city names
that start with the letter M). This asymmetric distribution of
the entries could eventually negate the savings from banking.
We propose a new solution that eliminates these bank conflicts.

B. Bloom Filters

Bloom Filter (BF) was introduced in [6] to provide a tool for
determining the existence of an entry in a dataset with a high
probability. The most common BF has no false negatives, and
a small false positive rate, p. The BF of a dataset is calculated



by computing a hash function, H(D) on each data element
D in the dataset and maintaining the aggretaed result in the
BF as the logical-OR of all of the H(D) values. By using k
different hash functions (e.g., k=2), the false positive ratio can
be decreased. As an example, assume that a data set contains
three 16-bit entries, 6D34h, B3A5h, and 9A05h. Assume
a hash function H(), which, when applied to these data
entries, yields 24-bit values as follows: H(6D34h)=080000h,
H(B3A5h)=004000h, H(9A05h)=100000h. The resulting BF
for these three data elements can be calculated by the logical
OR of these three hash values, i.e., BF (D)=184000h.

Using this Bloom filter, if one needs to perform a search
for a certain data element Q which has a hash value of,
say, H(Q)=000100h, since the BF is 184000h, this signals
a guaranteed FALSE, which means that the data element does
not exist in the dataset. This is determined by examining the
individual bits of the H(Q) and the corresponding bits of BF.
For each 1 bit of the H(Q), if the corresponding BF bit is 0,
the element is guaranteed to be absent, otherwise, either the
data element exists, or a false positive is being signaled by the
BF. For an N -element dataset, a m-bit BF, the maximum false
positive rate can be approximated by the following formula:

p = (1− e
−k(N+0.5)

m−1 )k (1)

where k is the number of different hash functions [7], assum-
ing a uniform distribution of the storage elements. As the BF
length (m) increases, the false positive probability decreases.
This structure will form the basis of our pbCAM design, where
the existence of a data element will be tested using a Bloom
filter before the query is performed.

III. PBCAM: PROBABILISTICALLY BANKED CAM

Although banked CAMs reduce unnecessary searches, their
power and speed benefits can be completely nullified by bank
conflicts. To solve this issue, we propose the probabilistically-
banked CAM (pbCAM), which leverages Bloom Filters (BF)
at the input of each bank. Figure 3 shows BFs recording the
new elements inserted into its associated bank.

Fig. 1. Traditional CAM structure. N entries are searched in parallel.

Fig. 2. Banked CAM structure to divide N elements into B banks.

Fig. 3. Proposed pbCAM design. The Bloom filter attached to each bank
estimates the likelihood of the existence of a key.

Assume an example 16-bank (B=16) CAM using a 8192-
bit BF for each bank (m=8192) and 2 hash functions (k=2).
The false positive rate is p=5% from Equation 1. By sifting
the queries using this BF before they reach the bank, one can
ascertain if this bank contains the entry or not with a 0% false
negative, and a 5% false positive ratio. Using this BF, one bank
(the one actually containing the entry) will correctly accept
the query and the other 15 banks will erronuously accept the
query with a 5% probability, this yielding an average activity
factor of, 1+p(B−1)

B (≈ 0.11 in this example), instead of the
ideal 1

B (≈ 0.06). These spurious (p(B−1)) searches consume
energy without benefit. However, reducing these extra queries
requires a larger BF (i.e., higher m) according to Equation 1,
thereby increasing the die area, and eventually increasing the
energy consumption. This intricate relationship between m
and p affords pbCAM a design freedom to trade-off die area
against energy consumption, creating a unique opportunity that
doesn’t exist in traditional banked CAMs.

pbCAM has the ability to store a data element in any bank
without restrictions using an appropriate hash function which
decouples the D from the H(D). Such hash functions are
common, especially in cryptography (i.e., crypto-strength hash
functions), where one of the important design parameters is
the independence of the output of a hash function from its
input. Achieving a uniform activity level of 1+p(B−1)

B in each
pbCAM bank creates an opportunity to reduce the operation
frequency of each bank by a factor of 1+p

B . This frequency
reduction, combined with a voltage reduction yields super-



linear energy savings in the pbCAM design.

IV. PBCAM CIRCUIT DESIGN AND OPERATION

One key observation in the design of pbCAM is that, the
hash function of a data element being searched, H(), needs
to be calculated only once which can be used by every
bank. Therefore, for a synchronous pipelined CAM IC that
is processing s queries per second, s Hash calculations per
second are necessary, which can be done at the main entry
point of the CAM before the query reaches the pbCAM banks.
H(D) will be required by the Bloom Filter (BF) of every
bank to determine whether there is a pre-match, but, the actual
corresponding data D will only be required by the bank that
contains the element, as well as the banks that issued a false
positive match signal. This indicates that, the design of the
H() function calculator can be decoupled from the Bloom
filter itself as well as the pre-match circuitry. These separate
elements will be described in the following subsections.

A. Hash Calculator

Although there has been existing work to pre-eliminate
the searches partially by using the initial few bits of the
data [1], this type of pre-elimination using the actual data
itself proves to be a weak filter due to the necessity of forcing
certain data elements into pre-determined banks. The BF-
based approach described in this paper places no restriction
on where each data element can reside due to the hashing.
Since, based on our design, each data element only needs to
be hashed once, the hash function can be chosen with primary
focus on its energy consumption. Furthermore, using multiple
hash functions provides design alternatives to trade-off false
positives against Bloom filter size based on Equation 1.

Figure 4 depicts the proposed reference pbCAM design with
B=16. The entire CAM is designed to have only a single
Hash calculator which derives H(D) from D right at the
synchronous input of the pbCAM. The pbCAM is assumed
to work at a frequency of fCAM which is the clock rate of
the Hash calculator. Since CAM banks work at a significantly
lower rate than fCAM , with a theoretical best case of fCAM

B
at p=0, and a theoretical worst case of fCAM (at an average
p = 1), and an expected rate of fCAM

1+p
B , the data (D) and

hash values (H(D)) can be multiplexed on the internal CAM
data bus without disrupting the overall CAM throughput.

Multiplexing of the H(D) and D values is achieved by
sequentially placing the H(D) values on the data bus followed
by the D value for the banks that responded positive to the
pre-Bloom filter match. Each bank’s BF outputs a match/no
match flag on their BMout through the control bus, requesting
the search data D. Banks that respond FALSE to the BF match
simply ignore this search entry, waiting for the next H(D)
value in the next cycle. Note that, accepting a search entry
does not exempt a bank from listening to the next request. It
is possible that, two or more entries in a row cause a hit in
the same bank. In the worst case, B entries in a row cause
a hit, forcing that bank to increase its frequency dynamically,
towards fCAM . Alternatively, in the best case, when every

bank gets a hit uniformly, each bank can slow down to a
frequency of fCAM (1+p)

B , while still achieving a global CAM
throughput of fCAM .

B. pbCAM Bank Design

The micro-architecture of the proposed pbCAM bank is
shown in Figure 5. Insertion, deletion, and update requests
are queued up in the TAG FIFO and Data FIFO, only if the
BF responds positive. Otherwise they are discarded by this
bank. This design allows the CAM bank to dynamically adjust
its frequency between fCAM (1+p)

B and fCAM . The pipeline
control can take advantage of Dynamic Voltage and Frequency
Scaling (DVFS) to translate lower frequencies into a super-
linear energy advantage by reducing the frequency and the
voltage of the pipeline simultaneously. The output of the
results are queued up at the TAG OUT and DATA OUT
registers for the aggregator to combine them.

Fig. 5. pbCAM bank microarchitecture. DVFS is utilized to save energy on
banks with lower search load.

The total energy that is expanded in a naive design is ECB×
B per cycle, where ECB is the search energy of each CAM
bank and B is the number of banks. The total energy per cycle
in the proposed pbCAM is approximated by

EpbCAM = ECB(1 + p(B−1))×Rα
F +B×EBF (2)

where RF is the reduction in frequency, and α is a value
between 1 and 2, signifying the super-linear energy savings
due to simultaneous frequency and voltage reduction. EBF

is the energy consumed by each bank’s BF, and p is the
false positive probability. The pbCAM achieves lower energy
consumption per cycle when the following constraints are met:

ECB×B >ECB(1 + p(B − 1))×Rα
F + B×EBF

ECB(B − (1 + p(B − 1))×Rα
F ) > B×EBF

ECB(1− (1 + p(B − 1))Rα
F

B
) > EBF

(3)



Fig. 4. pbCAM bank layout structure. Using only a single hash calculator for the entire CAM results in significant energy savings.

Substituting practical numbers, p=0.05, α = 1.5, RF ≈0.11,
and B=16, we obtain nearly an order-of-magnitude energy
savings for pbCAM as compared to the traditional CAM,
which will also be demonstrated through our simulations.This
analysis ignores the bus traffic, which can be integrated into
the formula. However, it is clear that this design offers a
methodology to trade-off BF energy for CAM bank energy.

C. pbCAM Operations: Insertion, Deletion, Search

a) Insertion: This function is performed by calculating
the hash value H(D) of a data element D and inserting it
into the selected pbCAM bank and updating the valid bit of
the corresponding entry in that bank. After the insertion into
the bank, the BF of the selected bank is updated as follows:

BF t+1[n] = BF t[n] + H(D) (4)
where + is the logical OR operation, and BF [n]t and
BF [n]t+1 are the stored Bloom Filter values of bank n at
the synchronous clock edge t and t + 1, i.e., before and
after the insertion, respectively. Note the saturation nature of
the Bloom filter, where at each update, the selectivity of the
Bloom filter decays exponentially according to Equation 1.
During the insertion of a data element, D into the pbCAM
can be performed simply inserting it into the first available
bank in a Round-Robin fashion, and updating the BF of the
bank according to Equation 4, this approach does not take
advantage of any of the positive features of pbCAM: 1) Since
pbCAM decouples data elements from the bank index, this
feature can be exploited by an intelligent centralized controller
to uniformly distribute the data elements into pbCAM banks,
resulting in an effectively larger BF, 2) the same intelligent

central control can also be used to pre-calculate the resulting
Bloom Filter for all available B banks and choose the bank that
causes the lowest bit-flips, thereby lowering the probability
of Bloom Filter saturation, again, effectively, increasing m,
3) insertion can be performed into the least polluted bank,
thereby improving the effectiveness of the BFs. The pollution
concept will be explained later when deletions are described.
Note that, the vast amount of options enabled by different
insertion policies present many exciting research opportunities
which are far beyond the scope of this paper.

b) Deletion: Despite its significant energy savings, the
Bloom filter presents significant challenges in performing
deletions. Since the logical OR function used to update the
insertions into the BFs is a one-way function, deletions are not
possible without significant ramifications in pbCAM operation.
Simply flipping the 1’s into 0’s in the BF after a deleted
element will introduce false negatives, which contradicts many
of the assumptions that allowed the pbCAM to work effi-
ciently. This feature of BFs has been the focus of significant
research [7]–[9]. There are multiple ways to handle deletions
with different trade-offs. They are: 1) Doing nothing, which
will increase the effective false positive rate of the associated
BF, albeit with zero impact on correctness of the pbCAM,
2) Maintaining a dirty counter, and not changing the BF.
The increase in the false positive rate could be overcome by
eventually flushing the BF and reconstructing it.

c) Search: This operation is performed by comparing the
hash value of a data element H(D) to the Bloom filter of the
bank being searched. For k hash functions, there are only k
logic 1’s in the hash value of H(D). This presents interesting
energy-savings alternatives for designing the search circuitry.



The search operation is performed as follows:

Match′[n] = H ′(D).BF [n] (5)
where . is the bitwise logical OR operation, H ′(D) is the
bitwise logical inverse of H(D) and BF [n] is the Bloom filter
value of bank n. If the result is TRUE (i.e., Match[n]=non-
zero), either the bank contains the element, or the answer is a
false positive.

D. Bloom Matcher and Bloom Filter

Equation 5 states that, for each logic 1 bit of the Bloom
filter, if even a single corresponding H(D) bit is zero, this
bank does not contain the entry. A dynamic-NAND gate can be
designed as shown in Figure 6 which determines the Match′

value by pre-charging the match line and letting the hash value
to pull it down based on the BF value. The Bloom Filter is
constructed simply by using an SRAM array of m bits. These
BF [n] bits are applied to the top transistor of the matching
circuit to speed up the match process. Since the only transistor
that suffers from source degeneration is the top transistor, by
applying the steady BF value to the top transistor, the overall
match speed is improved by almost completely eliminating
the charge/discharge time of the top transistor. The BF value
is updated only after an insertion which potentially changes
certain BF bits, immediately updating the state of the top
transistor, thereby nearly doubling the response time of the
match circuit.

The sense amplifier (SA) included in the BF is a typical
current-race implementation [1]. Although a more energy effi-
cient SA can be designed for this specific application, the SA
utilized for the CAM design described below is re-used here.
Looking ahead, for a real implementation, the BF layout will
be constrained by the CAM layout and, therefore, it behooves
the designer to re-use components whereever feasible.

V. PBCAM PERFORMANCE EVALUATION

A. Experimental Setup

In order to demonstrate the energy reduction potential of the
pbCAM architecture, we designed a 64-entry x 80-bit CAM
schematic and simulated in SPICE using PTM (Predictive
Technology Model) files [10]. Cadence tools are utilized;
specifically, Virtuoso for the schematic realization and AMS
and Spectre for the simulations. We targeted four technology
nodes: 65 nm, 45 nm, 32 nm, and 22 nm. Although extracted-
view-based simulations and a larger CAM size would be ideal
and the most accurate, they are not conducive for the efficient
vetting of the proposed pbCAM concept. However, RC-based
interconnect models are included in our CAM design and the
RC interconnect resistance and capacitance values specified
by ITRS [2] are used in our simulations.

B. Experimental Results

The primary objective of the simulations is to extract ECB

(CAM bank energy per cycle) and EBF (i.e., BF energy per
cycle). At each technology node, we investigated three differ-
ent power supplies: a high-performance value (HV), a nominal

value (NV), and an 80% of nominal value (LV). The clock
period is consistent throughout the simulations and is defined
by the limiting case or from the LV power supply at the 65 nm
technology node. ECB is the sum of the precharge energy and
the evaluation energy. These values can be further parsed into
the bit-line and sense-amplifier (SA) energies. For the scope
of this paper, only the resulting total energy is reported. From
the discussion in Section IV-D, the worst-case CAM energy is
consumed when the activity factor is 100%, i.e., when every
bank is queried every clock cycle. For this instance, the HV
supply value is requisite. On the other hand, if the queries are
being properly filtered via the BF/BM circuity, the LV power
supply may be utilized. Table I details a juxtaposition of a
typical CAM energy consumption versus that of the proposed
Bloom Filter-driven, pbCAM energy consumption. The 64-
entry x 80-bit CAM is evaluated at each technology node and
at each aforementioned supply voltage. The BF circuit shown
in Figure 6 is also simulated in the same fashion. The results of
this investigation are posted in the first four rows of the table.
As one would expect, the energy consumption scales with both
technology and power supply voltage. The BF, in many cases,
is over two orders of magnitude more energy efficient than
the CAM bank. Using the example given in Section IV-B,
where B=16 and p=0.05, the rest of the table is populated.
ECAM is B × ECB(@HV ) and is considered the worst-
case energy consumption of a standard CAM architecture.
However, the worst-case implementation of the pbCAM is
B × EBF + 1.75 × ECB(@HV ). The inclusion of the BF
reduces the worst-case CAM activity factor from 16

16 to ≈ 1.75
16 ,

thereby translating to significant energy gains. A more realistic
case is that given by EpbCAM column. For this deployment
and given an expected false positive rate of 5%, from the
discussion in Section III, one would expect CAM banks to
operate at the NV 10% of the time; at the HV 5% of the time;
and at the LV 60% of the time, resulting in an aggregate energy
consumption reported in the nom row on Table I. The best-
case results (i.e. the last row of Table I) are only marginally
better than for the expected nominal case. In both the nom
and BC cases in the last two rows of Table I, most of the
pbCAM activity is performed at the LV supply, which dictates
this energy characteristic. This analysis shows that by filtering
the data queries appropriately, an order-of-magnitude energy
savings may be realized at each technology node.

TABLE I
COMPARISON OF CAM VS. PBCAM ENERGY AT DIFFERENT TECHNOLOGY

NODES AND DIFFERENT SUPPLY VOLTAGES (HV, NV, LV).

Technology 65 nm 45 nm 32 nm 22 nm
Node (fJ) (fJ) (fJ) (fJ)

@ LV 19,996 13,675 4,557 2,389
ECB @ NV 37,274 31,755 11,756 6,170

@ HV 62,048 49,543 22,481 12,338
EBF 347 182 162 104

@ LV 319,936 218,800 72,912 22,224
ECAM @ NV 596,384 508,080 188,096 98,720

@ HV 992,768 792,688 359,696 197,400
WC 114,138 89,610 41,938 23,249

EpbCAM nom 44,378 30,443 12,187 6,714
BC 40,548 26,841 10,571 5,838



Fig. 6. Design of the Bloom Match circuit. Negative impact of the source degenaration is alleviated by placing the bloom filter on the top transistors.

VI. RELATED WORK

Bloom filters have been broadly studied in network routers,
where IP lookups are sped up using multiple hash func-
tions [11]. A thorough survey of Bloom filters is provided in
[9]. A survey of Content Addressable Memories is provided
in [1]. While CAMs have been widely studied in network
routers [3] based on CMOS technology, recent work also
focuses on TCAMs on non-volatile devices [4]. Other applica-
tions include synchronous performance improvement in Cloud
Computing [12]–[16].

VII. CONCLUSIONS AND FUTURE WORK

We demonstrated via both theoretical analysis and simu-
lations a new Content Addressable Memory (CAM) design
with unique energy savings advantages. Our design, pbCAM,
eliminates bank conflicts by decoupling the data elements
from their corresponding bank index, thereby enabling new
energy savings opportunities: 1) Each bank of the pbCAM
can be operated at a lower frequency than the actual pbCAM
itself, thereby achieving super-linear energy savings, 2) Larger
CAMs can be constructed due to the reduced power consump-
tion, 3) faster CAM throughputs can be realized by operating
the banks slower, which is typically the limiting factor in
determining the overall CAM speed. These improvements are
achieved via a Bloom-filter-based probabilistic pre-elimination
of the search entries. A Bloom filter used in each pbCAM bank
requires two orders-of-magnitude less energy than the pbCAM
bank itself and elimminates all but a small percentage of the
unnecessary activity. As demonstrated by our simulations, this
advantage is used to lower the frequency and the voltage of
pbCAM banks, thereby yielding significant energy savings.

REFERENCES

[1] Kostas Pagiamtzis and Ali Sheikholeslami, “Content-Addressable Mem-
ory (CAM) Circuits and Architectures : A Tutorial and Survey,” IEEE
Journal of Solid-State Circuits, vol. 41, no. 3, pp. 712–727, Mar. 2006.

[2] ITRS, “International Technology Roadmap for Semiconductors: 2011,”
2011, http://www.itrs.net/models.html/.

[3] Banit Agrawal and Timothy Sherwood, “Ternary cam power and delay
model: Extensions and uses,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 16, no. 5, pp. 554–564, May 2008.

[4] Mourad El Baraji, Virgile Javerliac, and Guillaume Prenat, “Towards
an ultra-low power, high density and non-volatile ternary cam,” in Non-
Volatile Memory Technology Symposium (NVMTS), Pacific Grove, CA,
Nov. 2008, pp. 1–7.

[5] Banit Agrawal and Timothy Sherwood, “Modeling tcam power for next
generation network devices,” in Proceedings of the IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
March 2006, pp. 1–10.

[6] B Bloom, “Space/time tradeoffs in hash coding with allowable errors,”
in Communications of the ACM, 1970, pp. 422–426.

[7] Adam Kirsch and Michael Mitzenmacher, “Building a Better Bloom
Filter,” Technical report, Department of Computer Science, 2005.

[8] Flavio Bonomi, Michael Mitzenmacher, Rina Panigrahy, Sushil Singh,
and George Varghese, “An improved construction for counting bloom
filters,” in 14th Annual European Symposium, ESA, 2006, pp. 684–695.

[9] Andrei Broder and Michael Mitzenmacher, “Network applications of
bloom filters: A survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–
509, 2004.

[10] Wei Zhao and Yu Cao, “Predictive technology model for nano-
cmos design exploration,” ACM Journal on Emerging Technologies in
Computing Systems, vol. 3, no. 1, April 2007.

[11] Andrei Broder and Michael Mitzenmacher, “Using multiple hash
functions to improve ip lookups,” in IEEE Infocom, Anchorage, Alaska,
April 2001, pp. 1454–1463.

[12] Tolga Soyata and Eby G. Friedman, “Synchronous performance and
reliability improvements in pipelined asics,” in Proceedings of the IEEE
ASIC Conference, Sep 1994, pp. 383–390.

[13] Tolga Soyata, Eby G. Friedman, and J. H. Mulligan, “Monotonicity
constraints on path delays for efficient retiming with localized clock
skew and variable register delay,” in Proceedings of the International
Symposium on Circuits and Systems, May 1995, pp. 1748–1751.

[14] Tolga Soyata, R. Muraleedharan, S. Ames, J. H. Langdon, C. Funai,
M. Kwon, and W. B. Heinzelman, “Combat: mobile cloud-based
compute/communications infrastructure for battlefield applications,” in
SPIE Defense, Security, and Sensing 2009. Modeling and Simulation for
Defense Systems and Applications VII, April 2012, vol. 8403-20.

[15] Tolga Soyata, Rajani Muraleedharan, Colin Funai, Minseok Kwon,
and Wendi Heinzelman, “Cloud-Vision: Real-Time face recognition
using a Mobile-Cloudlet-Cloud acceleration architecture,” in 17th IEEE
Symposium on Computers and Communications (IEEE ISCC 2012),
Cappadocia, Turkey, July 2012.

[16] Tolga Soyata, Rajani Muraleedharan, Colin Funai, Minseok Kwon, and
Wendi Heinzelman, “SOLARCAP: super capacitor buffering of solar
energy for self-sustainable field systems,” in 25th IEEE International
System-on-Chip Conference, Niagara Falls, NY, Sept. 2012.


