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Abstract — The clock frequency of a s; ronous circuit can
be increased by retiming, an operation of temporally and phys-
ically relocating the registers. In this paper, a new approach to
the retiming process is presented which enables one to consider
the effects on 0] retiming of electrical issues such as vari-
able clock distribution delays and different register delays due
to variable loads and cell instances. The algorithm provides in-
creased accuracy in determining the maximum clock frequency
and also eliminates ln{;:b: conditions. Depending on the nature
of the synchronous circuit, retiming using this algorithm may
also provide an increase in system operating clock frequency.

I. INTRODUCTION

In synchronous circuits, digital signals are stored in registers
awaiting a synchronizing clock pulse. Each register delays the signal
by a single clock penod The operanon of placing registers within
a combinatorial circuit so as to increase the clock frequency of the
circuit is known as pipelining [1-5]. Optimization of the pipelined
synchronous circuit by relocating these registers in order to achieve
an increased clock frequency is known as retimlng and was initially
developed by Leiserson and Saxe [6, 7] in 1983.

Early work in the field of retiming assumes registers with no delay
and zero or negligible clock skew [6, 7]. De Micheli [8] considers
the retiming problem without separating the combinational compo-
nents from the registers. In his work, he shows that if the set-up time
(¢,) and clock-to-Q time (t,) are not zero, a reduced effective cycle
time of T'—2, —1, must be considered. This implicitly assumes equal
register delays. ?n [9], Malik et al. integrates retiming with logic
synthesis by temporarily removing registers from the circuit so as to
do combinational optimization on the logic elements. This work also
assumes negligible clock skew and reglslet delays. In [10], Lock-
year and Ebeling study optimal retiming using level-clocked latches.
Their work is based on permitting level-sensitive latches to borrow
cycle time across adjacent latches that would be lost if edge-clocked
registers were used. More recently, Szymanski [11] investigates op-
timal multiphase clocking and timing verification and provides more
selective constraint equations; thereby improving the computational
efficiency, although he does not apply these concepts to retiming.
Burks, Sakallah, and Mudge investigate retiming using multiphase
clocking [12] and do not consider clock skew and variable register
delays. In [13], Sakallah and his colleagues address the retiming
problem in terms of the optimal clocking of synchronous circuits
using linear programming techniques. They provide benchmark ex-
amples of improved performance which can be obtained as a result.

Clock skew can seriously affect the performance of a synchronous
system and must be considered during the retiming process. Clock
skew is manifested by a lead/lag relationship between two sequen-
tially adjacent registers [14-18]. In addition, certain clock skew
lead/lag relationships can be used to improve performance. This
attribute has been shown to improve maximum clock rates by up
to 30%, depending upon the nature of the circuit architecture [14,
15). Undesirable clock skew introduced as a result of retiming can
produce a net negative delay for a local data path. This implies the
existence of a race condition, which must be avoided as a condition
imposed on the retiming process. Thus, the algorithms proposed in
this paper can be used to improve the clock frequency and to ensure
that no race conditions are created while retiming. A retiming algo-
rithm that has no provision for including variable register delays with
suitable capability for incorporating variations in cell instances and
variable loads can be expected to limit the accuracy of the estimated
improvements in clock frequency. Depending upon the relative mag-
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nitude of the register and clock delays, the value of the predicted
clock frequency after retiming may be less than the original circuit.

In this paper, both clock skew and variable register delays have
been integrated into the retiming algorithm presented in this paper.
To accomplish this result, a path between logic elements is defined
in this paper as the traversal from weighted edge 1o weighted edge,
the latter being interpreted as a connection containing one or more
registers between logic blocks. With this definition, clock and
register delays can then be assigned to each edge. Thus, as registers
are shifted from edge to edge, different clock skews and register
delays are developed and considered in each of the path delays.
This permits both clock period limitations and race conditions to be
easily detected on a path-by-path basis. Estimates of register delays
on zero weight edges (i.e., no registers) are required in order to
include the effects of variable register delays on the retimed circuit.
This approach, thezefore, initially requires approximate (or expected)
values of register and clock delays which can be replaced with more
accurate values as the exploratory pipelining process becomes better
specified. This structure provides the basis for a polynomial-time
retiming algorithm which determines the register locations which
achieve a maximum operating clock frequency for the system and
freedom from race conditions. This is the primary result of this
paper.

In section II, the effects of non-zero clock skew and unequal
register delays are quantified for their use in the retiming algorithms.
In section III, both the original Leiserson-Saxe algorithm and the
proposed algorithm are summarized and their differences outlined.
Details of the algorithm development are described in section IV.
Examples of the performance of some circuits retimed with this
algorithm are described in section V. Finally, in section VI, some
conclusions are presented.

II. QUANTIFICATION OF REGISTER AND
CLOCK DISTRIBUTION CHARACTERISTICS

To achieve the principal objectives of the new algorithm, a
number-triple, the Register Electrical Characteristic (REC), is as-
slgned to each register in the form of T¢p : Tser— up/Tc_.Q
Tep is the clock delay from the clock source to each register,
Tsgr-up is the time required for the data at the input of a reg-
ister to latch, and Tc_.g is the time required for the data to appear
at the output of the register upon arrival of the clock signal.

Let Tep(t) : Tser-v _Q/TC_.q{“ represent the REC for the
register located on edge 1. Then, the clock skew, T's x s, between
two sequentially adjacent registers ¢ and ; is defined as

Tskew(i,3) = Tep(i) — Tep(j) M)

If Tep(3) > Tep(i), the clock skew is defined to be negative.
If Ten(3) < Tep(s), the clock skew between these registers is
positive. In the case that Tcp(j) equals Top(i), ie. the clock
signal reaches the clock input of the two registers at exacﬂy the
same time, the clock skew is defined to be zero.

Two sequentially adjacent registers R, and R; form a local data
path. If logic elements exist between R; and R;, the local data path
delay Tpp (s, 5) is

Tpp (i, j) = Tc—~q(i) + Trogre(i, j)+ @
Tser-vp(d) + Tskew (3, 1)

where Trocrc(4,7) is the total delay of the logic elements and
interconnect between these reglsters If there are parallel paths
between the two registers, there is a Trocrc (3, j) for each palh
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III. OVERVIEW OF RETIMING ALGORITHMS

Given an architecture consisting of logic blocks and registers
which is capable of operating at some maximum clock frequency,
the object of retiming is to relocate the registers to achieve an
increase of maximum operating clock frequency, leaving the latency
of the retimed system unchanged from the original. In this section,
the Leiserson-Saxe algorithm is outlined briefly and the proposed
retiming algorithm is described in conceptual terms.

A. Leiserson-Saxe Algorithm

In [7], a graph-oriented method is used to represent a synchronous
circuit. In this method, vertices represent logic elements and edges
represent the connectivity and direction of the data flow. A weight,
which is equal to the number of registers between two logic blocks,
is assigned to each edge. In this algorithm, each time a register
is moved across a logic block, a lag of one clock period is added
(subtracted) to (from) that vertex. Thus, as the number of registers
(the weights) are shifted from edge to edge, the lags attached to
each vertex change accordingly, to account for the temporal shift at
each vertex. This is iterated until a minimum clock period
is determined or the search space is exhausted.

Fig. 1 is a graph of a digital correlator which was presented
by Leiserson and Saxe [7). In this graph, there are cight vertices
and 11 edges. Only four of the 11 edges (eo, €1, €2, and e3) have
registers on them. The graph of Fig. 2 depicts a retimed version of
the graph of Fig. 1. The registers on eo and e; have been removed
while registers have been added to eg and eg. Also note that since
a register has been removed from eo, an additional register must be
added to e; to maintain the latency of the original eo — e7 — €10
path. A more complete explanation of both the algorithm and these
graphs is provided in [7].

B. Proposed Algorithm

A modified version of the graph of Fig. 1 is shown in Fig. 3
in which a REC is assigned to each edge. By assigning a clock
delay to each edge, the circuit area is assumed to be partitioned into
regions of similar clock delay, i.e., registers that are located on the
same edge are physically located in the same clock delay region.
Therefore, registers that end up on the same edge after retiming
are assumed to have similar clock delays. Registers that move to
different edges are assumed to have the clock and register delays of
the new edge. Since registers on different edges may be considered
to have different clock and register related delays, moving a register
from one edge to another edge during retiming can not only create
different data paths with different logic and register delays, but also
can change the clock skew of the new local data paths.

Vi v2 v3 V4

Fig. 1: Graph of digital correlator [7]

In this algorithm, each edge and vertex is represented by a set of
logical minterms with delay coefficients. This system of minterms
represents a set of possible path delays between possible register
locations. These sets of logical minterms are evaluated to determine
a more constrained set of minterms which define a set of register
locations and which satisfy a target clock period requirement. If
the target clock period can be attained, the same system of logical
minterms is applied to a smaller clock period. The process is

continued in order to derive the minimum possible clock period.
This process establishes a final choice of register locations which
provides the minimum clock period.

IV. DETAILS OF THE PROPOSED ALGORITHM

A. The L Matrix

The L matrix is a square matrix whose element L(i,j) =
Tpp(i, j) is the path delay from R; to R;. Since the graph is formed
by directional edges, L(s, j) is not necessarily equal to L(j, ). Each
matrix element contains the summation of the following terms: the
delays of registers R; and R;, the delays of the logic and intercon-
nect between the registers, and the clock skew between R; and R’,-.
This is the quantity Tpp (s, y) defined by (2). The size of the matrix
is Rx R, where R is the number of edges with a positive weight. The
maximum value of R is equal to the number of edges E. The value
of R can increase or decrease as a result of the retiming process.

vi V2 V3 V4
Fig. 2: Retimed version of the graph of Fig. 1
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Fig. 3: Graph of Fig. 1 with the addition of REC values
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Fig. 4: The L matrix of the graph of Fig. 3

The importance of the L matrix is that the element having the
greatest value is the reciprocal of the maximum clock frequency.
The process of successfully retiming can be viewed as producing a
transformed I matrix, simultaneously achieving a maximum element
value which is less than the maximum entry in the original L matrix
without incurring any negative entry. The former condition achieves
an improvement of the maximum clock frequency, whereas the latter
ensures that no race condition exists.
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In the event that two or more parallel paths exist between R; and
R;, the concept of the I matrix must be extended to two matrices,
Lwcp and Lpcp. The elements of these two L matrices are,
respectively, Twcrv(l',lx;) and Tcpp (3, 5), Which are the longest
and the shortest delays of the set of el local data paths.

The L matrix of the graph of Fig. 3 is shown in Fig. 4, where “z”
denotes the sbsence of a path between re; R; and R;. Note
that in Fig. 3, there are no parallel Suhs ote also that the negative
entry in row 3 and column 4 in Fig. 4 indicates the existence of
a race condition.

B. Algorithm CPL

The local path delay from R, to R; involves passing through one
or more vertex v. References to (1) and (2) indicate that Tpp ts:é I
the path delay element located in row ¢ and column j of L
matrix, can be grouped into three categories. Tcp(i) and Te_g(3)
are associated with R;. Tsgr-vp and —Tcp(s) are associated
with R;. Troarc (s, §) is associated with the logic vertices between
R; and R;. The difference in the values of Tpp(s,3), Trp(s, k),
and Tpp(s, m) represent different local data paths which all start
at R; share a common vertex v, and, possibly, have s?nate
logic vertices. These paths terminate at registers, R;, Ry, and Ry,
respectively, and the path delays include the terms Tsgr_vp(J)
and —Tcp(j) or the corresponding terms with j replaced by & or
m, respectively. This fact provides the basis for Algorithm CPL. At
each vertex v, a calculation is made of the cumulative delay from
R; to that vertex, A(v). If parallel paths exist, A(v) is defined as
the maximum value of the sums of the delays to that vertex v. If
a vertex is included in more than one local data path, a worst case
delay Aw(v) and best case delay Ap(v) are determined for that
vertex. At the end of each local data path, the set-up time of the
final register is added while the final clock delay is subtracted to both
vertex delays (Aw(v) and A p(v)). These delays are then searched
for the maximum value and for any negative entry.

Note that in Fig. 3 each vertex has two delays attached to it. It
can be observed from the figure that the maximum logic path delay
occurs between registers Ry and Ry since Aw of vo (the vertex that
is connected behind Ry) has a Aw of 35; therefore, the worst case
path delay of Tpp(Rs, Ro) = 35 + 3 — 5 = 33, the general form
of which is shown in (3).

Teormax = Aw + Tser-ve(i) — Ten(J) €)]

The worst case path delay of the circuit is the path delay determined
by the path Rs — v4 — v5 — v6 — v7 — v0 — R,. Note
the race condition along the path from R, to R; with a path delay
of 8 + 1~ 10 = ~1, which can also be observed in the L matrix
element L(3,4) in Fig. 4.

C. Algorithm POLY for Retiming

Retiming is successfully performed by transforming the L matrix
into a new L matrix containing a smaller minimum clock period.
Creating a functionally equivalent matrix to the original L matrix is
performed by changing an edge weight (i.e., the number of registers
along an edge), and then changing all other weights accordingly.
Note that if two graphs represent functionally equivalent circuits,
then every vertex receives an input signal with the same amount of
delay, i.e., if a signal at an input of a vertex is delayed by one clock
period, then all other input signals at this vertex must be delayed by
the same number of clock periods.

A polynomial-time retiming algorithm is introduced in this section
which exploits both nonlinear boolean algebra minimization [19] and
linear programming [20]. In this algorithm, a boolean variable is
associated with the weight of each edge. If the edge has a positive
weight, its associated boolean variable is defined to be logic “1,”
whereas if the edge weight is zero, the associated boolean variable
is logic “0.” A boolean value of r denotes a “don’t care” and can
be either 0 or 1.

A sum of logical minterms is formed for each possible register-
to-register path in which the boolean “0” state is used to designate
an edge without a register and the "1 state, an edge with a register.

Thus, each path is described as a sum of minterms, each minterm
representing a choice for msemnf a register along the path. Each
individualized minterm is also muitiplied by a delay value, as shown
in (4),

Qw (v5) = 40¢'b + 29¢'ba’ + 28c + 26¢'b'a

Qp(v5) = 19d’ + 16a @

where @ is the minterm equation which describes the delay and
register conditions and the number designates the delay to that vertex
under different register placement conditions. The subscript W and
B represent worst case and best case delays. Once these Q terms are
calculated for each vertex and edge, the placement of the registers
are determined so that a specified clock period is achieved. After the
boolean edge weights are defined, linear programming methods, such
as Bellman-Ford equations [20], are used to de ne the location
of the remaining registers. Upon determining the minimum clock
period with no race conditions, additional registers may be added to
maintain the latency attributes of the original system.

V. EXAMPLE CIRCUITS

The algorithms CPL and POLY are implemented in C on a SUN
4 workstation. Table 1 shows the resulits obtained from retiming
five example circuits. The corresponding graphs are shown in Figs.
3 and 5 through 8. The column designations E, V, and L, refer,
respectively, to the number of edges, the number of vertices, and
the maximum latency of each graph. Three columns of values of
Tcp are shown in the table. The designation Initial Tcp indicates
the minimum clock period for each original graph; an asterisk
indicates a race condition in the graph. The designation Tcp After
Retiming indicates the minimum clock period after retiming, taking
into account the clock and register delays shown in each figure. The
third column of Tcp values was determined by retiming each graph
subject to the conditions of zero clock skew and constant register
delay. The value of register delay, which is different for each graph,
was chosen arbitrarily as the average of all register delays in the
graph.

A comparison of the values of the Initial Tcp with the values
obtained after retiming show a dramatic improvement in minimum
clock period. Furthermore, it is of interest to observe from the
results obtained in Figs. 3 and 5 that the utilization of negative clock
skew can achieve some improvement in maximum clock frequency
compared to the zero clock skew condition (16 compared to 17 tus
and 12 compared to 15 tus, respectively). On the other hand, if
retiming is performed assuming zero clock skew, no local data path
delay can be negative and therefore a race condition is not possible.

Table 1: Examples of Retiming using the POLY Algorithm

Graph properties
Initial || Tep After Tep
Example E v L Tep Retiming § Tsxkrw=0
() (w) Treg=const

()

Fig. 3 11 8 4 33+ 16 17
Fig. 5 5 4 | 2 21 12 15
Fig. 6 8 6 3 28 17 15
Fig. 7 10 7 4 45+ 22 16
Fig. 8 9 6 4 38+ 25 16

* denotes a graph that has race conditions before retiming
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VI. CONCLUSIONS

A retiming algorithm is presented which includes variable register
delays and clock skew. An L matrix is introduced to caiculate
the clock period of a graph and to detect the existence of race
conditions. In order to model the non-idealities present in actual
circuits, electrical characteristic values are assigned to each edge,
and these values are considered during retiming while the registers
are moved from one edge to the other in the graph. In order
to calculate clock skews, clock delays are assigned to each edge,
where the edge represents a physical region of similar clock delay.
This assignment makes possible the capability of incorporating clock
distribution timing into the retiming algorithm.

Algorithm CPL is described for efficiently calculating the mini-
mum and maximum local path delays of the L matrix. Algorithm
POLY is presented which provides for retiming a graph which con-
siders both variable register delays and clock skew. It includes merg-
ing nonlinear boolean algebra minimization with linear programming
to handle these additional conditions. Because the effects of clock
skew and variable register delays are an integral part of the algorithm,
the process of retiming can more accurately estimate the maximum
clock frequency and can possibly create a higher speed circuit.

Fig. 7: Graph of three-input adder

Fig. 8: Graph of four-input adder
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