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ABSTRACT

With the recent advances in cloud computing and the capabilities of mobile devices, the state-of-the-art of 
mobile computing is at an inflection point, where compute-intensive applications can now run on today’s 
mobile devices with limited computational capabilities. This is achieved by using the communications 
capabilities of mobile devices to establish high-speed connections to vast computational resources lo-
cated in the cloud. While the execution scheme based on this mobile-cloud collaboration opens the door 
to many applications that can tolerate response times on the order of seconds and minutes, it proves to 
be an inadequate platform for running applications demanding real-time response within a fraction of 
a second. In this chapter, the authors describe the state-of-the-art in mobile-cloud computing as well 
as the challenges faced by traditional approaches in terms of their latency and energy efficiency. They 
also introduce the use of cloudlets as an approach for extending the utility of mobile-cloud computing by 
providing compute and storage resources accessible at the edge of the network, both for end processing 
of applications as well as for managing the distribution of applications to other distributed compute 
resources.
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INTRODUCTION

Recent developments in mobile computing have 
truly empowered human users, as mobile comput-
ing can augment cognitive capabilities dramati-
cally, e.g., through voice recognition, natural lan-
guage processing, machine learning, augmented 
reality, and decision-making (Satyanarayanan et 
al., 2009). With recent advances in mobile de-
vices, coupled with the technological advances in 
wireless and cloud technologies, computationally 
intensive applications can now run on devices 
with limited resources such as tablets, netbooks 
and smartphones using the cloud remotely as an 
additional computational resource.

Although different definitions exist in the 
literature (Dinh, et al, 2011; Fernando et al., 
2013), we define mobile-cloud computing as the 
co-execution of a mobile application within the 
expanded mobile/cloud computational platforms 
to optimize an objective function. A typical ob-
jective function is the application response time, 
where the goal is to minimize the objective func-
tion. Expanding the application computational 
resources beyond the mobile is necessary for 
applications where the objective function cannot 
be minimized sufficiently by the mobile platform 
alone (e.g., real-time face recognition), as well as 
for applications that rely on data not stored on the 
mobile device. In mobile-cloud computing, it is 
crucial to provide the user seamless, transparent 
and cost-effective services as mobile devices 
rent computing, storage, and network resources 
from the cloud in order to process and store a vast 
amount of data (AWS, 2012; Microsoft, 2012; 
Google, 2012). (AWS, 2012)(Microsoft, 2012)
(Google, 2012)

We define application cost as an example 
objective function that quantifies the fees charged 
by Cloud operators, such as Amazon Web Ser-
vices, during the execution of the application. For 
example, Amazon charges for compute-usage per 

hour per CPU instance, which implies increas-
ing application costs as the required amount of 
computation increases. Similarly, cloud operators 
charge for the usage of database instances, such 
as Microsoft SQL Server. Table 1 shows some 
example mobile-cloud applications and their 
computational/storage demands, as well as their 
application response-time sensitivity. While ap-
plications requiring higher computational and 
storage resources might cost more during opera-
tion in a Cloud platform such as AWS, certain 
response-time sensitive applications, such as the 
Battlefield application described in Table 1, might 
tolerate this increased cost due to their need for low 
response time. Notice that Cloud operators charge 
less for compute-resources with lower response 
time guarantees. Specifically, while AWS charges 
nothing for Micro instances with no response time 
guarantees, it charges a small amount for the Small 
instance, and significantly higher for the Large 
instance, which is a dedicated CPU instance. By 
the preparation of this document, the AWS pricing 
for these instances ranged from $0.10 to $0.40 
per core per GHz per hour (AWS, 2012), where 
the unit price decreased with a higher core-count 
commitment (i.e., number of cores available to an 
instance). This implies a rich variety of options 
when executing mobile-cloud applications. The 
choice of the Cloud CPU instances depends on 
the application priorities listed in Table 1.

The primary focus of this chapter is to elabo-
rate on the techniques that enable these mobile-
cloud applications to achieve the goals listed in 
Table 1. Although the demands of these applica-
tions will not change from that shown in this table, 
achieving certain goals might never become pos-
sible by using mobile-only or even a mobile-cloud 
combination. This is due to the limited computa-
tion and storage on a mobile device, which does 
not permit the processing or storage of large 
amounts of data locally, as well as the high network 
latencies connecting the mobile and cloud, plac-
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ing a lower bound on application response times 
when utilizing the cloud for processing and stor-
age of large amounts of data. Later in this chapter, 
we will describe how the required application 
response times may be achieved by using an edge-
server device called a “cloudlet,” creating a mobile-
cloudlet-cloud platform.

This chapter is organized as follows: First, the 
technological challenges and the state-of-the-art in 
computational and storage capabilities of mobile 
devices and the network latencies are studied. 
Issues related to energy efficiency and security 
are also explored, followed by a brief study of 
the aforementioned intermediate layer cloudlet 
and its function in the mobile-cloud computing 
environment. Existing architectural designs as 
well as performance enhancement techniques 
proposed in the literature for mobile-cloud as well 
as mobile-cloudlet-cloud computing are surveyed. 
The chapter is concluded with discussions on 
future research areas.

TECHNOLOGICAL CHALLENGES 
IN MOBILE-CLOUD COMPUTING

Running the resource-intensive applications 
enumerated in Table 1 far exceeds the capabili-
ties of today’s mobile devices. The constraints on 
mobile devices in terms of weight, size, battery 
life, ergonomics, and heat dissipation limit the 
resources available in mobile hardware, including 
the processor speed, memory size, and storage 
capacity. Given these challenges, mobile comput-
ing benefits tremendously when combined with 
cloud computing that can offer virtually limitless 
computing power and storage space, as well as 
access to up-to-date databases, only available in 
the cloud.

There are, however, several technical obstacles 
to enabling mobile devices to benefit from cloud 
computing resources, including the compute capa-
bility and storage capacity available at the mobile, 
network connectivity and latency challenges, the 
need for energy-efficiency at the mobile device, 

Table 1. Cloud-based applications and their resource requirements. Each application has a significantly 
different response time requirement and resource utilization tolerance to reduce costs while still keeping 
the functionality within expected bounds. 

Application Description Database 
Size

Compute 
Resources

Response 
Time 

Sensitivity

Battlefield Assist soldiers in the battlefield through real-time object recognition HIGH HIGH HIGH

Natural Language 
Processing Perform real-time speaker or speech recognition LOW MEDIUM MEDIUM

Airport Conduct real-time face recognition of known criminals HIGH HIGH HIGH

Fire Assist fire fighters with disaster in real-time MEDIUM MEDIUM MEDIUM

Medicine Accelerate medical research (e.g., recognizing DNA sequences in 
real-time from a microscope while the research is in progress) HIGH MEDIUM MEDIUM

Archeology Recognize archeological structures in real-time while the researchers 
are at the search site HIGH LOW LOW

Surgery Recognize issues (e.g., tumors) in real-time from a cloud-based 
medical database while the surgery is in progress HIGH MEDIUM HIGH

Amber Alert Identify criminals by searching through the FBI database to match a 
photo taken by a camera LOW LOW MEDIUM

Social Network Profile online users by searching through a database for marketing 
purposes HIGH LOW LOW
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and security concerns. As each one of these 
constraints affect mobile-cloud computing in a 
unique way, they will be individually detailed in 
the following subsections.

Compute Capability and 
Storage Capacity

Despite an order of magnitude higher computa-
tional power of today’s mobile devices compared 
to the ones from just a few years ago, the relative 
computational power ratio of a non-mobile and a 
mobile device is likely to stay approximately the 
same in the foreseeable future. This is due to the 
architectural and technological state-of-the-art 
advances being applied to mobile platforms as 
well as non-mobile platforms simultaneously by 
different market leaders such as Intel for desktop 
platforms and ARM for mobile platforms. The 
most important metric, computer-power-per-Watt 
(also defined as GFLOPS-per-Watt) has almost 
reached equal levels in both mobile and desktop 
platforms. For example, a Tegra3-based mobile 
phone incorporating an ARM CPU and an Nvidia 
GPU at the core can deliver approximately 10 
GFLOPS/Watt (Tegra3). Alternatively, a desktop 
platform composed of an INTEL Core i7 CPU and 
an Nvidia Geforce 600 GPU (GeForce600, 2012) 
nearly has the same power efficiency metric, de-
livering around 10 GFLOPS/Watt compute power. 
This is due to the significant recent advancements 
in mobile processors: almost every power ef-
ficiency technique employed in desktop CPUs is 
now being incorporated into mobile CPUs, with 
the most important being the ability to architect 
the CPU with multiple cores, which is known to 
have a dramatic energy reduction advantage (Guo 
et al., 2010).

The storage technology is slightly different 
in that the widespread use of Solid State Disks 
(SSDs) allowed mobile devices to be built with 
storage capacities that are currently around 64GB 
to 128GB. This is currently an order of magnitude 
less than that for desktop platforms, which enjoy 

inexpensive hard disks in the multiple-TB range. 
This means that mobile-cloud applications that 
require significant local data storage in the mobile 
are not feasible.

Network Connectivity

A primary concern in the use of mobile-cloud 
computing is the non-negligible latency over the 
WAN (Wide-Area Network) between the mobile 
and the cloud, which hurts the user experience in 
mobile-cloud computing. Interactive applications 
that constantly engage the users are likely to suf-
fer the most from long delay, jitter and jerky and 
sluggish processing. Studies (Satyanarayanan et 
al., 2009) show that the quality of client perfor-
mance becomes highly variable with long latency.

In order to measure latencies over WAN con-
nections, we ran a simple program that sends 
ping packets from a client computer to servers in 
cloud datacenters in January and February 2012. 
The client computer was located in Rochester, 
New York, in the United States, and we used the 
five datacenters available in AWS (AWS, 2012), 
which are all located in geographically different 
regions, namely in Virginia and Oregon in the 
United States, Ireland in Europe, São Paulo in 
South America, and Singapore in Asia.

Table 2 shows the mean and standard deviation 
of these latencies for the AWS datacenters when 
being accessed by the client computer from wired 
and wireless networks. This data clearly indicates 
the challenges in running a mobile-cloud appli-
cation that uses the AWS datacenters as cloud 
servers. The response time of such an application 
will be lower-bounded by the mean latency of 
the communication to the datacenter it is using 
as cloud servers. Alternatively, the predictability 
of the response time will be determined by the 
standard deviation of the latency. While there 
have been significant improvements in network 
throughputs over the past decade, allowing users 
to enjoy such high-speed connections with 50 
Mbps downstream bandwidth (e.g., DOCSIS3 
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cable standard [DOCSIS, 2012]), network laten-
cies have not improved nearly at the same rate.

Although the network latencies might improve 
in the future, this is expected to be at a much 
slower pace, potentially keeping the latencies 
observed in Table 2 approximately the same in 
the foreseeable future. For example, an application 
requiring a 200 ms response time (close to what 
can be described as real-time) is not a candidate 
to run on cloud servers residing across interna-
tional boundaries with 300 ms to 1100 ms laten-
cies. This presents a dilemma in mobile applica-
tions in that the particular emphasis should be 
placed on latency, not the throughput, when de-
veloping an application. Alternatively, any inter-
mediate device, such as the cloudlet that will be 
described later, should be targeted to reduce the 
negative impact of this high latency.

Power and Energy Consumption

Today’s mobile devices incorporate signifi-
cantly sophisticated power management circuitry 
(Qualcomm, 2012). This, combined with power 
consumption demands that change drastically in 
sudden peaks imply a sophisticated power con-
sumption pattern from the mobile device based on 
the activities being performed (i.e., talk, compute, 
or run applications). Power consumption could 
change between sudden peaks of mW and a few 
W. While the power consumption is in fact an 

irrelevant measure in terms of battery life, the 
energy consumption is the relevant measure in 
determining the battery life.

To quantify the utility of mobile-cloud comput-
ing, one must take into account the energy demands 
of computation and communication separately. 
Analyzing these two activities separately will shed 
light onto the balance that must be maintained 
between computation and communication via 
efficient scheduling. In the following two subsec-
tions, we study the power and energy demands of 
these two activities.

1. 	 Computation Power and Energy 
Consumption: Since the computation en-
ergy is the only relevant metric for determin-
ing battery life, we analyze the amount of 
energy required to execute an identical task 
in a desktop and mobile platform. The energy 
efficiency metric, defined as GFLOPS-per-
Watt describes how many Watts of power 
is consumed to while delivering 1 GFLOPS 
of computational output. This metric is 10 
GLOPFS/Watt in a modern mobile proces-
sor such as Tegra 3 (Tegra, 2012), while it is 
almost in the same range for a modern CPU/
GPU-based desktop computer (GeForce600, 
2012). Alternatively, a mobile device oper-
ates at around one Watt average power con-
sumption, whereas a desktop platform could 
reach 200-1000 Watts of power consumption.

Table 2. Average and standard deviation of latencies over wireless connections (ms) 

Wireless 
Connections Wi-Fi 3G

Datacenter VA OR Ireland São Paulo Singapore VA OR Ireland São Paulo Singapore

Mean 253 389 293 434 697 930 817 798 872 1061

Std Deviation 470 635 520 704 1278 595 710 915 1079 2060

Wired Connections Weekend Weekday

Datacenter VA OR Ireland São Paulo Singapore VA OR Ireland São Paulo Singapore

Mean 122 322 294 389 580 42 223 196 389 546

Std Deviation 124 525 201 166 242 18 41 25 166 34
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Although a given computational task (e.g., 
face recognition) may consume more power and 
execute in a shorter amount of time on a non-
mobile platform (e.g., PC), it will consume less 
power on a mobile platform (strictly due to the 
aforementioned constraint on peak power), and is, 
therefore, expected to complete in a longer time 
period. However, due to the fact that approximately 
the same amount of computational energy is re-
quired for the same task, the mobile platform will 
take two to three orders-of-magnitude longer to 
execute the same task, since its peak power output 
is nearly two to three orders-of-magnitude lower.

2. 	 Communication Power and Energy 
Consumption: The communications energy 
of Wi-Fi and 3G are depicted in Figure 1. 
As shown in this figure, 3G requires much 
higher energy levels due to its inability to 
transfer large amounts of data, while Wi-Fi 
can transfer almost an order-of-magnitude 
more data within the same power envelope. 
Based on this figure, 3G connections require 
2,762 mJ per 100KB (i.e., 27.62 µJ/B). 
Alternatively, Wi-Fi requires around 5 to 10 
µJ/B, making it more energy efficient. These 
different energy profiles suggest that, when 
determining optimum algorithms that parti-
tion computation and communication, the 
energy patterns of both must be considered. 
As an example, assume that an algorithm has 
a choice among different computation vs. 
communication options as presented below:
a.	 Case 1: Front-loading. In this case, 

most of the computation is done on 
the Tegra 3 mobile device that has a 
10 GFLOPS compute-capability, and a 
10 GFLOPS/W energy efficiency, and 
3G is used for communication. For the 
Case 1 algorithm, 20 GFLOP of com-
putation and 100KB of data transfer are 
necessary. Total energy consumption 
is 2,000 mJ (i.e., 20 GFLOPS / (10 
GFLOPS/Watt) = 2 Watt * 1 second 
= 2J = 2,000 mJ) for the computa-

tion (based on the aforementioned 10 
GFLOPS/W for Tegra 3) and 2,762 mJ 
for the 3G communication (from Figure 
1), yielding a total energy demand of 
4,762 mJ for the entire task.

b.	 Case 2: Back-loading. Assume now 
that the same algorithm can be modified 
to perform more of the computation in 
the cloud at the expense of increased 
data transfer via 3G. In this Case 2, 
the computation in the mobile will be 
halved to 10 GFLOP at the expense 
of doubled data transfer size to 200 
KB. This will create a compute-energy 
demand of 1,000 mJ and a communi-
cation demand of 5,524 mJ, resulting 
in a total energy demand of 6,524 mJ, 
clearly an unfavorable choice.

c.	 Case 3: Back-loading on a faster 
communications link. If we con-
sider Case 2 on a faster Wi-Fi link 
(e.g., 576 mJ/100KB as shown in 
Figure 1, the energy demand for 
the front-loading and back-loading 
cases are (2,000+576=2,576 mJ) and 
(1,000+1,152=2,152 mJ), respec-
tively, making back-loading a better 
alternative for faster Wi-Fi links, al-
though the decision is the reverse for 
3G links.

Security

When considering outsourcing the computational 
tasks of a mobile application to the cloud, an im-
portant issue arises for certain applications: the 
security of the data being transmitted/received by 
the application. Depending on the application, the 
security of the data carries a varying importance. 
For example, for online games being played by a 
few gamers through the mobile device, the secu-
rity factor is negligible, while for remote health 
assistance applications, it is of utmost importance.

Due to the emergence of applications using 
wireless sensors with built-in low-power micro-
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controllers and the sudden spike in interest for 
concepts such as Internet-of-Things (IOT, 2012), 
the security of the data being transported by the 
application has become one of the most important 
concepts to consider. Additionally, emerging tele-
medicine applications also emphasize the impor-
tance of security and data privacy (HIPAA, 1996) 
within the mobile-cloud platforms (Pattichis et al., 
2002), (Varshney, 2007), (Wood et al., 2008). The 
concern for data security is of great importance 
for mobile devices with powerful processors with 
a 1 W power budget (e.g., Tegra3, 2012), but it 
is particularly challenging for embedded proces-
sors with only a mW power envelope, such as the 
Microchip 32-bit microcontroller family (PIC32, 
2012). This is due to the fact that the encryption 
of the data using standard Advanced Encryption 
Standard (AES) encryption (NIST, 2001; AES, 
2012) is compute-intensive and strains the compu-
tational resources of the underlying computational 
platform unless specialized crypto-accelerators are 
used. However, as most of today’s devices have 
AES hardware acceleration built-in, the encryp-
tion time and energy is typically less than the 
transmission energy of the data, thereby making 
encryption widely available with minimal impact 
on cost and energy.

Cloud and Cloudlet: Addressing 
These Challenges

With the help of the cloud, mobile devices may be 
able to offload the computationally-intensive parts 
of their applications. The enormous resources of 
the cloud may minimize the time and energy cost 
of the mobile applications on those computations. 
However, as described in the Microsoft MAUI 
project (Cuervo et al., 2010), some applications 
might never be feasible from mobile devices, 
due to the high latency mobile-cloud connection. 
Adding a cloudlet, a local device that provides 
100 to 1000 times higher computational power 
than the mobile device with minimal latencies, 
creates possibilities for running latency sensitive 
and computationally-intensive applications from a 
mobile device (Satyanarayanan et al., 2009). The 
notion of a cloudlet was introduced as a means 
to overcome some of the technical obstacles 
described above. The main idea is to provide the 
abundant resources needed at mobile devices not 
from distance clouds, but from a nearby cloudlet.

As Satyanarayanan et al. (2009) point out, 
the key differences between the cloudlet and a 
conventional cloud are listed in Table 3. Note that 
soft state refers to cache copies of data or code that 
are available elsewhere (e.g., mobile device or the 
cloud), whereas hard state refers to sole copy of 
data or code. Since a cloudlet only contains soft 
state, the loss of a cloudlet is not catastrophic. 
Cloudlets allow offloading a portion of the tasks 
or changing the timing of the execution of the 
subtasks to speed up the execution of the overall 
task by using synchronous optimization techniques 
(Soyata et al., 1993; Soyata & Friedman, 1994; 
Soyata et al., 1995; Soyata, 1999) as well as a 
re-shaping of the network traffic by aggregating 
network packets. With proper task management 
algorithms, a cloudlet may be able to leverage 
the power of distant cloud servers to maximize 
the performance while minimizing the impact of 
long network latency.

Figure 1. The energy consumption of Wi-Fi con-
nectivity vs. 3G connectivity (reprinted from Cu-
ervo, et al., 2010, with permission of the authors)
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In the following section, different approaches 
will be presented that use the cloudlet as a buffer-
ing layer to either speed up the computation or to 
reduce the negative effect of the communication 
latency to the cloud.

ARCHITECTURAL DESIGN

As stated in the previous section, in mobile cloud 
computing, there is a clear need for a mechanism 
to handle the interoperations between the mobile 
device and the cloud servers in order to improve 
the performance. Depending on whether or not 
cloudlets are used, the current research on the 
design of mobile-cloud architectures can be cat-
egorized as cloudlet architectures and non-cloudlet 
architectures. Many of the technologies being used 
in non-cloudlet architectures can also be adapted 
to cloudlet architectures. In this section, we intro-
duce the state-of-the-art for these mobile-cloud 
and mobile-cloudlet-cloud architectures.

Platforms Providing Cloud Services

The “cloud” may consist of commercial servers 
like the Amazon Web Services (AWS, 2012), Mi-
crosoft’s Windows Azure (Microsoft, 2012), and 
the Google Cloud Platform (Google, 2012), or it 
may be created ad hoc from available computing 
resources, as shown through recent studies (Ali, 
2009). While ad hoc clouds have been conven-

tionally created from high-end servers or desktop 
platforms, recently mobile platforms have been 
explored as a source for the computing resources.

For example, Hyrax (Marinelli, 2009) dem-
onstrated the concept of using smartphones 
as a cloud of computing resources. Marinelli 
developed a mobile-cloud computing system 
named Hyrax by porting Hadoop Apache, an 
open-source implementation of MapReduce, to 
Android smartphones. Hyrax allows comput-
ing jobs to be executed on networked Android 
smartphones. However, the performance of Hyrax 
was poor compared with Hadoop on traditional 
servers, not only because the smartphones were 
much slower at that time, but also because Hadoop 
was not originally designed, nor optimized, for 
mobile devices.

GEMCloud (Ba et al., 2013) is another example 
of using mobile devices to create an ad hoc cloud 
of computing resources. By utilizing distributed 
mobile devices to cooperatively accomplish large 
parallelizable computational tasks, Ba et al. en-
vision that such approaches can make use of the 
massive amount of idle computing power that is 
potentially available to the public. More impor-
tantly, the authors show that a mobile computing 
system like GEMCloud has significant advantages 
in energy efficiency over traditional desktop cloud 
servers when the overall system is considered, 
rather than each individual computational device 
(e.g., mobile).

Table 3. The major differences between the cloudlet and a conventional cloud (reprinted from Satyana-
rayanan, et al., 2009, with permission of the authors) 

Cloudlet Cloud

State Only soft state Hard and soft state

Management Self-managed, little or no professional attention Professionally administered 24/7

Environment “Datacenter in a box” at business premises Room with power conditioning and cooling

Ownership Decentralized ownership by local business Centralized ownership by Amazon, Yahoo etc ...

Network LAN latency/bandwidth Internet latency/bandwidth

Sharing Few users at a time Hundreds to thousands of users at a time
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Other examples of ad hoc cloud systems are 
NativeBOINC (BOINC, 2012) and BOINC Mobile 
(Eastlack, 2011), Android platform (Android, 
2012) equivalents of the BOINC volunteer com-
puting platform originally designed for PCs and 
game console platforms (Anderson, 2004). Since 
the physical devices that build up the cloud deter-
mine the cloud’s characteristics such as computing 
power, energy efficiency and network latency, it 
is important to profile the cloud servers and take 
this into account when designing the mobile-cloud 
computing system.

Mobile-Cloud Architectures

Mobile-cloud computing has been investigated 
since shortly after the concept of cloud computing 
was introduced in mid-2007, and it has attracted 
great interest in the research community (Dinh et 
al., 2011). Some important implementations of 
mobile-cloud computing, including MAUI (Cu-
ervo et al., 2010), CloneCloud (Chun & Maniatis, 
2009; Chun et al., 2011) and Virtual Smartphone 
over IP (Chen et al., 2012; Chen & Itoh, 2010) 
employ cloud servers to process application parti-
tions offloaded by the mobile device. As discussed 
previously, the cloud servers may be located in a 
commercial cloud or an ad hoc cloud.

Although architectural details may vary in dif-
ferent mobile-cloud computing implementations, 
some common components are often included on 
top of the operating system and hardware layers:

•	 A Partitioner that analyzes the applica-
tion and determines which part(s) of the 
application can be offloaded to the cloud. 
Depending on the technique being used, 
the partitioning granularity may be appli-
cation-level, thread-level, method-level or 
even line-of-code-level. For applications 
that cannot be partitioned, the Partitioner 
is not necessary.

•	 A Profiler that collects the mobile device’s 
system measurements to identify the per-

formance status, resource status and other 
contextual information. The performance 
measurements may include network condi-
tion (e.g., type of network being used, sig-
nal strength, bandwidth, computing power 
and response latency of various cloud ser-
vices, etc.), screen brightness, CPU, mem-
ory and storage usage. The resource status 
may include remaining battery, available 
computing power (derived from CPU, 
memory usage), and the resources required 
by the application (or method, thread, de-
pending on the granularity offered by the 
Partitioner). Other contextual status may 
include location, acceleration, tempera-
ture, date and time, etc.

•	 A Solver that gathers information from the 
Partitioner and the Profiler to decide how 
to offload the partitions to the cloud based 
on an optimization algorithm.

•	 A User Agent on the mobile device and 
a Coordinator on the server that han-
dle the authentication and security. The 
Coordinator may also interact with the 
server database that stores the mobile de-
vice users’ profiles (e.g., device specifica-
tions, user configurations, subscribed ser-
vices, contextual data) and activity logs. 
The Coordinator allocates the resources on 
the cloud server for the mobile users.

In general, MAUI (Cuervo et al., 2010), 
CloneCloud (Chun & Maniatis, 2009; Chun et al., 
2011) and the Virtual Smartphone over IP (Chen 
& Itoh, 2010; Chen et al., 2012) architectures all 
have the above components or components with 
similar functionalities.

Cloudlet Architectures

As described in Section II, cloudlets can be used 
as intermediaries between mobile devices and 
cloud servers. One of the first implementations 
of a cloudlet architecture was a prototype mobile-
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cloudlet computing system named Kimberley 
(Satyanarayanan et al., 2009), developed by 
Satyanarayanan et al. The authors envisioned a 
cloudlet as a “data center in a box” widely dis-
persed throughout the Internet. Unlike the cloud, 
the cloudlet is self-managed with decentralized 
ownership, maintains only soft states, is con-
nected to the mobile over a LAN, not a WAN, 
and is accessed by only a few users at a time. As 
a proof-of-concept implementation, the Kimber-
ley system utilizes a local server as a cloudlet to 
process application partitions. The authors show 
that in some cases, a local server is able to provide 
enough computing power to boost the execution 
speed of a mobile application, while in other cases, 
the computing resources provided by a local server 
may not be enough and a cloud has to be used to 
fulfill the computation and storage requirements 
of the mobile application. Figure 2 elaborates 
the cloudlet architecture in comparison with the 
direct mobile-cloud architecture. The major role 

of a cloudlet in a mobile-cloudlet-cloud network 
is task management. It may also help the mobile 
with some intermediate processing.

The MOCHA (Mobile Cloud Hybrid Archi-
tecture) architecture was created as a solution to 
massively-parallelizable mobile-cloud applica-
tions (Soyata et al., 2012a, 2012b) by Soyata et 
al. In MOCHA, mobile devices such as smart-
phones, touchpads, and laptops are connected to 
the cloud via a cloudlet, a dedicated device de-
signed from commodity hardware supporting 
multiple network connections such as 3G/4G, 
Bluetooth, and WiFi. The cloudlet determines 
how to partition the computation among itself and 
multiple servers in the cloud to optimize the 
overall quality of service (QoS) based on con-
tinuously updated statistics of the QoS metrics 
(e.g., latency, cost) over the different links/routes. 
The authors demonstrate the concept of MOCHA 
via a mobile-cloud application demanding real-
time response, such as face recognition (Soyata 

Figure 2. The mobile-cloud computing and mobile-cloudlet-cloud computing architectures: mobile 
devices directly interact with a cloud or via the cloudlet and use dynamic partitioning to achieve their 
quality of service (QoS) goals (e.g., latency, cost)
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et al., 2012a) and simulate the same architecture 
in a battlefield application where the response 
time is of primary importance (Soyata et al., 
2012b).

Similar to the characteristics of cloudlets as-
sumed by the Kimberley (Satyanarayanan et al., 
2009) and MOCHA (Soyata et al., 2012b) archi-
tectures, a two-level architecture is introduced by 
Ha et al. (Ha et al., 2012). This two-level archi-
tecture leverages both today’s unmodified cloud 
infrastructure (Level 1) and a second level data 
center, named 1WiFi, at the edge of the Internet 
(Level 2), servicing currently-associated mobile 
devices. The Level 2 data centers are powerful, 
well-connected and safe cloudlets that only have 
cached soft state from Level 1 data centers or 
buffered data from mobile devices. Trust issues 
and speed of provisioning are the new challenges 
to this architecture and must be investigated before 
it can be widely deployed.

In some scenarios such as an office building, 
multiple cloudlets may be located closely to each 
other and may be connected in a peer-to-peer 
fashion. In this case, routing among the cloud 
servers, the cloudlets and the mobile devices 
has to be considered. In (Fesehaye et al., 2012), 
Fesehaye et al. propose two types of routing 
schemes, namely distributed and centralized 
routing. In distributed routing, the routing table 
is constructed and maintained by the cloudlets. 
The cloudlets periodically broadcast their pres-
ence information to the neighboring nodes and 
the other cloudlets. When a mobile user hears 
a broadcast message from a cloudlet, it records 
the latest cloudlet ID into its cloudlet table. Each 
mobile user also periodically broadcasts its ID 
to let the cloudlet in range register this user and 
forward it to other cloudlets. In centralized routing, 
the central server is responsible for constructing 
and maintaining the routing table. The cloudlet 
periodically sends the IDs of its mobile users, its 
own ID and its neighboring cloudlets’ IDs to the 
central server. The central server then computes 
the routing table for each cloudlet and installs the 
forwarding tables into the cloudlets.

Simulations were conducted to evaluate the 
performance of this architecture. In the simula-
tions, distributed routing was chosen as the routing 
scheme for the cloudlet architecture. The results 
show that the cloudlet-based approach has lower 
data transfer delay and higher content delivery 
throughput than the cloud-based approach. The 
results were under the assumption that the WiFi 
transmission range is larger than 250m. Therefore, 
the author suggests using the latest technologies 
such as Flashlinq (Corson et al., 2010) or by us-
ing Wi-Fi repeaters to achieve a desired coverage. 
Since there are no performance comparisons with 
the centralized routing, questions still remain as 
to which routing scheme has better performance.

TASK MANAGEMENT AMONG 
MOBILE, CLOUDLET, AND CLOUD

The goal of developing a cloudlet-assisted 
mobile-cloud computing system is to improve 
the performance (e.g., latency, energy efficiency, 
monetary cost) on the mobile device. One im-
portant approach for improving the performance 
is to offload partial or full execution of the ap-
plication to the more resourceful cloudlet or the 
cloud (Karthik Kumar et al., 2013). Shifting the 
computation load to a communication load may 
lead to substantial gains in performance.

The computation offloading approaches are 
based on virtual machine technologies and can 
be viewed as middleware designs. Besides the 
middleware that enables the code offloading, task 
distribution algorithms and control policies are 
needed to improve the performance to its best. In 
this section, we will introduce both the middleware 
designs and the task distribution algorithms that 
enhance the performance of mobile computing.

Computation Offloading Approaches

Despite the advances in mobile device technolo-
gies, the processing and storage capabilities of 
mobile devices are still not comparable to those of 
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servers (or the cloudlet) and will continue to lag in 
the near future. In order to run computationally-
intensive applications, the mobile can offload 
some of the computation to servers while the 
mobile device computes only lightweight parts 
of the application. A Virtual Machine (VM) can 
support individual processes or a complete system 
running on flexible hardware platforms, thereby 
providing the feasibility to migrate partial or 
full applications from the mobile device to more 
powerful cloudlet/cloud servers without major 
modifications to the application. Therefore, the 
application processing time can be shortened while 
the energy consumption on the mobile device is 
reduced. Yet this approach poses several techni-
cal challenges. First, how can we identify and 
partition the compute-intensive or energy-hungry 
parts within the mobile application automatically? 
Second, what strategy should a mobile device em-
ploy for partitioning and offloading with the goal 
of minimizing computation time and maximizing 
energy savings? Third, how can we implement 
such a system from a practical point of view?

In this subsection, we provide an overview 
of the state-of-the-art VM-based techniques for 
mobile-cloudlet/cloud computing. These include 
1) an approach employed by the Kimberley system 
(Satyanarayanan et al., 2009) that demonstrates 
the feasibility of VM synthesis using VirtualBox, 
2) an approach used in MAUI (Cuervo et al., 

2010) that provides both full and fine-grained 
remote execution using the .Net framework, 3) 
the technique in CloneCloud that supports thread 
granularity partitioning (Chun & Maniatis, 2009; 
Chun et al., 2011) using Dalvik VM, 4) an approach 
by Chen et al. (Chen & Itoh, 2010; Chen et al., 
2012) that enables offloading on non-customized 
Android devices also using Dalvik VM, and 5) an 
OSGi approach by Verbelen et al. (2012). Table 
4 compares these five approaches discussed in 
this subsection.

1. 	 Virtual Box in Kimberley: Satyanarayanan 
et al. implemented a VM for the Kimberley 
architecture (Satyanarayanan et al., 2009) 
prototype using a technique called dynamic 
Virtual Machine synthesis that employs 
transient cloudlet customization. A small 
VM overlay is delivered by a mobile device 
to the cloudlet infrastructure, which creates 
and launches the VM using a base VM plus 
the delivered VM for the application. The 
prototype was implemented on a Nokia N810 
tablet running Maemo 4.0 Linux, and the 
cloudlet infrastructure was implemented 
using Ubuntu Linux. Kimberley uses 
VirtualBox as the VM manager and a tool 
called “Kimberlize” to create VM overlays 
and synthesize those overlays with base VMs 
to create a launchVM. Both the mobile and 

Table 4. Comparison of task partitioning approaches from Kimberley (Satyanarayanan, et al., 2009), 
MAUI (Cuervo, et al., 2010), CloneCloud (Chun & Maniatis, 2009; Chun, et al., 2011), Chen’s approach 
(Chen & Itoh, 2010; Chen, et al., 2012), and Verbelen’s approach (Verbelen, et al., 2012) 

Publication Technologies Platform Granularity Application Development Difficulty

Kimberley VirtualBox Linux Application Low

MAUI .NET framework Windows Method Requires application developer’s annotations

CloneCloud Dalvik VM JavaVM sup-
ported Thread No annotation required

Chen’s approach Dalvik VM JavaVM sup-
ported Thread No annotation required

Verbelen’s approach OSGi JavaVM sup-
ported Component Requires application developer’s annotations
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the cloudlet run the Kimberley Control 
Manager (KCM) to support the transient 
binding between themselves using a TCP 
tunnel established between these two KCMs.

The authors used VM overlay sizes and the 
speed of the synthesis process to evaluate the 
system performance. The VM overlay sizes were 
100-200 MB for a collection of Linux applica-
tions. These sizes were an order of magnitude 
smaller than the full VM size (8 GB). The speed 
of synthesis ranged from 60 to 90 seconds. These 
results are acceptable for an unoptimized proof-
of-concept prototype, and there is plenty of room 
for improvement through further optimization. For 
instance, a high-bandwidth short-range wireless 
network can reduce overlay transmission time, 
parallelism on the cloudlet can decrease decom-
pression and overlay application times; caching as 
well as prefetching can be used to eliminate VM 
synthesis delays. The deployment challenges are 
also discussed, including 1) the business model 
(bottom-up versus top-down), 2) the sizing of 
cloudlets, i.e., how much processing power and 
storage capacity a cloudlet should provide, and 
3) trust and security.

2. 	 Remote Execution in MAUI: MAUI 
(Cuervo et al., 2010) was originally mo-
tivated by the assumption that battery 
technology will be a major bottleneck for 
the future growth of smartphones. MAUI 
consists of three main components. First, 
program partitioning uses the Microsoft 
.NET Common Language Runtime (CLR) 
to enable developers to annotate methods 
that may be performed remotely, to extract 
methods that may be performed remotely 
using reflection (Richter, 2010), and to 
identify the state of the application using 
type-safety and reflection. MAUI generates 
two proxies on both the mobile device and the 
server that handle control and data transfer 
to implement decisions on which methods 
to run remotely and which to run locally. 

Second, the MAUI profiler and solver will 
characterize the device and the program, 
then determine the methods to be executed 
remotely. On the server side, there is a MAUI 
coordinator handling the authentications and 
resource allocations.

The mobile part of MAUI was implemented 
on an HTC Fuze smartphone running Windows 
Mobile 6.5 with the .NET Compact Framework 
v3.5, and the MAUI server was implemented 
on a desktop with a dual-core 3 GHz CPU and 
4 GB RAM running Windows 7 with the .NET 
Framework v3.5. The main results measure energy 
consumption and execution time for three appli-
cations—face recognition, 400 frames of a video 
game, and 30 moves in a chess game. The results 
show that using remote execution on MAUI saves 
5-12 times the energy compared to the smartphone 
only case and reduces the execution time by more 
than a factor of 6.

3. 	 CloneCloud Utilizing Dalvik VM: 
CloneCloud (Chun & Maniatis, 2009; Chun, 
Ihm, Maniatis, Naik, & Patti, 2011) allows 
a smartphone to partially offload its appli-
cation to the phone’s clone in the cloud. It 
migrates a modified version of the original 
application executable to a virtual machine 
in the cloud. This algorithm allows thread 
granularity migration, and therefore the User 
Interface (UI) or other essential components 
can remain to be executed at the mobile. 
Additionally, native methods can execute 
at both the mobile device and its clones in 
the cloud/cloudlet. One drawback of the 
CloneCloud approach is that local threads 
need to block unless they are independent 
from the migrated threads.

Chun et al. developed a dynamic profiler to 
analyze the execution time and energy cost of each 
method on a mobile device, which are then used by 
an optimization solver to decide which method(s) 
should be migrated to the clone. The profiler and 
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optimization solver were implemented on a modi-
fied Dalvik VM on Android, and this requirement 
may limit the scope of its application. CloneCloud 
is tested on an unlocked HTC G1 Android phone 
and a server with a 3.0 GHz Xeon CPU running 
the Android x86 virtual machine via VMware ESX 
4.1. Three applications—a virus scanner, image 
search, and privacy-preserving targeted advertis-
ing—were tested on the CloneCloud prototype. 
The results show that for the tested applications, 
when connecting to the CloneCloud via Wi-Fi, 
the execution time is shortened by 2.1x-20x and 
the energy consumption is reduced by 1.7x-20x. 
When connecting to the CloneCloud via 3G, the 
execution time is shortened by 1.2x-16x and the 
energy consumption is reduced by 0.8x-14x.

4. 	 Virtual Smartphone Over IP Utilizing 
Dalvik VM: Chen et al. (Chen & Itoh, 2010; 
Chen, et al., 2012) introduce a framework that 
allows heavy backend tasks on an Android 
phone to be offloaded to an Android vir-
tual machine in the cloud. Unlike MAUI or 
CloneCloud, the authors built an Android OS 
on an x86 cloud server on which a virtual 
smartphone is executed. Two frameworks 
are proposed: the first framework (Chen & 
Itoh, 2010) offloads an entire application 
to the virtual smartphone and controls the 
application through remote desktop sharing; 
the second one (Chen, et al., 2012) offloads 
only the compute-intensive components to 
the cloud. The former offers heightened 
security and data leakage prevention as the 
entire application and resulting data do not 
physically reside on the mobile, while the 
latter offers fast GUI responsiveness and 
offline execution.

The major advantages of using this approach 
over MAUI and CloneCloud are 1) no use of ad-
ditional APIs in the source code is required, and 
2) no modifications to the mobile device’s OS or 

root access are required. Note that these features 
are useful for system deployment. To achieve 
the above features, the authors replace the AIDL 
(Android Interface Definition Language) tool with 
a helper tool so that the compiler automatically 
creates service wrappers that are offloaded to the 
cloud by a service offloader. Offloading decisions 
may be made according to the time and energy 
consumption required to perform a task. Once 
offloading is done, the user needs to wait until 
the task is completed before the service offloader 
re-evaluates the time and energy metrics.

5. 	 OSGi Approach: In (Verbelen et al., 
2012), Verbelen et al. introduced a differ-
ent definition of a cloudlet. In their cloudlet 
architecture, the unit of deployment is a 
component. Components are managed by 
an Execution Environment that runs on top 
of an Operating System (OS). The OS is 
installed on a node that is either virtualized 
or real hardware, and managed by a Node 
Agent. A cloudlet is a group of nodes (either 
mobile devices and PCs or elastic cloud 
servers) that are physically proximate to 
each other. A Cloudlet Agent optimizes the 
performance by deploying or configuring 
the components within the cloudlet.

The proposed cloudlet framework is imple-
mented on top of the OSGi framework (OSGi, 
2012), allowing components to be installed, 
started, stopped, updated, and uninstalled without 
a reboot. The authors use an OSGi bundle named 
R-OSGi (Rellermeyer et al., 2007) to facilitate the 
distribution of components across different OSGi 
instances. In other words, the R-OSGi allows com-
ponents to be executed on different platforms. The 
authors implement an augmented reality applica-
tion to evaluate the cloudlet framework. Results 
show that with components being offloaded to 
a local laptop computer, the application on the 
mobile device can be improved to satisfy the 
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performance requirements. The experiment results 
also show that when the cloudlet is running in a 
distant cloud, the performance decreases to an 
unsatisfactory level due to the increased latency.

Other Middleware Designs

The above describes approaches that allow mo-
bile devices to offload computational tasks to the 
cloudlet/cloud. In general, these approaches can 
be categorized as middleware that lies on top of 
the operating system and provide services to the 
applications. More specifically, the offloading 
approaches described above enable the com-
munication and management of data and code 
between the client and the cloudlet/cloud. Besides 
supporting code migration, a middleware frame-
work may also provide generic interfaces to handle 
the communication and input/output functions, 
which will facilitate the design of software for 
these mobile-cloud and mobile-cloudlet-cloud 
architectures.

One example of such a middleware framework 
design is given by Flores et al. (2011). In their 
paper, a generic middleware framework named 
Mobile Cloud Middleware (MCM) is introduced. 
MCM enables interoperability between the mobile 
and the cloud/cloudlet. In MCM, a mobile appli-
cation first sends an HTTP or XMPP request to 
MCM, which processes this request and forwards 
the request to the MCM manager. An interoper-
ability API engine within the manager then decides 
which API set to use to interact with the cloud/
cloudlet. When the process running on the cloud/
cloudlet is finished, a notification is sent to the 
mobile device using the push notification services 
(C2DM–Cloud to Device Messaging (C2DMF, 
2012) for the Android platform and APNS–
Apple Push Notification Service (Apple, 2012) 
for the iOS platform). This request-notification 
mechanism is processed asynchronously, so that 
the mobile device can perform other tasks while 
waiting for the notification.

For some applications, it is important for the 
cloud/cloudlet to have the capabilities to dynami-
cally capture and utilize contextual information 
from mobile devices to improve QoS. Such contex-
tual information may involve user profiles, session 
quality, network conditions and environmental 
conditions such as temperature, humidity, and 
location. In Hoang and Chen (2010), Hoang et 
al. summarize the functions that context-aware 
middleware is expected to incorporate, including 
1) intelligent monitored data analysis that pre-
processes raw sensor data to improve its quality 
and to update context repositories, 2) network 
auto-switch that monitors network latency and 
automatically chooses the best network, and 3) 
energy consumption management that aims to 
minimize energy consumption at the device level, 
the communication level, or the collaborative level. 
This middleware layer constructs a communication 
bridge between the data acquisition layers on both 
the mobile and the cloud service ends.

Task Distribution Algorithms

With the support of middleware, the mobile 
devices are able to offload their computation-
ally-intensive application components to one or 
multiple of the resource-rich cloudlets or cloud 
servers. In order to fully maximize the benefits 
of utilizing the cloud resources, task distribution 
algorithms must be developed.

In the MAUI approach, a MAUI profiler is used 
to estimate the characteristics of the device’s en-
ergy consumption, the program’s runtime and the 
resource needs, as well as the characteristics of the 
wireless network such as bandwidth, packet loss 
rates and delay. Then, the MAUI solver determines 
which methods can be remotely executed based on 
the information computed by the MAUI profiler. 
The solver uses Integer Linear Programming (ILP) 
to solve an optimization problem whose objective 
function is to maximize the energy savings given 
constraints about latency penalty and methods 
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that may be computed remotely. A similar profiler 
and a similar solver were used by CloneCloud to 
determine the migration point.

When the network connectivity is intermittent, 
extra latency will be introduced if the optimiza-
tion algorithm uses the current communication 
condition to determine the migration point, such 
as being used in CloneCloud. In Cirrus Cloud (Shi 
et al., 2012), Shi et al. introduce an offloading 
algorithm that recursively chooses the optimal 
migration points from the root of the profile tree 
of an application. At every node within the tree, 
the algorithm computes the completion time to 
decide whether to execute the entire subtree lo-
cally, migrate it to the cloud entirely or migrate 
only parts of it. When migrating parts of the 
subtree, the same algorithm is iteratively applied 
to all the children of this node. With the computa-
tion and future network connectivity accurately 
known, the algorithm is able to find the optimal 
partitioning of the application and minimize the 
execution time. In reality, it is obvious that future 
network connectivity is not known ahead of time. 
However, using historical statistics may help to 
predict the connectivity and therefore achieve a 
close-to-optimal code migration.

The above approaches consider the code 
offloading from one mobile client to one server. 
In the cases when multiple servers may be used, 
the latency of each individual server must be 
considered. As indicated by Table 2, the response 
latencies of different cloud servers have significant 
variations. This diversity of connectivity creates 
the potential for gains through the smart selection 
of cloud servers for the offloading of computation. 
Motivated by this potential, the authors of MO-
CHA developed two task distribution algorithms, 
namely the fixed and the greedy algorithms, to op-
timize the mobile-cloud computing performance 
in terms of result response time.

The fixed algorithm is used to evenly distribute 
the pending tasks to the cloud servers (and the 
cloudlet if there is one). On the other hand, the 
greedy algorithm continuously sends the next 

pending task to the server (or cloudlet) that is able 
to return the result in a minimum amount of time. 
This process is repeated until all the pending tasks 
are assigned. The authors conduct Monte-Carlo 
simulations to analyze the effects of using the 
fixed algorithm and the greedy algorithm on a 
mobile-cloud network with a cloudlet or without 
a cloudlet. In the simulations, a computational job 
consisting of 5 identical and independent tasks is 
distributed among available cloud servers (and a 
cloudlet) with varied processing capabilities and 
communication latencies. As shown in Figure 3, 
the greedy algorithm reduces the overall response 
time by 50% over the fixed approach using the 
cloudlet, while only a 20% gain is achieved without 
the cloudlet. The results demonstrate the benefits 
of using the greedy task distribution algorithm 
as well as the benefits of using the MOCHA 
architecture.

While the above approaches all try to maximize 
the performance of the mobile device side, in 
(Hoang, Niyato, & Wang, 2012), Hoang et al. 
introduce an admission control policy that stands 
on the cloud server’s side. The authors propose 
an optimization model based on a semi-Markov 
decision process to maximize the reward (e.g., 
revenue of service provider) of the resource usage 
in the cloudlet under resource and bandwidth 
constraints while meeting the QoS requirements 
(i.e., mobile users’ service requests accept rate). 
The optimization model is transformed into a 
linear programming model and can be easily solved 
by a standard linear program solver. In the paper, 
the authors consider that the offloaded application 
partitions will be processed in the cloudlet rather 
than forwarded to the cloud. Therefore, the band-
width and resource limitations at the cloud are 
not included in the model. According to the 
model, the control policy decides whether the 
service request from a user should be accepted or 
blocked. In the performance evaluations, the 
authors assume a circumstance where two class-
es of users, i.e., members with higher priority and 
non-members with low priority, are using the 
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cloudlet. Two services with different bandwidth 
and resource requirements are considered. The 
results show that using the proposed control 
policy, under the bandwidth and resource con-
straints, the cloudlet is able to satisfy the members’ 
QoS requirements while maintaining high resource 
utilization rate.

FUTURE RESEARCH DIRECTIONS

In this chapter, we provided an extensive survey 
of the state-of-the-art mobile-cloud computing 
techniques, some of which utilize cloudlets as 
the middle layer. We provided a summary of 
the existing architectural designs and compared 
different approaches that enhance application 
performance via cloud-based execution. We also 
highlighted the research and technological chal-
lenges in different approaches presented in the 

literature. While much work has been done to 
date, mobile-cloud computing is still in its early 
research stages. Especially, the cloudlet is a new 
topic in the cloud computing world. Before these 
mostly theoretical proposals for the cloudlet find 
their place in practical applications, many research 
challenges have to be overcome. In this section, 
we summarize the most important challenges.

Cloudlet Design

Two main components of the cloudlet are its 
hardware architecture and software management 
mechanism. In the literature, many envision to 
extend a Wi-Fi access point into a more intel-
ligent machine equipped with cloudlet function-
alities (Satyanarayanan et al., 2009; Soyata et al., 
2012a, 2012b; Ha et al., 2012; Fesehaye et al., 
2012). To support this vision, a determination 
must be made as to what is a reasonable amount 

Figure 3. Simulated response times using a varied number of cloud servers
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of compute power and storage capacity that can 
be incorporated into the cloudlet without exceed-
ing the power consumption and equipment cost 
constraints. For example, a cloudlet that costs as 
much as a desktop PC and consumes as much 
power is unlikely to be adopted by the masses. 
Alternatively, a cloudlet that does not have suffi-
cient compute power will not augment the mobile 
devices’ capabilities enough to make an impact on 
the overall performance. Therefore, ideal cloudlet 
architecture parameters lie between these two ex-
tremes. Such questions are closely related to the 
deployment strategy that centers on the business 
model with incentives.

The primary questions regarding software 
are 1) support for a variety of applications, 2) 
self-managing environments, and 3) efficient 
resource management. The system software 
environment should be generic enough so that 
different kinds of applications can execute with-
out major modifications; the cloudlet resources 
should be managed automatically with minimal 
human involvement; and the resource (processing, 
storage, and networks) usage should be optimized 
so that cloudlet computation can support as many 
applications as possible at a given time and the 
overall execution time can be minimized. We envi-
sion cloudlets incorporating modern processors, 
such as GPUs (GeForce500, 2011), and modern 
memory subsystems with potentially specialized 
memory-based accelerators (Soyata & Liobe, 
2012; Guo et al., 2010).

Task Distribution

Current implementations such as MAUI (Cuervo 
et al., 2010) and CloneCloud (Chun & Maniatis, 
2009) have utilized offloading algorithms, where 
the code in the mobile device runs in a Virtual 
Machine (VM) and the execution can be migrated 
between the mobile and the cloud in real-time. 
However, there still remain many techniques 

that can be explored for further performance 
improvements by migrating the execution across 
multiple cloud servers, pipelining the transmission 
of application partitions to hide the transmission 
delay, and caching the reusable partitions to reduce 
the transmission load. As discussed previously, 
multiple cloud service providers or ad hoc cloud 
servers may be employed for computational or 
storage resources. This increases the complexity 
of the task distribution problem. Although the 
authors of MOCHA consider the computation 
power and network latency of different cloud 
servers when assigning the tasks (Soyata et al., 
2012a, 2012b), it is necessary to develop more 
generic task distribution algorithms that take into 
consideration the resources and the constraints 
of the mobile devices, cloudlets and the cloud 
servers. Using a more comprehensive cost model, 
such as the one shown in Figure 4, is needed to 
develop better dynamic optimization algorithms to 
further enhance the performance and robustness. 
With sufficient computation power, a cloudlet is a 
proper candidate to optimize the task distribution 
decision dynamically.

Security and Privacy

As many mobile devices and the cloudlet/cloud 
collaborate and share data, security and privacy 
is always an important issue. While WPA2 (Wi-
FiAlliance, 2012) and IPsec (BBN, 2005) provide 
layer-2 encryption of the data, layer-6 encryption 
is still a requirement for some applications. For 
example, layer-6 encryption is critical for phar-
maceutical applications such as those involving 
bioinformatics or computational chemistry that 
are executed remotely on rented/commercial 
cloud platforms (AWS, 2012; Microsoft, 2012; 
Google, 2012). Homomorphic encryption can al-
low the computation to be performed without ever 
decrypting the data, providing additional layers 
of security. Future work is required to determine 
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how layer-6 encryption, including homomorphic 
encryption, can be applied when passing data 
between the mobile, cloudlet and cloud.

Energy Efficiency

As more hand-held mobile devices are equipped 
with sensing capabilities, collaborative sensing 
applications have become a reality. These appli-
cations often require thousands of participating 
smartphones that do opportunistic sensing with 
little user involvement. Since this opportunistic 
sensing may deplete the battery rather rapidly, it 
is crucial to implement effective resource man-
agement strategies to maximize the battery life 
of these phones. We should consider interactions 
between mobiles and the cloud as well since heavy 
communications consume large amount of bat-
tery power. We can model this as an optimization 
problem for optimal resource management and 
compute the best strategy for a given network 
topology, battery power, and network conditions.

Support for Mobile 
Application Developers

Developer tools such as software libraries with 
clearly defined APIs will increase the develop-
ment productivity of mobile-cloud computing 
systems. The libraries will also help improve the 
system performance, efficiency, and compatibility 
while reducing the chances of faulty design and 
implementation. These APIs and libraries should 
be easily extensible, easy-to-use, and transparent to 
users so that users do not have to have knowledge 
about implementation details.
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KEY TERMS AND DEFINITIONS

Cloud: The platform of multiple servers over 
a widely disbursed geographic area, connected 
by the Internet for the purpose of serving data or 
computation.

Cloudlet: The intermediate device located 
between the mobile and the cloud to accelerate-
mobile-cloud computing.

Computation Offloading: The process of 
a computational device (e.g., mobile) sending 
a given task to a different computational device 
(e.g., cloudlet).

Graphics Processing Unit (GPU): An ac-
celerator device typically plugged into the PCI 
express bus of a computer to accelerate graphics 
and other massively parallel computations.

Mobile-Cloud Computing: The co-execution 
of a mobile application within the expanded mo-
bile/cloud computational platforms to optimize 
an objective function.

Mobile Computing: The ability to use mobile 
devices to perform computing tasks without being 
limited to pre-defined geographical locations.

Smartphone: A mobile phone that has ad-
vanced computing capabilities and is built on 
a mobile operating system capable of running 
third-party applications.

Task Partitioning Algorithm: An algorithm 
that determines how to optimally execute a large 
task by executing its different subtasks at existing 
computational resources, e.g., mobile, cloudlet, 
and the cloud.


