
Communication
Infrastructures for Cloud
Computing

Hussein T. Mouftah
University of Ottawa, Canada

Burak Kantarci
University of Ottawa, Canada

A volume in the Advances in Systems
Analysis, Software Engineering, and High
Performance Computing (ASASEHPC)
Book Series

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2014 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

			 Library of Congress Cataloging-in-Publication Data

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

Library of Congress Cataloging-in-Publication Data

Communication infrastructures for cloud computing / Hussein T. Mouftah and Burak Kantarci, editors.
 pages cm
 Includes bibliographical references and index.
 ISBN 978-1-4666-4522-6 (hardcover) -- ISBN (invalid) 978-1-4666-4523-3 (ebook) -- ISBN 978-1-4666-4524-0 (print &
perpetual access) 1. Cloud computing. 2. Internetworking (Telecommunication) I. Mouftah, Hussein T., editor. II.
Kantarci, Burak, 1981- editor.
 QA76.585C66 2013
 004.67’82--dc23
 2013023985

This book is published in the IGI Global book series Advances in Systems Analysis, Software Engineering, and High
Performance Computing (ASASEHPC) (ISSN: 2327-3453; eISSN: 2327-3461)

Managing Director:
Production Manager:
Publishing Systems Analyst:
Development Editor:
Acquisitions Editor:
Typesetter:
Cover Design:

Lindsay Johnston
Jennifer Yoder
Adrienne Freeland
Christine Smith
Kayla Wolfe
John Crodian
Jason Mull

175

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8

DOI: 10.4018/978-1-4666-4522-6.ch008

ABSTRACT

With the recent advances in cloud computing and the capabilities of mobile devices, the state-of-the-art of
mobile computing is at an inflection point, where compute-intensive applications can now run on today’s
mobile devices with limited computational capabilities. This is achieved by using the communications
capabilities of mobile devices to establish high-speed connections to vast computational resources lo-
cated in the cloud. While the execution scheme based on this mobile-cloud collaboration opens the door
to many applications that can tolerate response times on the order of seconds and minutes, it proves to
be an inadequate platform for running applications demanding real-time response within a fraction of
a second. In this chapter, the authors describe the state-of-the-art in mobile-cloud computing as well
as the challenges faced by traditional approaches in terms of their latency and energy efficiency. They
also introduce the use of cloudlets as an approach for extending the utility of mobile-cloud computing by
providing compute and storage resources accessible at the edge of the network, both for end processing
of applications as well as for managing the distribution of applications to other distributed compute
resources.

Accelerating Mobile-
Cloud Computing:

A Survey

Tolga Soyata
University of Rochester, USA

He Ba
University of Rochester, USA

Wendi Heinzelman
University of Rochester, USA

Minseok Kwon
Rochester Institute of Technology, USA

Jiye Shi
UCB Pharma, UK

176

Accelerating Mobile-Cloud Computing

INTRODUCTION

Recent developments in mobile computing have
truly empowered human users, as mobile comput-
ing can augment cognitive capabilities dramati-
cally, e.g., through voice recognition, natural lan-
guage processing, machine learning, augmented
reality, and decision-making (Satyanarayanan et
al., 2009). With recent advances in mobile de-
vices, coupled with the technological advances in
wireless and cloud technologies, computationally
intensive applications can now run on devices
with limited resources such as tablets, netbooks
and smartphones using the cloud remotely as an
additional computational resource.

Although different definitions exist in the
literature (Dinh, et al, 2011; Fernando et al.,
2013), we define mobile-cloud computing as the
co-execution of a mobile application within the
expanded mobile/cloud computational platforms
to optimize an objective function. A typical ob-
jective function is the application response time,
where the goal is to minimize the objective func-
tion. Expanding the application computational
resources beyond the mobile is necessary for
applications where the objective function cannot
be minimized sufficiently by the mobile platform
alone (e.g., real-time face recognition), as well as
for applications that rely on data not stored on the
mobile device. In mobile-cloud computing, it is
crucial to provide the user seamless, transparent
and cost-effective services as mobile devices
rent computing, storage, and network resources
from the cloud in order to process and store a vast
amount of data (AWS, 2012; Microsoft, 2012;
Google, 2012). (AWS, 2012)(Microsoft, 2012)
(Google, 2012)

We define application cost as an example
objective function that quantifies the fees charged
by Cloud operators, such as Amazon Web Ser-
vices, during the execution of the application. For
example, Amazon charges for compute-usage per

hour per CPU instance, which implies increas-
ing application costs as the required amount of
computation increases. Similarly, cloud operators
charge for the usage of database instances, such
as Microsoft SQL Server. Table 1 shows some
example mobile-cloud applications and their
computational/storage demands, as well as their
application response-time sensitivity. While ap-
plications requiring higher computational and
storage resources might cost more during opera-
tion in a Cloud platform such as AWS, certain
response-time sensitive applications, such as the
Battlefield application described in Table 1, might
tolerate this increased cost due to their need for low
response time. Notice that Cloud operators charge
less for compute-resources with lower response
time guarantees. Specifically, while AWS charges
nothing for Micro instances with no response time
guarantees, it charges a small amount for the Small
instance, and significantly higher for the Large
instance, which is a dedicated CPU instance. By
the preparation of this document, the AWS pricing
for these instances ranged from $0.10 to $0.40
per core per GHz per hour (AWS, 2012), where
the unit price decreased with a higher core-count
commitment (i.e., number of cores available to an
instance). This implies a rich variety of options
when executing mobile-cloud applications. The
choice of the Cloud CPU instances depends on
the application priorities listed in Table 1.

The primary focus of this chapter is to elabo-
rate on the techniques that enable these mobile-
cloud applications to achieve the goals listed in
Table 1. Although the demands of these applica-
tions will not change from that shown in this table,
achieving certain goals might never become pos-
sible by using mobile-only or even a mobile-cloud
combination. This is due to the limited computa-
tion and storage on a mobile device, which does
not permit the processing or storage of large
amounts of data locally, as well as the high network
latencies connecting the mobile and cloud, plac-

177

Accelerating Mobile-Cloud Computing

ing a lower bound on application response times
when utilizing the cloud for processing and stor-
age of large amounts of data. Later in this chapter,
we will describe how the required application
response times may be achieved by using an edge-
server device called a “cloudlet,” creating a mobile-
cloudlet-cloud platform.

This chapter is organized as follows: First, the
technological challenges and the state-of-the-art in
computational and storage capabilities of mobile
devices and the network latencies are studied.
Issues related to energy efficiency and security
are also explored, followed by a brief study of
the aforementioned intermediate layer cloudlet
and its function in the mobile-cloud computing
environment. Existing architectural designs as
well as performance enhancement techniques
proposed in the literature for mobile-cloud as well
as mobile-cloudlet-cloud computing are surveyed.
The chapter is concluded with discussions on
future research areas.

TECHNOLOGICAL CHALLENGES
IN MOBILE-CLOUD COMPUTING

Running the resource-intensive applications
enumerated in Table 1 far exceeds the capabili-
ties of today’s mobile devices. The constraints on
mobile devices in terms of weight, size, battery
life, ergonomics, and heat dissipation limit the
resources available in mobile hardware, including
the processor speed, memory size, and storage
capacity. Given these challenges, mobile comput-
ing benefits tremendously when combined with
cloud computing that can offer virtually limitless
computing power and storage space, as well as
access to up-to-date databases, only available in
the cloud.

There are, however, several technical obstacles
to enabling mobile devices to benefit from cloud
computing resources, including the compute capa-
bility and storage capacity available at the mobile,
network connectivity and latency challenges, the
need for energy-efficiency at the mobile device,

Table 1. Cloud-based applications and their resource requirements. Each application has a significantly
different response time requirement and resource utilization tolerance to reduce costs while still keeping
the functionality within expected bounds.

Application Description Database
Size

Compute
Resources

Response
Time

Sensitivity

Battlefield Assist soldiers in the battlefield through real-time object recognition HIGH HIGH HIGH

Natural Language
Processing Perform real-time speaker or speech recognition LOW MEDIUM MEDIUM

Airport Conduct real-time face recognition of known criminals HIGH HIGH HIGH

Fire Assist fire fighters with disaster in real-time MEDIUM MEDIUM MEDIUM

Medicine Accelerate medical research (e.g., recognizing DNA sequences in
real-time from a microscope while the research is in progress) HIGH MEDIUM MEDIUM

Archeology Recognize archeological structures in real-time while the researchers
are at the search site HIGH LOW LOW

Surgery Recognize issues (e.g., tumors) in real-time from a cloud-based
medical database while the surgery is in progress HIGH MEDIUM HIGH

Amber Alert Identify criminals by searching through the FBI database to match a
photo taken by a camera LOW LOW MEDIUM

Social Network Profile online users by searching through a database for marketing
purposes HIGH LOW LOW

178

Accelerating Mobile-Cloud Computing

and security concerns. As each one of these
constraints affect mobile-cloud computing in a
unique way, they will be individually detailed in
the following subsections.

Compute Capability and
Storage Capacity

Despite an order of magnitude higher computa-
tional power of today’s mobile devices compared
to the ones from just a few years ago, the relative
computational power ratio of a non-mobile and a
mobile device is likely to stay approximately the
same in the foreseeable future. This is due to the
architectural and technological state-of-the-art
advances being applied to mobile platforms as
well as non-mobile platforms simultaneously by
different market leaders such as Intel for desktop
platforms and ARM for mobile platforms. The
most important metric, computer-power-per-Watt
(also defined as GFLOPS-per-Watt) has almost
reached equal levels in both mobile and desktop
platforms. For example, a Tegra3-based mobile
phone incorporating an ARM CPU and an Nvidia
GPU at the core can deliver approximately 10
GFLOPS/Watt (Tegra3). Alternatively, a desktop
platform composed of an INTEL Core i7 CPU and
an Nvidia Geforce 600 GPU (GeForce600, 2012)
nearly has the same power efficiency metric, de-
livering around 10 GFLOPS/Watt compute power.
This is due to the significant recent advancements
in mobile processors: almost every power ef-
ficiency technique employed in desktop CPUs is
now being incorporated into mobile CPUs, with
the most important being the ability to architect
the CPU with multiple cores, which is known to
have a dramatic energy reduction advantage (Guo
et al., 2010).

The storage technology is slightly different
in that the widespread use of Solid State Disks
(SSDs) allowed mobile devices to be built with
storage capacities that are currently around 64GB
to 128GB. This is currently an order of magnitude
less than that for desktop platforms, which enjoy

inexpensive hard disks in the multiple-TB range.
This means that mobile-cloud applications that
require significant local data storage in the mobile
are not feasible.

Network Connectivity

A primary concern in the use of mobile-cloud
computing is the non-negligible latency over the
WAN (Wide-Area Network) between the mobile
and the cloud, which hurts the user experience in
mobile-cloud computing. Interactive applications
that constantly engage the users are likely to suf-
fer the most from long delay, jitter and jerky and
sluggish processing. Studies (Satyanarayanan et
al., 2009) show that the quality of client perfor-
mance becomes highly variable with long latency.

In order to measure latencies over WAN con-
nections, we ran a simple program that sends
ping packets from a client computer to servers in
cloud datacenters in January and February 2012.
The client computer was located in Rochester,
New York, in the United States, and we used the
five datacenters available in AWS (AWS, 2012),
which are all located in geographically different
regions, namely in Virginia and Oregon in the
United States, Ireland in Europe, São Paulo in
South America, and Singapore in Asia.

Table 2 shows the mean and standard deviation
of these latencies for the AWS datacenters when
being accessed by the client computer from wired
and wireless networks. This data clearly indicates
the challenges in running a mobile-cloud appli-
cation that uses the AWS datacenters as cloud
servers. The response time of such an application
will be lower-bounded by the mean latency of
the communication to the datacenter it is using
as cloud servers. Alternatively, the predictability
of the response time will be determined by the
standard deviation of the latency. While there
have been significant improvements in network
throughputs over the past decade, allowing users
to enjoy such high-speed connections with 50
Mbps downstream bandwidth (e.g., DOCSIS3

179

Accelerating Mobile-Cloud Computing

cable standard [DOCSIS, 2012]), network laten-
cies have not improved nearly at the same rate.

Although the network latencies might improve
in the future, this is expected to be at a much
slower pace, potentially keeping the latencies
observed in Table 2 approximately the same in
the foreseeable future. For example, an application
requiring a 200 ms response time (close to what
can be described as real-time) is not a candidate
to run on cloud servers residing across interna-
tional boundaries with 300 ms to 1100 ms laten-
cies. This presents a dilemma in mobile applica-
tions in that the particular emphasis should be
placed on latency, not the throughput, when de-
veloping an application. Alternatively, any inter-
mediate device, such as the cloudlet that will be
described later, should be targeted to reduce the
negative impact of this high latency.

Power and Energy Consumption

Today’s mobile devices incorporate signifi-
cantly sophisticated power management circuitry
(Qualcomm, 2012). This, combined with power
consumption demands that change drastically in
sudden peaks imply a sophisticated power con-
sumption pattern from the mobile device based on
the activities being performed (i.e., talk, compute,
or run applications). Power consumption could
change between sudden peaks of mW and a few
W. While the power consumption is in fact an

irrelevant measure in terms of battery life, the
energy consumption is the relevant measure in
determining the battery life.

To quantify the utility of mobile-cloud comput-
ing, one must take into account the energy demands
of computation and communication separately.
Analyzing these two activities separately will shed
light onto the balance that must be maintained
between computation and communication via
efficient scheduling. In the following two subsec-
tions, we study the power and energy demands of
these two activities.

1. 	 Computation Power and Energy
Consumption: Since the computation en-
ergy is the only relevant metric for determin-
ing battery life, we analyze the amount of
energy required to execute an identical task
in a desktop and mobile platform. The energy
efficiency metric, defined as GFLOPS-per-
Watt describes how many Watts of power
is consumed to while delivering 1 GFLOPS
of computational output. This metric is 10
GLOPFS/Watt in a modern mobile proces-
sor such as Tegra 3 (Tegra, 2012), while it is
almost in the same range for a modern CPU/
GPU-based desktop computer (GeForce600,
2012). Alternatively, a mobile device oper-
ates at around one Watt average power con-
sumption, whereas a desktop platform could
reach 200-1000 Watts of power consumption.

Table 2. Average and standard deviation of latencies over wireless connections (ms)

Wireless
Connections Wi-Fi 3G

Datacenter VA OR Ireland São Paulo Singapore VA OR Ireland São Paulo Singapore

Mean 253 389 293 434 697 930 817 798 872 1061

Std Deviation 470 635 520 704 1278 595 710 915 1079 2060

Wired Connections Weekend Weekday

Datacenter VA OR Ireland São Paulo Singapore VA OR Ireland São Paulo Singapore

Mean 122 322 294 389 580 42 223 196 389 546

Std Deviation 124 525 201 166 242 18 41 25 166 34

180

Accelerating Mobile-Cloud Computing

Although a given computational task (e.g.,
face recognition) may consume more power and
execute in a shorter amount of time on a non-
mobile platform (e.g., PC), it will consume less
power on a mobile platform (strictly due to the
aforementioned constraint on peak power), and is,
therefore, expected to complete in a longer time
period. However, due to the fact that approximately
the same amount of computational energy is re-
quired for the same task, the mobile platform will
take two to three orders-of-magnitude longer to
execute the same task, since its peak power output
is nearly two to three orders-of-magnitude lower.

2. 	 Communication Power and Energy
Consumption: The communications energy
of Wi-Fi and 3G are depicted in Figure 1.
As shown in this figure, 3G requires much
higher energy levels due to its inability to
transfer large amounts of data, while Wi-Fi
can transfer almost an order-of-magnitude
more data within the same power envelope.
Based on this figure, 3G connections require
2,762 mJ per 100KB (i.e., 27.62 µJ/B).
Alternatively, Wi-Fi requires around 5 to 10
µJ/B, making it more energy efficient. These
different energy profiles suggest that, when
determining optimum algorithms that parti-
tion computation and communication, the
energy patterns of both must be considered.
As an example, assume that an algorithm has
a choice among different computation vs.
communication options as presented below:
a.	 Case 1: Front-loading. In this case,

most of the computation is done on
the Tegra 3 mobile device that has a
10 GFLOPS compute-capability, and a
10 GFLOPS/W energy efficiency, and
3G is used for communication. For the
Case 1 algorithm, 20 GFLOP of com-
putation and 100KB of data transfer are
necessary. Total energy consumption
is 2,000 mJ (i.e., 20 GFLOPS / (10
GFLOPS/Watt) = 2 Watt * 1 second
= 2J = 2,000 mJ) for the computa-

tion (based on the aforementioned 10
GFLOPS/W for Tegra 3) and 2,762 mJ
for the 3G communication (from Figure
1), yielding a total energy demand of
4,762 mJ for the entire task.

b.	 Case 2: Back-loading. Assume now
that the same algorithm can be modified
to perform more of the computation in
the cloud at the expense of increased
data transfer via 3G. In this Case 2,
the computation in the mobile will be
halved to 10 GFLOP at the expense
of doubled data transfer size to 200
KB. This will create a compute-energy
demand of 1,000 mJ and a communi-
cation demand of 5,524 mJ, resulting
in a total energy demand of 6,524 mJ,
clearly an unfavorable choice.

c.	 Case 3: Back-loading on a faster
communications link. If we con-
sider Case 2 on a faster Wi-Fi link
(e.g., 576 mJ/100KB as shown in
Figure 1, the energy demand for
the front-loading and back-loading
cases are (2,000+576=2,576 mJ) and
(1,000+1,152=2,152 mJ), respec-
tively, making back-loading a better
alternative for faster Wi-Fi links, al-
though the decision is the reverse for
3G links.

Security

When considering outsourcing the computational
tasks of a mobile application to the cloud, an im-
portant issue arises for certain applications: the
security of the data being transmitted/received by
the application. Depending on the application, the
security of the data carries a varying importance.
For example, for online games being played by a
few gamers through the mobile device, the secu-
rity factor is negligible, while for remote health
assistance applications, it is of utmost importance.

Due to the emergence of applications using
wireless sensors with built-in low-power micro-

181

Accelerating Mobile-Cloud Computing

controllers and the sudden spike in interest for
concepts such as Internet-of-Things (IOT, 2012),
the security of the data being transported by the
application has become one of the most important
concepts to consider. Additionally, emerging tele-
medicine applications also emphasize the impor-
tance of security and data privacy (HIPAA, 1996)
within the mobile-cloud platforms (Pattichis et al.,
2002), (Varshney, 2007), (Wood et al., 2008). The
concern for data security is of great importance
for mobile devices with powerful processors with
a 1 W power budget (e.g., Tegra3, 2012), but it
is particularly challenging for embedded proces-
sors with only a mW power envelope, such as the
Microchip 32-bit microcontroller family (PIC32,
2012). This is due to the fact that the encryption
of the data using standard Advanced Encryption
Standard (AES) encryption (NIST, 2001; AES,
2012) is compute-intensive and strains the compu-
tational resources of the underlying computational
platform unless specialized crypto-accelerators are
used. However, as most of today’s devices have
AES hardware acceleration built-in, the encryp-
tion time and energy is typically less than the
transmission energy of the data, thereby making
encryption widely available with minimal impact
on cost and energy.

Cloud and Cloudlet: Addressing
These Challenges

With the help of the cloud, mobile devices may be
able to offload the computationally-intensive parts
of their applications. The enormous resources of
the cloud may minimize the time and energy cost
of the mobile applications on those computations.
However, as described in the Microsoft MAUI
project (Cuervo et al., 2010), some applications
might never be feasible from mobile devices,
due to the high latency mobile-cloud connection.
Adding a cloudlet, a local device that provides
100 to 1000 times higher computational power
than the mobile device with minimal latencies,
creates possibilities for running latency sensitive
and computationally-intensive applications from a
mobile device (Satyanarayanan et al., 2009). The
notion of a cloudlet was introduced as a means
to overcome some of the technical obstacles
described above. The main idea is to provide the
abundant resources needed at mobile devices not
from distance clouds, but from a nearby cloudlet.

As Satyanarayanan et al. (2009) point out,
the key differences between the cloudlet and a
conventional cloud are listed in Table 3. Note that
soft state refers to cache copies of data or code that
are available elsewhere (e.g., mobile device or the
cloud), whereas hard state refers to sole copy of
data or code. Since a cloudlet only contains soft
state, the loss of a cloudlet is not catastrophic.
Cloudlets allow offloading a portion of the tasks
or changing the timing of the execution of the
subtasks to speed up the execution of the overall
task by using synchronous optimization techniques
(Soyata et al., 1993; Soyata & Friedman, 1994;
Soyata et al., 1995; Soyata, 1999) as well as a
re-shaping of the network traffic by aggregating
network packets. With proper task management
algorithms, a cloudlet may be able to leverage
the power of distant cloud servers to maximize
the performance while minimizing the impact of
long network latency.

Figure 1. The energy consumption of Wi-Fi con-
nectivity vs. 3G connectivity (reprinted from Cu-
ervo, et al., 2010, with permission of the authors)

182

Accelerating Mobile-Cloud Computing

In the following section, different approaches
will be presented that use the cloudlet as a buffer-
ing layer to either speed up the computation or to
reduce the negative effect of the communication
latency to the cloud.

ARCHITECTURAL DESIGN

As stated in the previous section, in mobile cloud
computing, there is a clear need for a mechanism
to handle the interoperations between the mobile
device and the cloud servers in order to improve
the performance. Depending on whether or not
cloudlets are used, the current research on the
design of mobile-cloud architectures can be cat-
egorized as cloudlet architectures and non-cloudlet
architectures. Many of the technologies being used
in non-cloudlet architectures can also be adapted
to cloudlet architectures. In this section, we intro-
duce the state-of-the-art for these mobile-cloud
and mobile-cloudlet-cloud architectures.

Platforms Providing Cloud Services

The “cloud” may consist of commercial servers
like the Amazon Web Services (AWS, 2012), Mi-
crosoft’s Windows Azure (Microsoft, 2012), and
the Google Cloud Platform (Google, 2012), or it
may be created ad hoc from available computing
resources, as shown through recent studies (Ali,
2009). While ad hoc clouds have been conven-

tionally created from high-end servers or desktop
platforms, recently mobile platforms have been
explored as a source for the computing resources.

For example, Hyrax (Marinelli, 2009) dem-
onstrated the concept of using smartphones
as a cloud of computing resources. Marinelli
developed a mobile-cloud computing system
named Hyrax by porting Hadoop Apache, an
open-source implementation of MapReduce, to
Android smartphones. Hyrax allows comput-
ing jobs to be executed on networked Android
smartphones. However, the performance of Hyrax
was poor compared with Hadoop on traditional
servers, not only because the smartphones were
much slower at that time, but also because Hadoop
was not originally designed, nor optimized, for
mobile devices.

GEMCloud (Ba et al., 2013) is another example
of using mobile devices to create an ad hoc cloud
of computing resources. By utilizing distributed
mobile devices to cooperatively accomplish large
parallelizable computational tasks, Ba et al. en-
vision that such approaches can make use of the
massive amount of idle computing power that is
potentially available to the public. More impor-
tantly, the authors show that a mobile computing
system like GEMCloud has significant advantages
in energy efficiency over traditional desktop cloud
servers when the overall system is considered,
rather than each individual computational device
(e.g., mobile).

Table 3. The major differences between the cloudlet and a conventional cloud (reprinted from Satyana-
rayanan, et al., 2009, with permission of the authors)

Cloudlet Cloud

State Only soft state Hard and soft state

Management Self-managed, little or no professional attention Professionally administered 24/7

Environment “Datacenter in a box” at business premises Room with power conditioning and cooling

Ownership Decentralized ownership by local business Centralized ownership by Amazon, Yahoo etc ...

Network LAN latency/bandwidth Internet latency/bandwidth

Sharing Few users at a time Hundreds to thousands of users at a time

183

Accelerating Mobile-Cloud Computing

Other examples of ad hoc cloud systems are
NativeBOINC (BOINC, 2012) and BOINC Mobile
(Eastlack, 2011), Android platform (Android,
2012) equivalents of the BOINC volunteer com-
puting platform originally designed for PCs and
game console platforms (Anderson, 2004). Since
the physical devices that build up the cloud deter-
mine the cloud’s characteristics such as computing
power, energy efficiency and network latency, it
is important to profile the cloud servers and take
this into account when designing the mobile-cloud
computing system.

Mobile-Cloud Architectures

Mobile-cloud computing has been investigated
since shortly after the concept of cloud computing
was introduced in mid-2007, and it has attracted
great interest in the research community (Dinh et
al., 2011). Some important implementations of
mobile-cloud computing, including MAUI (Cu-
ervo et al., 2010), CloneCloud (Chun & Maniatis,
2009; Chun et al., 2011) and Virtual Smartphone
over IP (Chen et al., 2012; Chen & Itoh, 2010)
employ cloud servers to process application parti-
tions offloaded by the mobile device. As discussed
previously, the cloud servers may be located in a
commercial cloud or an ad hoc cloud.

Although architectural details may vary in dif-
ferent mobile-cloud computing implementations,
some common components are often included on
top of the operating system and hardware layers:

•	 A Partitioner that analyzes the applica-
tion and determines which part(s) of the
application can be offloaded to the cloud.
Depending on the technique being used,
the partitioning granularity may be appli-
cation-level, thread-level, method-level or
even line-of-code-level. For applications
that cannot be partitioned, the Partitioner
is not necessary.

•	 A Profiler that collects the mobile device’s
system measurements to identify the per-

formance status, resource status and other
contextual information. The performance
measurements may include network condi-
tion (e.g., type of network being used, sig-
nal strength, bandwidth, computing power
and response latency of various cloud ser-
vices, etc.), screen brightness, CPU, mem-
ory and storage usage. The resource status
may include remaining battery, available
computing power (derived from CPU,
memory usage), and the resources required
by the application (or method, thread, de-
pending on the granularity offered by the
Partitioner). Other contextual status may
include location, acceleration, tempera-
ture, date and time, etc.

•	 A Solver that gathers information from the
Partitioner and the Profiler to decide how
to offload the partitions to the cloud based
on an optimization algorithm.

•	 A User Agent on the mobile device and
a Coordinator on the server that han-
dle the authentication and security. The
Coordinator may also interact with the
server database that stores the mobile de-
vice users’ profiles (e.g., device specifica-
tions, user configurations, subscribed ser-
vices, contextual data) and activity logs.
The Coordinator allocates the resources on
the cloud server for the mobile users.

In general, MAUI (Cuervo et al., 2010),
CloneCloud (Chun & Maniatis, 2009; Chun et al.,
2011) and the Virtual Smartphone over IP (Chen
& Itoh, 2010; Chen et al., 2012) architectures all
have the above components or components with
similar functionalities.

Cloudlet Architectures

As described in Section II, cloudlets can be used
as intermediaries between mobile devices and
cloud servers. One of the first implementations
of a cloudlet architecture was a prototype mobile-

184

Accelerating Mobile-Cloud Computing

cloudlet computing system named Kimberley
(Satyanarayanan et al., 2009), developed by
Satyanarayanan et al. The authors envisioned a
cloudlet as a “data center in a box” widely dis-
persed throughout the Internet. Unlike the cloud,
the cloudlet is self-managed with decentralized
ownership, maintains only soft states, is con-
nected to the mobile over a LAN, not a WAN,
and is accessed by only a few users at a time. As
a proof-of-concept implementation, the Kimber-
ley system utilizes a local server as a cloudlet to
process application partitions. The authors show
that in some cases, a local server is able to provide
enough computing power to boost the execution
speed of a mobile application, while in other cases,
the computing resources provided by a local server
may not be enough and a cloud has to be used to
fulfill the computation and storage requirements
of the mobile application. Figure 2 elaborates
the cloudlet architecture in comparison with the
direct mobile-cloud architecture. The major role

of a cloudlet in a mobile-cloudlet-cloud network
is task management. It may also help the mobile
with some intermediate processing.

The MOCHA (Mobile Cloud Hybrid Archi-
tecture) architecture was created as a solution to
massively-parallelizable mobile-cloud applica-
tions (Soyata et al., 2012a, 2012b) by Soyata et
al. In MOCHA, mobile devices such as smart-
phones, touchpads, and laptops are connected to
the cloud via a cloudlet, a dedicated device de-
signed from commodity hardware supporting
multiple network connections such as 3G/4G,
Bluetooth, and WiFi. The cloudlet determines
how to partition the computation among itself and
multiple servers in the cloud to optimize the
overall quality of service (QoS) based on con-
tinuously updated statistics of the QoS metrics
(e.g., latency, cost) over the different links/routes.
The authors demonstrate the concept of MOCHA
via a mobile-cloud application demanding real-
time response, such as face recognition (Soyata

Figure 2. The mobile-cloud computing and mobile-cloudlet-cloud computing architectures: mobile
devices directly interact with a cloud or via the cloudlet and use dynamic partitioning to achieve their
quality of service (QoS) goals (e.g., latency, cost)

185

Accelerating Mobile-Cloud Computing

et al., 2012a) and simulate the same architecture
in a battlefield application where the response
time is of primary importance (Soyata et al.,
2012b).

Similar to the characteristics of cloudlets as-
sumed by the Kimberley (Satyanarayanan et al.,
2009) and MOCHA (Soyata et al., 2012b) archi-
tectures, a two-level architecture is introduced by
Ha et al. (Ha et al., 2012). This two-level archi-
tecture leverages both today’s unmodified cloud
infrastructure (Level 1) and a second level data
center, named 1WiFi, at the edge of the Internet
(Level 2), servicing currently-associated mobile
devices. The Level 2 data centers are powerful,
well-connected and safe cloudlets that only have
cached soft state from Level 1 data centers or
buffered data from mobile devices. Trust issues
and speed of provisioning are the new challenges
to this architecture and must be investigated before
it can be widely deployed.

In some scenarios such as an office building,
multiple cloudlets may be located closely to each
other and may be connected in a peer-to-peer
fashion. In this case, routing among the cloud
servers, the cloudlets and the mobile devices
has to be considered. In (Fesehaye et al., 2012),
Fesehaye et al. propose two types of routing
schemes, namely distributed and centralized
routing. In distributed routing, the routing table
is constructed and maintained by the cloudlets.
The cloudlets periodically broadcast their pres-
ence information to the neighboring nodes and
the other cloudlets. When a mobile user hears
a broadcast message from a cloudlet, it records
the latest cloudlet ID into its cloudlet table. Each
mobile user also periodically broadcasts its ID
to let the cloudlet in range register this user and
forward it to other cloudlets. In centralized routing,
the central server is responsible for constructing
and maintaining the routing table. The cloudlet
periodically sends the IDs of its mobile users, its
own ID and its neighboring cloudlets’ IDs to the
central server. The central server then computes
the routing table for each cloudlet and installs the
forwarding tables into the cloudlets.

Simulations were conducted to evaluate the
performance of this architecture. In the simula-
tions, distributed routing was chosen as the routing
scheme for the cloudlet architecture. The results
show that the cloudlet-based approach has lower
data transfer delay and higher content delivery
throughput than the cloud-based approach. The
results were under the assumption that the WiFi
transmission range is larger than 250m. Therefore,
the author suggests using the latest technologies
such as Flashlinq (Corson et al., 2010) or by us-
ing Wi-Fi repeaters to achieve a desired coverage.
Since there are no performance comparisons with
the centralized routing, questions still remain as
to which routing scheme has better performance.

TASK MANAGEMENT AMONG
MOBILE, CLOUDLET, AND CLOUD

The goal of developing a cloudlet-assisted
mobile-cloud computing system is to improve
the performance (e.g., latency, energy efficiency,
monetary cost) on the mobile device. One im-
portant approach for improving the performance
is to offload partial or full execution of the ap-
plication to the more resourceful cloudlet or the
cloud (Karthik Kumar et al., 2013). Shifting the
computation load to a communication load may
lead to substantial gains in performance.

The computation offloading approaches are
based on virtual machine technologies and can
be viewed as middleware designs. Besides the
middleware that enables the code offloading, task
distribution algorithms and control policies are
needed to improve the performance to its best. In
this section, we will introduce both the middleware
designs and the task distribution algorithms that
enhance the performance of mobile computing.

Computation Offloading Approaches

Despite the advances in mobile device technolo-
gies, the processing and storage capabilities of
mobile devices are still not comparable to those of

186

Accelerating Mobile-Cloud Computing

servers (or the cloudlet) and will continue to lag in
the near future. In order to run computationally-
intensive applications, the mobile can offload
some of the computation to servers while the
mobile device computes only lightweight parts
of the application. A Virtual Machine (VM) can
support individual processes or a complete system
running on flexible hardware platforms, thereby
providing the feasibility to migrate partial or
full applications from the mobile device to more
powerful cloudlet/cloud servers without major
modifications to the application. Therefore, the
application processing time can be shortened while
the energy consumption on the mobile device is
reduced. Yet this approach poses several techni-
cal challenges. First, how can we identify and
partition the compute-intensive or energy-hungry
parts within the mobile application automatically?
Second, what strategy should a mobile device em-
ploy for partitioning and offloading with the goal
of minimizing computation time and maximizing
energy savings? Third, how can we implement
such a system from a practical point of view?

In this subsection, we provide an overview
of the state-of-the-art VM-based techniques for
mobile-cloudlet/cloud computing. These include
1) an approach employed by the Kimberley system
(Satyanarayanan et al., 2009) that demonstrates
the feasibility of VM synthesis using VirtualBox,
2) an approach used in MAUI (Cuervo et al.,

2010) that provides both full and fine-grained
remote execution using the .Net framework, 3)
the technique in CloneCloud that supports thread
granularity partitioning (Chun & Maniatis, 2009;
Chun et al., 2011) using Dalvik VM, 4) an approach
by Chen et al. (Chen & Itoh, 2010; Chen et al.,
2012) that enables offloading on non-customized
Android devices also using Dalvik VM, and 5) an
OSGi approach by Verbelen et al. (2012). Table
4 compares these five approaches discussed in
this subsection.

1. 	 Virtual Box in Kimberley: Satyanarayanan
et al. implemented a VM for the Kimberley
architecture (Satyanarayanan et al., 2009)
prototype using a technique called dynamic
Virtual Machine synthesis that employs
transient cloudlet customization. A small
VM overlay is delivered by a mobile device
to the cloudlet infrastructure, which creates
and launches the VM using a base VM plus
the delivered VM for the application. The
prototype was implemented on a Nokia N810
tablet running Maemo 4.0 Linux, and the
cloudlet infrastructure was implemented
using Ubuntu Linux. Kimberley uses
VirtualBox as the VM manager and a tool
called “Kimberlize” to create VM overlays
and synthesize those overlays with base VMs
to create a launchVM. Both the mobile and

Table 4. Comparison of task partitioning approaches from Kimberley (Satyanarayanan, et al., 2009),
MAUI (Cuervo, et al., 2010), CloneCloud (Chun & Maniatis, 2009; Chun, et al., 2011), Chen’s approach
(Chen & Itoh, 2010; Chen, et al., 2012), and Verbelen’s approach (Verbelen, et al., 2012)

Publication Technologies Platform Granularity Application Development Difficulty

Kimberley VirtualBox Linux Application Low

MAUI .NET framework Windows Method Requires application developer’s annotations

CloneCloud Dalvik VM JavaVM sup-
ported Thread No annotation required

Chen’s approach Dalvik VM JavaVM sup-
ported Thread No annotation required

Verbelen’s approach OSGi JavaVM sup-
ported Component Requires application developer’s annotations

187

Accelerating Mobile-Cloud Computing

the cloudlet run the Kimberley Control
Manager (KCM) to support the transient
binding between themselves using a TCP
tunnel established between these two KCMs.

The authors used VM overlay sizes and the
speed of the synthesis process to evaluate the
system performance. The VM overlay sizes were
100-200 MB for a collection of Linux applica-
tions. These sizes were an order of magnitude
smaller than the full VM size (8 GB). The speed
of synthesis ranged from 60 to 90 seconds. These
results are acceptable for an unoptimized proof-
of-concept prototype, and there is plenty of room
for improvement through further optimization. For
instance, a high-bandwidth short-range wireless
network can reduce overlay transmission time,
parallelism on the cloudlet can decrease decom-
pression and overlay application times; caching as
well as prefetching can be used to eliminate VM
synthesis delays. The deployment challenges are
also discussed, including 1) the business model
(bottom-up versus top-down), 2) the sizing of
cloudlets, i.e., how much processing power and
storage capacity a cloudlet should provide, and
3) trust and security.

2. 	 Remote Execution in MAUI: MAUI
(Cuervo et al., 2010) was originally mo-
tivated by the assumption that battery
technology will be a major bottleneck for
the future growth of smartphones. MAUI
consists of three main components. First,
program partitioning uses the Microsoft
.NET Common Language Runtime (CLR)
to enable developers to annotate methods
that may be performed remotely, to extract
methods that may be performed remotely
using reflection (Richter, 2010), and to
identify the state of the application using
type-safety and reflection. MAUI generates
two proxies on both the mobile device and the
server that handle control and data transfer
to implement decisions on which methods
to run remotely and which to run locally.

Second, the MAUI profiler and solver will
characterize the device and the program,
then determine the methods to be executed
remotely. On the server side, there is a MAUI
coordinator handling the authentications and
resource allocations.

The mobile part of MAUI was implemented
on an HTC Fuze smartphone running Windows
Mobile 6.5 with the .NET Compact Framework
v3.5, and the MAUI server was implemented
on a desktop with a dual-core 3 GHz CPU and
4 GB RAM running Windows 7 with the .NET
Framework v3.5. The main results measure energy
consumption and execution time for three appli-
cations—face recognition, 400 frames of a video
game, and 30 moves in a chess game. The results
show that using remote execution on MAUI saves
5-12 times the energy compared to the smartphone
only case and reduces the execution time by more
than a factor of 6.

3. 	 CloneCloud Utilizing Dalvik VM:
CloneCloud (Chun & Maniatis, 2009; Chun,
Ihm, Maniatis, Naik, & Patti, 2011) allows
a smartphone to partially offload its appli-
cation to the phone’s clone in the cloud. It
migrates a modified version of the original
application executable to a virtual machine
in the cloud. This algorithm allows thread
granularity migration, and therefore the User
Interface (UI) or other essential components
can remain to be executed at the mobile.
Additionally, native methods can execute
at both the mobile device and its clones in
the cloud/cloudlet. One drawback of the
CloneCloud approach is that local threads
need to block unless they are independent
from the migrated threads.

Chun et al. developed a dynamic profiler to
analyze the execution time and energy cost of each
method on a mobile device, which are then used by
an optimization solver to decide which method(s)
should be migrated to the clone. The profiler and

188

Accelerating Mobile-Cloud Computing

optimization solver were implemented on a modi-
fied Dalvik VM on Android, and this requirement
may limit the scope of its application. CloneCloud
is tested on an unlocked HTC G1 Android phone
and a server with a 3.0 GHz Xeon CPU running
the Android x86 virtual machine via VMware ESX
4.1. Three applications—a virus scanner, image
search, and privacy-preserving targeted advertis-
ing—were tested on the CloneCloud prototype.
The results show that for the tested applications,
when connecting to the CloneCloud via Wi-Fi,
the execution time is shortened by 2.1x-20x and
the energy consumption is reduced by 1.7x-20x.
When connecting to the CloneCloud via 3G, the
execution time is shortened by 1.2x-16x and the
energy consumption is reduced by 0.8x-14x.

4. 	 Virtual Smartphone Over IP Utilizing
Dalvik VM: Chen et al. (Chen & Itoh, 2010;
Chen, et al., 2012) introduce a framework that
allows heavy backend tasks on an Android
phone to be offloaded to an Android vir-
tual machine in the cloud. Unlike MAUI or
CloneCloud, the authors built an Android OS
on an x86 cloud server on which a virtual
smartphone is executed. Two frameworks
are proposed: the first framework (Chen &
Itoh, 2010) offloads an entire application
to the virtual smartphone and controls the
application through remote desktop sharing;
the second one (Chen, et al., 2012) offloads
only the compute-intensive components to
the cloud. The former offers heightened
security and data leakage prevention as the
entire application and resulting data do not
physically reside on the mobile, while the
latter offers fast GUI responsiveness and
offline execution.

The major advantages of using this approach
over MAUI and CloneCloud are 1) no use of ad-
ditional APIs in the source code is required, and
2) no modifications to the mobile device’s OS or

root access are required. Note that these features
are useful for system deployment. To achieve
the above features, the authors replace the AIDL
(Android Interface Definition Language) tool with
a helper tool so that the compiler automatically
creates service wrappers that are offloaded to the
cloud by a service offloader. Offloading decisions
may be made according to the time and energy
consumption required to perform a task. Once
offloading is done, the user needs to wait until
the task is completed before the service offloader
re-evaluates the time and energy metrics.

5. 	 OSGi Approach: In (Verbelen et al.,
2012), Verbelen et al. introduced a differ-
ent definition of a cloudlet. In their cloudlet
architecture, the unit of deployment is a
component. Components are managed by
an Execution Environment that runs on top
of an Operating System (OS). The OS is
installed on a node that is either virtualized
or real hardware, and managed by a Node
Agent. A cloudlet is a group of nodes (either
mobile devices and PCs or elastic cloud
servers) that are physically proximate to
each other. A Cloudlet Agent optimizes the
performance by deploying or configuring
the components within the cloudlet.

The proposed cloudlet framework is imple-
mented on top of the OSGi framework (OSGi,
2012), allowing components to be installed,
started, stopped, updated, and uninstalled without
a reboot. The authors use an OSGi bundle named
R-OSGi (Rellermeyer et al., 2007) to facilitate the
distribution of components across different OSGi
instances. In other words, the R-OSGi allows com-
ponents to be executed on different platforms. The
authors implement an augmented reality applica-
tion to evaluate the cloudlet framework. Results
show that with components being offloaded to
a local laptop computer, the application on the
mobile device can be improved to satisfy the

189

Accelerating Mobile-Cloud Computing

performance requirements. The experiment results
also show that when the cloudlet is running in a
distant cloud, the performance decreases to an
unsatisfactory level due to the increased latency.

Other Middleware Designs

The above describes approaches that allow mo-
bile devices to offload computational tasks to the
cloudlet/cloud. In general, these approaches can
be categorized as middleware that lies on top of
the operating system and provide services to the
applications. More specifically, the offloading
approaches described above enable the com-
munication and management of data and code
between the client and the cloudlet/cloud. Besides
supporting code migration, a middleware frame-
work may also provide generic interfaces to handle
the communication and input/output functions,
which will facilitate the design of software for
these mobile-cloud and mobile-cloudlet-cloud
architectures.

One example of such a middleware framework
design is given by Flores et al. (2011). In their
paper, a generic middleware framework named
Mobile Cloud Middleware (MCM) is introduced.
MCM enables interoperability between the mobile
and the cloud/cloudlet. In MCM, a mobile appli-
cation first sends an HTTP or XMPP request to
MCM, which processes this request and forwards
the request to the MCM manager. An interoper-
ability API engine within the manager then decides
which API set to use to interact with the cloud/
cloudlet. When the process running on the cloud/
cloudlet is finished, a notification is sent to the
mobile device using the push notification services
(C2DM–Cloud to Device Messaging (C2DMF,
2012) for the Android platform and APNS–
Apple Push Notification Service (Apple, 2012)
for the iOS platform). This request-notification
mechanism is processed asynchronously, so that
the mobile device can perform other tasks while
waiting for the notification.

For some applications, it is important for the
cloud/cloudlet to have the capabilities to dynami-
cally capture and utilize contextual information
from mobile devices to improve QoS. Such contex-
tual information may involve user profiles, session
quality, network conditions and environmental
conditions such as temperature, humidity, and
location. In Hoang and Chen (2010), Hoang et
al. summarize the functions that context-aware
middleware is expected to incorporate, including
1) intelligent monitored data analysis that pre-
processes raw sensor data to improve its quality
and to update context repositories, 2) network
auto-switch that monitors network latency and
automatically chooses the best network, and 3)
energy consumption management that aims to
minimize energy consumption at the device level,
the communication level, or the collaborative level.
This middleware layer constructs a communication
bridge between the data acquisition layers on both
the mobile and the cloud service ends.

Task Distribution Algorithms

With the support of middleware, the mobile
devices are able to offload their computation-
ally-intensive application components to one or
multiple of the resource-rich cloudlets or cloud
servers. In order to fully maximize the benefits
of utilizing the cloud resources, task distribution
algorithms must be developed.

In the MAUI approach, a MAUI profiler is used
to estimate the characteristics of the device’s en-
ergy consumption, the program’s runtime and the
resource needs, as well as the characteristics of the
wireless network such as bandwidth, packet loss
rates and delay. Then, the MAUI solver determines
which methods can be remotely executed based on
the information computed by the MAUI profiler.
The solver uses Integer Linear Programming (ILP)
to solve an optimization problem whose objective
function is to maximize the energy savings given
constraints about latency penalty and methods

190

Accelerating Mobile-Cloud Computing

that may be computed remotely. A similar profiler
and a similar solver were used by CloneCloud to
determine the migration point.

When the network connectivity is intermittent,
extra latency will be introduced if the optimiza-
tion algorithm uses the current communication
condition to determine the migration point, such
as being used in CloneCloud. In Cirrus Cloud (Shi
et al., 2012), Shi et al. introduce an offloading
algorithm that recursively chooses the optimal
migration points from the root of the profile tree
of an application. At every node within the tree,
the algorithm computes the completion time to
decide whether to execute the entire subtree lo-
cally, migrate it to the cloud entirely or migrate
only parts of it. When migrating parts of the
subtree, the same algorithm is iteratively applied
to all the children of this node. With the computa-
tion and future network connectivity accurately
known, the algorithm is able to find the optimal
partitioning of the application and minimize the
execution time. In reality, it is obvious that future
network connectivity is not known ahead of time.
However, using historical statistics may help to
predict the connectivity and therefore achieve a
close-to-optimal code migration.

The above approaches consider the code
offloading from one mobile client to one server.
In the cases when multiple servers may be used,
the latency of each individual server must be
considered. As indicated by Table 2, the response
latencies of different cloud servers have significant
variations. This diversity of connectivity creates
the potential for gains through the smart selection
of cloud servers for the offloading of computation.
Motivated by this potential, the authors of MO-
CHA developed two task distribution algorithms,
namely the fixed and the greedy algorithms, to op-
timize the mobile-cloud computing performance
in terms of result response time.

The fixed algorithm is used to evenly distribute
the pending tasks to the cloud servers (and the
cloudlet if there is one). On the other hand, the
greedy algorithm continuously sends the next

pending task to the server (or cloudlet) that is able
to return the result in a minimum amount of time.
This process is repeated until all the pending tasks
are assigned. The authors conduct Monte-Carlo
simulations to analyze the effects of using the
fixed algorithm and the greedy algorithm on a
mobile-cloud network with a cloudlet or without
a cloudlet. In the simulations, a computational job
consisting of 5 identical and independent tasks is
distributed among available cloud servers (and a
cloudlet) with varied processing capabilities and
communication latencies. As shown in Figure 3,
the greedy algorithm reduces the overall response
time by 50% over the fixed approach using the
cloudlet, while only a 20% gain is achieved without
the cloudlet. The results demonstrate the benefits
of using the greedy task distribution algorithm
as well as the benefits of using the MOCHA
architecture.

While the above approaches all try to maximize
the performance of the mobile device side, in
(Hoang, Niyato, & Wang, 2012), Hoang et al.
introduce an admission control policy that stands
on the cloud server’s side. The authors propose
an optimization model based on a semi-Markov
decision process to maximize the reward (e.g.,
revenue of service provider) of the resource usage
in the cloudlet under resource and bandwidth
constraints while meeting the QoS requirements
(i.e., mobile users’ service requests accept rate).
The optimization model is transformed into a
linear programming model and can be easily solved
by a standard linear program solver. In the paper,
the authors consider that the offloaded application
partitions will be processed in the cloudlet rather
than forwarded to the cloud. Therefore, the band-
width and resource limitations at the cloud are
not included in the model. According to the
model, the control policy decides whether the
service request from a user should be accepted or
blocked. In the performance evaluations, the
authors assume a circumstance where two class-
es of users, i.e., members with higher priority and
non-members with low priority, are using the

191

Accelerating Mobile-Cloud Computing

cloudlet. Two services with different bandwidth
and resource requirements are considered. The
results show that using the proposed control
policy, under the bandwidth and resource con-
straints, the cloudlet is able to satisfy the members’
QoS requirements while maintaining high resource
utilization rate.

FUTURE RESEARCH DIRECTIONS

In this chapter, we provided an extensive survey
of the state-of-the-art mobile-cloud computing
techniques, some of which utilize cloudlets as
the middle layer. We provided a summary of
the existing architectural designs and compared
different approaches that enhance application
performance via cloud-based execution. We also
highlighted the research and technological chal-
lenges in different approaches presented in the

literature. While much work has been done to
date, mobile-cloud computing is still in its early
research stages. Especially, the cloudlet is a new
topic in the cloud computing world. Before these
mostly theoretical proposals for the cloudlet find
their place in practical applications, many research
challenges have to be overcome. In this section,
we summarize the most important challenges.

Cloudlet Design

Two main components of the cloudlet are its
hardware architecture and software management
mechanism. In the literature, many envision to
extend a Wi-Fi access point into a more intel-
ligent machine equipped with cloudlet function-
alities (Satyanarayanan et al., 2009; Soyata et al.,
2012a, 2012b; Ha et al., 2012; Fesehaye et al.,
2012). To support this vision, a determination
must be made as to what is a reasonable amount

Figure 3. Simulated response times using a varied number of cloud servers

192

Accelerating Mobile-Cloud Computing

of compute power and storage capacity that can
be incorporated into the cloudlet without exceed-
ing the power consumption and equipment cost
constraints. For example, a cloudlet that costs as
much as a desktop PC and consumes as much
power is unlikely to be adopted by the masses.
Alternatively, a cloudlet that does not have suffi-
cient compute power will not augment the mobile
devices’ capabilities enough to make an impact on
the overall performance. Therefore, ideal cloudlet
architecture parameters lie between these two ex-
tremes. Such questions are closely related to the
deployment strategy that centers on the business
model with incentives.

The primary questions regarding software
are 1) support for a variety of applications, 2)
self-managing environments, and 3) efficient
resource management. The system software
environment should be generic enough so that
different kinds of applications can execute with-
out major modifications; the cloudlet resources
should be managed automatically with minimal
human involvement; and the resource (processing,
storage, and networks) usage should be optimized
so that cloudlet computation can support as many
applications as possible at a given time and the
overall execution time can be minimized. We envi-
sion cloudlets incorporating modern processors,
such as GPUs (GeForce500, 2011), and modern
memory subsystems with potentially specialized
memory-based accelerators (Soyata & Liobe,
2012; Guo et al., 2010).

Task Distribution

Current implementations such as MAUI (Cuervo
et al., 2010) and CloneCloud (Chun & Maniatis,
2009) have utilized offloading algorithms, where
the code in the mobile device runs in a Virtual
Machine (VM) and the execution can be migrated
between the mobile and the cloud in real-time.
However, there still remain many techniques

that can be explored for further performance
improvements by migrating the execution across
multiple cloud servers, pipelining the transmission
of application partitions to hide the transmission
delay, and caching the reusable partitions to reduce
the transmission load. As discussed previously,
multiple cloud service providers or ad hoc cloud
servers may be employed for computational or
storage resources. This increases the complexity
of the task distribution problem. Although the
authors of MOCHA consider the computation
power and network latency of different cloud
servers when assigning the tasks (Soyata et al.,
2012a, 2012b), it is necessary to develop more
generic task distribution algorithms that take into
consideration the resources and the constraints
of the mobile devices, cloudlets and the cloud
servers. Using a more comprehensive cost model,
such as the one shown in Figure 4, is needed to
develop better dynamic optimization algorithms to
further enhance the performance and robustness.
With sufficient computation power, a cloudlet is a
proper candidate to optimize the task distribution
decision dynamically.

Security and Privacy

As many mobile devices and the cloudlet/cloud
collaborate and share data, security and privacy
is always an important issue. While WPA2 (Wi-
FiAlliance, 2012) and IPsec (BBN, 2005) provide
layer-2 encryption of the data, layer-6 encryption
is still a requirement for some applications. For
example, layer-6 encryption is critical for phar-
maceutical applications such as those involving
bioinformatics or computational chemistry that
are executed remotely on rented/commercial
cloud platforms (AWS, 2012; Microsoft, 2012;
Google, 2012). Homomorphic encryption can al-
low the computation to be performed without ever
decrypting the data, providing additional layers
of security. Future work is required to determine

193

Accelerating Mobile-Cloud Computing

how layer-6 encryption, including homomorphic
encryption, can be applied when passing data
between the mobile, cloudlet and cloud.

Energy Efficiency

As more hand-held mobile devices are equipped
with sensing capabilities, collaborative sensing
applications have become a reality. These appli-
cations often require thousands of participating
smartphones that do opportunistic sensing with
little user involvement. Since this opportunistic
sensing may deplete the battery rather rapidly, it
is crucial to implement effective resource man-
agement strategies to maximize the battery life
of these phones. We should consider interactions
between mobiles and the cloud as well since heavy
communications consume large amount of bat-
tery power. We can model this as an optimization
problem for optimal resource management and
compute the best strategy for a given network
topology, battery power, and network conditions.

Support for Mobile
Application Developers

Developer tools such as software libraries with
clearly defined APIs will increase the develop-
ment productivity of mobile-cloud computing
systems. The libraries will also help improve the
system performance, efficiency, and compatibility
while reducing the chances of faulty design and
implementation. These APIs and libraries should
be easily extensible, easy-to-use, and transparent to
users so that users do not have to have knowledge
about implementation details.

ACKNOWLEDGMENT

This research was funded in part by UCB Pharma
and by CEIS, an Empire State Development-
designated Center for Advanced Technology. The
authors thank NVIDIA Corporation for their sup-
port of our research and Hemang Thakkar for his
support in gathering the communication latency
measurement data reported in this chapter.

Figure 4. The cost model of mobile cloud computing (adapted from Zhang, Kunjithapatham, Jeong, &
Gibbs, 2011; Kovachev, Cao, & Klamma, 2011, and reprinted with permission of the authors)

194

Accelerating Mobile-Cloud Computing

REFERENCES

AES. (2012). Wikipedia. Retrieved from http://
en.wikipedia.org/wiki/Advanced_Encryp-
tion_Standard

Ali, M. (2009). Green cloud on the horizon. Cloud
Computing, 451-459.

Anderson, D. P. (2004). BOINC: A system for
public-resource computing and storage. In Pro-
ceedings of the Fifth IEEE/ACM International
Workshop on Grid Computing, 2004 (pp. 4-10).
IEEE.

Android. (2012). Retrieved from http://www.
android.com/

Apple. (2012). Apple push notification service.
Retrieved from http://developer.apple.com/li-
brary/mac/#documentation/NetworkingInternet/
Conceptual/RemoteNotificationsPG/ApplePush-
Service/ApplePushService.html

AWS. (2012). Amazone web services. Retrieved
from http://aws.amazon.com

Ba, H., Heinzelman, W., Janssen, C., & Shi, J.
(2013). Mobile computing - A green computing
resource. In Proceedings of the Wireless Commu-
nications and Networking Conference (WCNC)
(pp. 4451-4456). IEEE.

BBN. (2005).Security architecture for the internet
protocol. Retrieved from http://tools.ietf.org/pdf/
rfc4301.pdf

BOINC. (2012). Native BOINC for Android. Re-
trieved from http://nativeboinc.org/site/uncat/start

C2DMF. (2012). Android cloud to device messag-
ing framework. Retrieved from https://developers.
google.com/android/c2dm/

Chen, E., Ogata, S., & Horikawa, K. (2012).
Offloading Android applications to the cloud
without customizing Android. In Proceedings of
the 2012 IEEE International Conference on Perva-
sive Computing and Communications Workshops
(PERCOM Workshops), (pp. 788--793). IEEE.

Chen, E. Y., & Itoh, M. (2010). Virtual smart-
phone over IP. In Proceedings of the 2010 IEEE
International Symposium on a World of Wireless
Mobile and Multimedia Networks (WoWMoM),
(pp. 1-6). IEEE.

Chun, B. G., Ihm, S., Maniatis, P., Naik, M., &
Patti, A. (2011). Clonecloud: Elastic execution
between mobile device and cloud. In Proceedings
of the Sixth Conference on Computer Systems (pp.
301-314). IEEE.

Chun, B. G., & Maniatis, P. (2009). Augmented
smartphone applications through clone cloud
execution. In Procedings of the 8th Workshop on
Hot Topics in Operating Systems (HotOS). HotOS.

Corson, M. S., Laroia, R., Li, J., Park, V.,
Richardson, T., & Tsirtsis, G. (2010). Toward
proximity-aware internetworking. IEEE Wireless
Communications, 17(6), 26–33. doi:10.1109/
MWC.2010.5675775.

Cuervo, E., Balasubramanian, A., Cho, D., Wol-
man, A., Saroiu, S., Chandra, R., & Bahl, P. (2010).
Maui: Making smartphones last longer with code
offload. In Proceedings of the 8th International
Conference on Mobile Systems, Applications, and
Services (pp. 49-62). ACM.

Dinh, H. T., Lee, C., Niyato, D., & Wang, P.
(2011). A survey of mobile cloud computing:
Architecture, applications, and approaches. Wire-
less Communications and Mobile Computing.
doi:10.1002/wcm.1203.

DOCSIS. (2012). Wikipedia. Retrieved from http://
en.wikipedia.org/wiki/DOCSIS

195

Accelerating Mobile-Cloud Computing

Eastlack, J. R. (2011). Extending volunteer
computing to mobile devices. (Master’s thesis).
Las Cruces, New Mexico: New Mexico State
University.

Fernando, N., Loke, S. W., & Rahayu, W. (2013).
Mobile cloud computing: A survey. Future Gen-
eration Computer Systems, 84–106. doi:10.1016/j.
future.2012.05.023.

Fesehaye, D., Gao, Y., Nahrstedt, K., & Wang, G.
(2012). Impact of cloudlets on interactive mobile
cloud applications. In Proceedings of Enterprise
Distributed Object Computing Conference
(EDOC) (pp. 123-132). IEEE.

Flores, H., Srirama, S. N., & Paniagua, C. (2011).
A generic middleware framework for handling
process intensive hybrid cloud services from
mobiles. In Proceedings of the 9th International
Conference on Advances in Mobile Computing
and Multimedia (pp. 87-94). ACM.

GeForce500. (2011). Wikipedia. Retrieved from
http://en.wikipedia.org/wiki/GeForce_500_Se-
ries

GeForce600. (2012). Wikipedia. Retrieved from
http://en.wikipedia.org/wiki/GeForce_600_Se-
ries

Google. (2012). Google app engine. Retrieved
from http://code.google.com/appengine

Guo, X., Ipek, E., & Soyata, T. (2010). Resis-
tive computation: avoiding the power wall with
low-leakage, STT-MRAM based computing. In
ACM SIGARCH Computer Architecture News (pp.
371–382). ACM.

Ha, K., Pillai, P., Lewis, G., Simanta, S., Clinch,
S., Davies, N., & Satyanarayanan, M. (2012). The
impact of multimedia applications on data center
consolidation. Pittsburgh, PA: Carnegie Mellon
University, School of Computer Seience.

HIPAA. (1996). Retrieved from http://www.hhs.
gov/ocr/privacy/index.html

Hoang, D. B., & Chen, L. (2010). Mobile cloud for
assistive healthcare (MoCAsH). In Proceedings of
the Asia-Pacific Services Computing Conference
(APSCC) (pp. 325-332). IEEE.

Hoang, D. T., Niyato, D., & Wang, P. (2012).
Optimal admission control policy for mobile cloud
computing hotspot with cloudlet. In Proceedings
of the Wireless Communications and Networking
Conference (WCNC) (pp. 3145-3149). IEEE.

Intel. (2012). Wikipedia. Retrieved from http://
en.wikipedia.org/wiki/Intel_Tick-Tock

IOT. (2012). Wikipedia. Retrieved from http://
en.wikipedia.org/wiki/Internet_of_Things

Kovachev, D., Cao, Y., & Klamma, R. (2011).
Mobile cloud computing: a comparison of ap-
plication models. arXiv preprint arXiv:1107.4940.

Kumar, K., Liu, J., Lu, Y.-H., & Bhargava, B.
(2013). A survey of computation offloading for
mobile systems. Mobile Networks and Applica-
tions, 18(1), 129–140. doi:10.1007/s11036-012-
0368-0.

Marinelli, E. (2009). Hyrax: Cloud computing on
mobile devices using mapreduce. (Master’s The-
sis). Carnegie-Mellon University, Pittsburgh, PA.

Microsoft. (2012). Windows azure. Retrieved from
http://www.microsoft.com/windowazure

NIST. (2001). Retrieved from http://csrc.nist.gov/
publications/fips/fips197/fips-197.pdf

OSGi. (2012). Retrieved from http://www.osgi.
org/

Pattichis, C. S., Kyriacou, E., Voskarides, S.,
Pattichis, M. S., Istepanian, R., & Schizas, C. N.
(2002). Wireless telemedicine systems: An over-
view. Antennas and Propagation Magazine, 44(2),
143–153. doi:10.1109/MAP.2002.1003651.

PIC32. (2012). Microchip. Retrieved from
http://www.microchip.com/pagehandler/en-us/
family/32bit/

196

Accelerating Mobile-Cloud Computing

Qualcomm. (2012). Retrieved from http://www.
qualcomm.com/snapdragon

Rellermeyer, J. S., Alonso, G., & Roscoe, T.
(2007). R-OSGi: Distributed applications through
software modularization. In Proceedings of the
ACM/IFIP/USENIX 2007 International Con-
ference on Middleware (pp. 1-20). New York:
Springer-Verlag.

Richter, J. (2010). CLR via c. Microsoft Press.

Satyanarayanan, M., Bahl, P., Caceres, R., & Da-
vies, N. (2009). The case for vm-based cloudlets
in mobile computing. IEEE Pervasive Comput-
ing / IEEE Computer Society [and] IEEE Com-
munications Society, 8(4), 14–23. doi:10.1109/
MPRV.2009.82.

Shi, C., Ammar, M. H., Zegura, E. W., & Naik, M.
(2012). Computing in cirrus clouds: The challenge
of intermittent connectivity. In Proceedings of the
MCC Workshop on Mobile Cloud Computing (pp.
23-28). ACM.

Soyata, T. (1999). Incorporating circuit level
information into the retiming process. (Ph.D.
thesis). Rochester, NY: University of Rochester.

Soyata, T., & Friedman, E. G. (1994). Synchro-
nous performance and reliability improvement in
pipelined ASICs. In Proceedings of the Seventh
Annual IEEE International ASIC Conference and
Exhibit, (vol. 3, pp. 383-390). IEEE.

Soyata, T., Friedman, E. G., & Mulligan, J. H.,
Jr. (1993). Integration of clock skew and register
delays into a retiming algorithm. In Proceedings
of the IEEE International Symposium on Circuits
and Systems, (pp. 1483-1486). IEEE.

Soyata, T., Friedman, E. G., & Mulligan, J. H., Jr.
(1995). Monotonicity constraints on path delays
for efficient retiming with localized clock skew
and variable register delay. In Proceedings of the
IEEE International Symposium on Circuits and
Systems, (pp. 1748--1751). IEEE.

Soyata, T., & Liobe, J. (2012). pbCAM: Proba-
bilistically-banked content addressable memory.
In Proceedings of the IEEE International System-
on-Chip Conference (pp. 27-32). Niagara Falls,
NY: IEEE.

Soyata, T., Muraleedharan, R., Funai, C., Kwon,
M., & Heinzelman, W. (2012). Cloud-vision: Real-
time face recognition using a mobile-cloudlet-
cloud acceleration architecture. In Proceedings of
the Symposium on Computers and Communica-
tions (ISCC) (pp. 59-66). IEEE.

Soyata, T., Muraleedharan, R., Langdon, J., Fu-
nai, C., Ames, S., Kwon, M., & Heinzelman, W.
(2012). COMBAT: Mobile-cloud-based compute/
communications infrastructure for battlefield
applications. In Proceedings of SPIE Defense,
Security, and Sensing (pp. 84030K-84030K).
International Society for Optics and Photonics.

Tegra3. (2012). NVIDIA. Retrieved from http://
www.nvidia.com/object/tegra-3-processor.html

Tegra. (2012). Wikipedia. Retrieved from http://
en.wikipedia.org/wiki/Tegra

Varshney, U. (2007). Pervasive healthcare and
wireless health monitoring. Mobile Networks and
Applications, 12(2-3), 113–127. doi:10.1007/
s11036-007-0017-1.

Verbelen, T., Simoens, P., De Turck, F., & Dhoedt,
B. (2012). Cloudlets: Bringing the cloud to the
mobile user. In Proceedings of the Third ACM
Workshop on Mobile Cloud Computing and Ser-
vices (pp. 29-36). ACM.

WiFiAlliance. (2012). Retrieved from http://
www.wi-fi.org/knowledge-center/glossary/
wpa2%E2%84%A2

Wood, A., Stankovic, J., Virone, G., Selavo, L.,
He, Z., & Cao, Q. et al. (2008). Context-aware
wireless sensor networks for assisted living and
residential monitoring. IEEE Network, 22(4),
26–33. doi:10.1109/MNET.2008.4579768.

197

Accelerating Mobile-Cloud Computing

Zhang, X., Kunjithapatham, A., Jeong, S., &
Gibbs, S. (2011). Towards an elastic application
model for augmenting the computing capa-
bilities of mobile devices with cloud computing.
Mobile Networks and Applications, 270–284.
doi:10.1007/s11036-011-0305-7.

KEY TERMS AND DEFINITIONS

Cloud: The platform of multiple servers over
a widely disbursed geographic area, connected
by the Internet for the purpose of serving data or
computation.

Cloudlet: The intermediate device located
between the mobile and the cloud to accelerate-
mobile-cloud computing.

Computation Offloading: The process of
a computational device (e.g., mobile) sending
a given task to a different computational device
(e.g., cloudlet).

Graphics Processing Unit (GPU): An ac-
celerator device typically plugged into the PCI
express bus of a computer to accelerate graphics
and other massively parallel computations.

Mobile-Cloud Computing: The co-execution
of a mobile application within the expanded mo-
bile/cloud computational platforms to optimize
an objective function.

Mobile Computing: The ability to use mobile
devices to perform computing tasks without being
limited to pre-defined geographical locations.

Smartphone: A mobile phone that has ad-
vanced computing capabilities and is built on
a mobile operating system capable of running
third-party applications.

Task Partitioning Algorithm: An algorithm
that determines how to optimally execute a large
task by executing its different subtasks at existing
computational resources, e.g., mobile, cloudlet,
and the cloud.

