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Abstract - The clock frequency of a synchronous circuit 
can be increased at the expense of increased system latency, 
area, and power using synchronous optimization techniques 
such as pipelining and retiming. Pipelining is a well developed 
methodology, having been applied to almost every computer 
architecture from microprocessors to supercomputers. Re- 
timing, on the other hand, has only recently become popular 
and practical application areas are currently being developed. 
Both pipelining and retiming are reviewed in this paper. 

In order to make retiming more generally useful, low-level 
circuit delay components inherent to ICs must be incorporated 
into the retiming process. These issues include variable regis- 
ter delay, clock skew, and interconnect delay. An algorithm 
is presented by the authors for incorporating variable regis- 
ter delays, interconnect delay, and clock skew into retiming. 
This algorithm identifies and eliminates path-dependant race 
conditions in synchronous circuits. The results of applying 
the algorithm to MCNC benchmarks is presented and both 
performance and reliability improvements are observed. 

I. INTRODUCTION 
The performance of synchronous ASICs can be increased 

by pipelining at the expense of increased system latency 
and area. Pipelining converts a combinatorial circuit into 
its sequential equivalent by breaking the global data paths 
into local data paths with smaller delay. This is achieved 
by inserting registers (memory elements) between logic 
blocks. The intermediate processed results are saved in 
these memory elements and used during the following 
clock cycles [ 13. Thus, this technique increases the rate of 
data flow by providing concurrent operation, albeit, with 
increased circuit area and system latency. 

Retiming is a technique used to increase the clock fre- 
quency in pipelined synchronous circuits without affecting 
synchronous latency. An initial synchronous system is con- 
verted via retiming into a functionally equivalent system us- 
ing techniques originally described by Leiserson and Saxe 
[2]. The locations of the registers are changed so as to mini- 
mize the clock period while preserving the system function 
and latency. The primary distinction between pipelining 
and retiming is that pipelining converts a combinational 
circuit into a sequential one, increasing system latency. In 
retiming, alternatively, the register locations within a se- 
quential circuit are optimized such that the circuit operates 
at the highest possible frequency without increasing the 
latency. 

Even though retiming can achieve a lower clock period, 
currently proposed retiming techniques do not incorporate 
practical circuit issues such as variable register delay, clock 
skew, and interconnect delay. By incorporating these cir- 
cuit issues into retiming, a more accurate and reliable esti- 
mation of the register locations can be determined. Further- 
more, catastrophic race conditions are eliminated as part of 
the retiming process. 

A detailed review of both pipelining and retiming is pro- 
vided herein. A new retiming algorithm that integrates the 
aforementioned practical circuit delay components is also 
presented. The paper is organized as follows. A discussion 
of pipelining techniques and related work in the field is pro- 
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vided in Section 11. Retiming of synchronous circuits and 
related retiming algorithms are discussed in Section 111. In 
Section IV, modeling of path dependent clock distribution, 
register, and interconnect delays is presented for use in the 
retiming algorithm described in this paper. The algorithm 
utilizes these delays to more accurately and reliably opti- 
mize the register locations within a pipelined system and 
is demonstrated using modified MCNC benchmark circuits. 
Finally, some conclusions are drawn in Section V. 

11. PIPELINING OF SYNCHRONOUS DIGITAL SYSTEiMS 
Pipelining is an effective technique for increasing the 

performance of synchronous circuits. After pipelining a 
combinatorial circuit, the clock frequency of the circuit is 
increased, resulting in higher performance. In subsection 
A, a detailed description of the terms pertaining to pipelin- 
ing are reviewed. Previous work in the field is summarized 
in subsection B, emphasizing speed, area, and efficiency 
trade-offs in synchronous pipelined systems. 

A. Definitions related to Synchronous Pipelining 
In this section, common terms used in the pipelining 

literature are defined. This discussion is intended to serve 
as a guide for the remainder of the paper. 

The latency of a circuit is vaguely defined within the 
literature. For a combinatorial circuit, the latency of the 
circuit is defined as the time required for the signal to 
reach the system output after arriving at the system in- 
put. This definition has no ambiguity. For synchronous 
systems, however, the definition must be extended. For 
a synchronous system, two different latencies may be de- 
fined: temporal latency is the time required for a signal to 
reach the system output after arriving at the system input, 
whereas sequential latency is the number of clock periods 
required for the data signals to reach the system output 
upon arriving at the system input. The difference between 
these two definitions is significant since often sequential op- 
timization operations do not change the sequential latency, 
but do change the temporal latency. These definitions of 
latency are used throughout this paper in order to provide 
insight into different effects of sequential optimization on 
system latency. 

The clock frequency of a sequential circuit is the rate 
at which new data flow into the system and appear at 
the output. The primary goal of sequential optimization 
is to increase the clock frequency or decrease the clock 
period, which is the reciprocal of the clock frequency. The 
relationship between clock period and latency is further 
investigated in [3, 41. 

Due to the nature of clock distribution networks in se- 
quential circuits [ 5 ] ,  differences in delay are created be- 
tween the arrival times of the clock signals at different 
registers. The absolute delay of the clock signal from the 
clock source to a specific node is the clock delay and the 
differences between the clock delays of any two registers 
is the clock skew between these nodes. The notion of 
localized clock skew and its application to increasing the 



clock frequency within pipelines is introduced by Friedman 
and Mulligan in 131. They show that only the clock skew 
between sequentially adjacent registers (registers that re- 
ceive information at successive clock intervals and are ei- 
ther directly connected or connected by logic elements) is 
important in pipelined systems since non-sequentially adja- 
cent registers do not receive data at adjacent clock intervals, 
and therefore the clock skew between them is unimportant. 

Race conditions are caused by early-clocking, i.e., clock- 
ing of registers before the relevant data is successfully 
latched. Negative clock skew occurs if the initial clock 
signal leads the final clock signal of a local data path. A 
race condition occurs if the skew is negative and greater 
in magnitude than the total local data path delay [5 ,  61. 
Those paths with negative delay are called short paths 
[7]. Similarly, a long path designates those paths with a 
delay greater than the desired clock period of the circuit. 

B. Previous Work in the Field of Pipelining 
Pipelining has been used to improve the speed of a num- 

ber of different applications, ranging from combinatorial 
circuits to microprocessors and DSP-based systems. This 
section is divided into four subsections: early work in the 
field of pipelining combinatorial circuits is reviewed in the 
first subsection. Pipelining of microprocessors and DSPs 
is discussed in the following two subsections, respectively, 
followed by a brief review of wave-pipelining in the last 
subsection. 

B. I Pipelining of Combinatorial Circuits 

One of the earliest studies of pipelining was by Cotten 
in 1965 [I] in which he describes the time required for a 
data signal to reach the system output once it is applied 
to the system input as the pipeline fill-up time, and the 
rate at which the data flow in the pipeline as the byte-flow. 
Figure 1 depicts a pipelined circuit in which the registers 
are placed between logic elements so as to increase the 
data flow rate. 

The dependance of the maximum flow-rate on the reg- 
ister delays was further investigated by Cotten in [8] and 
others [3, 41. Their work showed that due to the inher- 
ent delay of the pipeline registers, the computational speed 
cannot be increased arbitrarily, but rather is bounded by the 
register delays. Jump and Ahuja 191 assign costs to reg- 
isters and the logic elements and study the average delay, 
the average costloperation, and the average time/operation 
ratios in a quantitative framework. In this paper, the delay 
of the circuit S is defined as 

(1) 
where N is the number of pipeline stages in the circuit, 
and T s  and TR are the maximum logic and register delays, 

5 = N ( T .  + TR),  

Combinational Circuit 
I I 

Pinelined Circuit 

Figure 1: Pipelining breaks global data paths into local data 
paths with smaller delay so as to increase the data flow rate. 

respectively. This definition corresponds to that of the 
temporal latency introduced earlier. Note that Jump and 
Ahuja assume uniform delays for each stage and only the 
maximum delay is considered. In the same paper, the 
pipeline efficiency is analyzed using measures such as the 
average cost per operation v ( M )  and the average time per 
operation r ( M ) .  These ratios are defined as 

(3) 

respectively, where K p  and KR are the total cost of the 
logic elements and a single flip-flop per second, respec- 
tively, hl is the average number of operations to be per- 
formed, and NR is the total number of stages. In this 
context the definition of the cost is left open-ended, i.e., pa- 
rameters such as power consumption or area can be used as 
a measure of the cost depending upon the application. They 
further show that as the number of operations increase, the 
term ( M  + N - 1)/M approaches unity. This term is de- 
fined earlier as the efficiency of a pipeline by Chen [ 101 
and can be interpreted as N clock periods are required to 
perform the initial operation and the remaining M - 1 oper- 
ations occur at each following clock period. As the number 
of operations increase, the performance degradation due to 
the pipeline fill-up time becomes less significant. 

Another specific application of pipelining to combinato- 
rial circuits is arithmetic functions, investigated by Hallin 
and Flynn [ 113. They define the efficiency of pipelining as 

(4) 
N 

pipe l ine  e f f i c i e n c y  = - DG ' 

where N is the number of bits in the operands, D is the 
delay of each pipeline stage (assumed uniform), and G is 
the total number of gates in the total system including the 
latches. A wide range of adders (e.g., carry look-ahead, 
conditional-sum) and multipliers (e.g., Wallace, fully iter- 
ative array) are contrasted. They show that as the pipeline 
depth is increased by a factor k, the efficiency does not 
increase by the same factor due to the added overhead of 
the registers. 

Global data paths are broken up into local data paths 
so as to achieve a specified clock period. Papaefthymiou 
presents an algorithm in [12] for automating pipelining of 
a fully combinatorial circuit in O ( E )  time. 

All of the previously discussed papers assume the 
pipelines consist of edge-triggered latches only. In [7], 
Sakallah et al. describe synchronizing pipelines consist- 
ing of multi-phase latches. A previously introduced timing 
model [ 131 is applied and both short and long path con- 
straints are introduced. 
B.2 Pipelining of Microprocessors 

The application of pipelining to processor design by par- 
allelizing the fetch, decode, and execute units was initially 
studied by Flynn in 1966 [14]. He showed that by par- 
allelizing the events in a SISD (single instruction, single 
data) machine, it  is possible to increase the rate at which 
the input of the system accepts new data and the rate at 
which the system outputs processed data. Figure 2 con- 
ceptualizes pipelining of the DLX processor [15] in which 
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instruction fetch (F), instruction decode (D), execute (X), 
memory access (M) and writeback (W) operations are per- 
formed in parallel. Although these five operations are nec- 
essary to complete an instruction, each instruction effec- 
tively requires a single cycle due to the inherent paral- 
lelization. Note the pipeline stall (denoted as “s”) which 
occurs at the fetch phase of the sixth instruction. Due to 
this hazard, the pipeline is not fully utilized in the sixth 
clock cycle. The shaded column denotes the clock cycle in 
which there are no pipeline hazards, resulting in a 100% 
pipeline utilization. 

Although pipelining can increase synchronous operation 
dramatically, it cannot be fully exploited in microproces- 
sor architectures due to instruction dependencies, structural 
limitations, and branch instructions. Complete paralleliza- 
tion of the code is not possible since some instructions 
need operands produced by previous instructions [ 16, 171. 
Branch delay and branch prediction methods have been em- 
ployed to overcome this problem [15, 18, 191. Those defi- 
ciencies that decrease pipeline efficiency are called hazards 
and cause pipeline stalls (situation where the execution of 
an instruction must be delayed due to a hazard). 

Pipelining is widely used in supercomputers. The rela- 
tionship between the degree of central processor pipelining 
and supercomputer performance is discussed by Kunkel and 
Smith [20]. They show that overall pipeline performance 
peaks at six gates per pipeline segment. Using excessive 
gates per segment degrades the performance since the clock 
period is increased. Pipeline segments that use too few 
gates degrade the performance due to data and clock skews 
within the system. Note that data skew is defined as the 
difference in delay between the maximum and minimum 
signal propagation times through the combinational logic 
within the pipeline stages. 

B.3 Pipelining of DSPs 

The application of pipelining to enhance the performance 
of digital signal processors (DSPs) has been well studied 
[e.g., 21-23]. Capello and Steiglitz define completely- 
pipelined architectures in [22] in which circuits are 
pipelined down to the bit level. They apply pipelining 
to DSP architectures and show that complete pipelining 
is appropriate for array-connected (mesh-connected) DSP 
architectures. Capello, LaPaugh, and Steiglitz define an 
AP-product to measure the efficiency of pipelining, where 
A is the area of the VLSI chip and P is the clock pe- 
riod. This definition of efficiency is similar to Hallin and 
Flynn’s definition in that the term G has similarities to A 
(since the number of gates used in the circuit is directly pro- 
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Figure 2: Pipelining of microprocessors: five primary operations of 
the microprocessor are pipelined to increase computational speed. 

portional to the chip area) and D is similar to P. Siomalas 
and Bowen investigate [23] strategies for designing DSPs 
such that all building blocks within the DSP are active at 
the same time. This methodology increases the effective 
speed of the DSP operations since the most efficient use of 
pipelining is achieved by maximally exploiting the inherent 
temporal parallelism. They also demonstrate their method 
of pipelining on FFT design. 

B.4 Wave-Pipelining 

The clock frequency of a pipelined synchronous system 
can be increased without increasing the number of registers. 
This is possible by applying input signals faster than the 
total delay of the data path. 

Successive wuves of data are sent through combinatorial 
logic paths. If the data skew is small and sufficiently accu- 
rate control of the arrival times at every node is maintained, 
the successive data waves can act as a pipeline, permitting 
fewer synchronizing registers to be used. This technique 
is called wave-pipelining and was originally proposed by 
Cotten in 1969 [8]. Figure 3 depicts a wave-pipelined cir- 
cuit in which successive data waves propagate through the 
pipeline. 

Although wave-pipelining can be successfully applied to 
highly-structured architectures, it fails to work well in those 
architectures in which the path delays are unbalanced (sig- 
nificant data skew exists). The insertion of active elements 
in the system to permit wave-pipelining of unstructured 
architectures has been investigated by Wong, De Micheli, 
and Flynn [24]. The primary issue in achieving wave- 
pipelining is to equalize the path delays within the circuit 
by padding delays. Padding is the process in which those 
paths that have shorter delays are detected, permitting the 
insertion of active delay elements along these paths to en- 
sure that all circuit paths have a delay between a lower 
and an upper bound. Recently, Shenoy et al. proposed 
greedy heuristic algorithms for padding these unequal de- 
lay paths [25]. They consider the padding operation as a 
post-processing step and offer linear programs for solving 
this problem. Wong, De Micheli, and Flynn also propose 
algorithms to implement wave-pipelining by padding de- 
lays [26]. They demonstrate padding on a 63-bit popu- 
lation counter and show that the clock frequency of the 
circuit can be increased by a factor of 2-3x using wave- 
pipelining. They also show that bipolar technologies, such 
as CML and super-buffered ECL, are more suitable for 
wave-pipelining than CMOS since they have inherent uni- 
form delay (i.e., are less sensitive to input waveform and 
output loading). 

111. RETIMING TECHNIQUES FOR SEQUENTIAL 
CIRCUIT PERFORMANCE OPTIMIZATION 

Retiming is a sequential optimization technique used to 
increase the operating frequency of a synchronous circuit 
without increasing the sequential latency of the circuit. The 
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Figure 3: In wave-pipelining, successive data waves propagate 
through the logic elements, forming an effective pipeline. 
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location of the pipeline registers are reorganized so as to 
achieve the minimum clock period of a synchronous circuit 
while preserving the latency and the function. The relative 
timing of the internal events may change, however, the 
overall behavior of the circuit is preserved. In subsection 
A, the original paper on retiming published by Leiserson 
and Saxe is reviewed and a survey of more recent work in 
the field of retiming is presented in subsection B. 

A. Overview of the Retiming Process 
Leiserson and Saxe originally showed in 1981 [27] that 

it is possible to obtain a functionally equivalent sequential 
circuit that operates faster by changing the locations of the 
registers according to a set of rules. A methodology for 
optimally determining the location of these registers such 
that the minimum clock period is achieved while retaining 
the system latency and functionality is known as retiming 
[27] and is recently reviewed in [2]. 

In retiming, a circuit description containing logic delays 
and path connections is transformed into a directed graph 
in which the vertices represent logic delays and the edges 
between these vertices represent connections between these 
logic elements. Weights are assigned to each edge, defining 
the number of registers between logic elements. A zero 
weight edge, for example, shows that no registers exist 
between those two vertices. Edges are assumed to have 
no effect on the path delays and each data path is defined 
from vertex to vertex. In the Leiserson-Saxe algorithm 
[2], the edge weights are varied such that the function and 
latency of the original system is preserved, while tracking 
the effective latency at each vertex. The location of these 
registers are constrained by specific retiming rules, which 
ensure functional correctness and equivalency. Note that 
in minimizing the clock period, a successive search is 
performed to determine the minimum feasible clock period 
rather than choosing a register allocation that satisfies a 
specified clock period. The original sequential circuit from 
[2] is shown in Figure 4a along with a retimed version 
which is depicted in Figure 4b. The minimum clock period 
of the original circuit is 24 time units (tu) and the retimed 
version has a clock period of 13 tu. The clock period 
is decreased by changing the register locations such that 
data paths with large delays are broken into smaller paths 
with less delay. This process reduces the delay of the 
limiting critical path which constrains the overall system 
clock period. The critical paths in the original and retimed 
versions of the circuit are shown in bold in Figure 4. 

An important step in the retiming process is producing 
a set of edge weights that satisfy a specific set of con- 
straints. The process of solving for a set of feasible edge 
weights requires a solution for IEl unknowns, where IEl 
is the number of edges in the sequential circuit. A key 
aspect of retiming, originally described in [27], is the use 
of vertex lags to reduce the number of unknowns from [El 
to IVI based on the observation that, to preserve functional 
equivalency, edge weight changes cannot be made inde- 
pendently. An integer lag is assigned to each vertex and 
the registers are moved from edge to edge, changing the 
vertex lags according to 

( 5 )  

where i*i,(e) and w(e)  are the weights of edge e after and 
before retiming, respectively, and .(U) and . ( U )  are the 
lags of vertices U and v,  which are connected to the back 
and front of edge e,  respectively [2]. 

wr(e) = w ( e )  +.(U) - . ( U ) ,  

The retiming process is based on (5) and two primary 
rules: 1 )  edge non-negativity constraints and 2) long path 
constraints. These two rules generate inequalities in terms 
of vertex lags. The set of linear inequalities are solved 
using the Bellman-Ford algorithm [28] and the resulting 
lags are used to calculate the retimed edge weights, w,(e), 
from (5). The two aforementioned retiming rules are re- 
peated here: the edge non-negativity constraint is 

.(U) - r(v) 5 w ( e ) ,  Ve : U + v ,  (6) 

which ensures non-negative weights on each edge. The 
long path constraint is 

.(U) - . ( U )  5 W(U, U) - 1, v u ,  v : D(U, U) > c, (7) 

where W ( u ,  U) and D ( u ,  v )  are matrices containing the 
total weight and the total delay of the path from vertex U 
and vertex U ,  respectively, and c is the target clock period. 
The last rule states that a register must be placed on all 
paths with a delay greater than the desired delay, i.e., a 
path with an excessively large delay must be broken into 
smaller paths by placing a register in the middle. Note that 
in calculating the minimum clock period of the circuit, a 
binary search is performed and the minimum achievable 
clock period is selected as the clock period of the circuit. 

B. Previous Work in the Field of Retiming 
The field of retiming has developed to include regis- 

ter minimization and improved propagation delay models 
[2, 291. A single value is assigned to each vertex and 
edge, representing the delay of the logic elements and the 

(b) 

Figure 4: a) The original graph introduced in [2] and b) its retimed 
version. Note that the sequential latency is four clock periods in 

both cases. r(v,) denotes the lag of vertex n after retiming. 



number of registers between the logic elements, respec- 
tively. Using this approach, the problem of clock period 
minimization for synchronous circuits can be solved using 
the aforementioned Bellman-Ford algorithm [28]. Simi- 
lar ideas are used to perform minimum clock pipelining, 
minimum clock retiming, and approximate minimum clock 
retiming [12]. Papaefthymiou [30] shows that the total de- 
lay of the cycles (paths initiating and terminating at the 
same vertex) in a graph representing a synchronous circuit 
plays a significant role in defining the maximum clock fre- 
quency of a synchronous circuit. Upper and lower bounds 
for the clock period are derived using the edge weights and 
total delays of the cycles. The lower bound on the clock 
period is characterized as the maximum ratio of the delay 
to weight for any cycle in the graph. In Figure 4a, for ex- 
ample, there are four cycles with total delays (10,20,30,33) 
and total weights (1,2,3,4). Let CO through C4 represent 
these cycles, where the lowest index represents the inner- 
most cycle. Thus, CO has a total delay d(C0) and weight 
W(CO), 

where d( )  and w() are the delay and weight functions, 
respectively. Thus, the data must travel CO (10 tu) in 1 
clock cycle, cycle two (20 tu) in 2 clock cycles, etc. The 
lower bound on the clock period of this circuit is therefore 

where Tmin is the minimum achievable clock period of the 
circuit. Note that this clock period can only be achieved 
when the delays are properly distributed. In a circuit in 
which the delays are non-uniform, this minimum limit is 
not achievable. For example, the retimed version of Figure 
4a has a clock period of 13 tu, whereas the theoretical 
minimum is 10 tu. 

Ishii and Leiserson [31] and Sakallah, Mudge and Oluko- 
tun [ 131 develop a theory for analyzing level-clocked cir- 
cuitry. In [31], an algorithm is presented for verifying 
timing in VLSI circuits. Propagation delays of latches are 
considered to be constant and minimum propagation delays 
of the logic elements are not considered. Retiming algo- 
rithms for synchronous circuits consisting of single-phase 
[32], two-phase [33], and multi-phase [34] flip-flops have 
also been developed. 

Retiming can be made more effective by combining it 
with combinational optimization. Algorithms have been 
proposed by DeMicheli [35] to minimize the cycle time 
using logic transformations, such as elimination, resubsti- 
tution, extraction, and decomposition, while also retiming 
the synchronous circuit. Another proposed method is to 
temporarily shift the registers to the periphery of the syn- 
chronous circuit, perform logic minimization on the purely 
combinatorial circuit, and return the registers to within the 
circuitry [ 361. Although this methodology temporarily cre- 
ates negative edge weights, violating the aforementioned 
retiming rules [see (6)], once the registers are replaced, 
the negative edge weights are eliminated. This method of 
performing logic optimization on the combinatorial circuit 
between the registers is defined as resynthesis 136, 371. 
Application of this method to multi-phase pipelines is dis- 
cussed in [38]. 

Incorporating clock skew into retiming was initially pro- 
posed in [39] and a retiming algorithm which included both 
clock skew and variable register delays was first introduced 
by the authors in [6]. In [6], delay component values are 
attached to each edge describing the delay characteristics 
of the registers as well as the clock distribution network. 
Following this work, the inclusion of clock skew and reg- 
ister delays into retiming was presented in [40] using the 
clock model introduced in [13]. 

Retiming to minimize the number of registers in a se- 
quential circuit was proposed by Leiserson and Saxe and 
is shown to be equivalent to state minimization in FSMs 
[2]. Recently, retiming has been extended to cover gated- 
clocks and precharged circuit structures [41]. Retiming to 
decrease power dissipation by minimizing the switching ac- 
tivity within the synchronous circuit while preserving func- 
tional equivalency has also been demonstrated [42]. 

Although retiming can significantly reduce the clock 
period of a synchronous circuit, its usefulness is limited 
by the nature of the circuit structure. The application of 
retiming to highly-structured circuits such as FIR filters 
is studied in [43] by combining retiming with algebraic 
speed-up techniques. This method is based on the ERB 
(eliminating retiming bottlenecks) method introduced in 
[U]  in which the computational structure of the original 
circuit is changed so as to enhance its ability to be retimed. 

IV. INCORPORATION OF ELECTRICAL TIMING 
INFORMATION INTO RETIMING 

In early work on retiming, it is assumed that the clock 
skew is zero, register delays are either zero or constant, and 
interconnect delay is negligible [2, 351. In practical inte- 
grated circuits, however, these delay terms play a critical 
role in circuit operation and must be considered in order to 
accurately and reliably retime a synchronous ASIC. In this 
section, an algorithm is proposed to more accurately retime 
synchronous circuits by considering path dependant clock 
distribution, register, and interconnect delays. A discussion 
of how these electrical issues are modeled and incorporated 
into the retiming delay equations is provided in subsection 
A, while the algorithm is briefly reviewed in subsection 
B. The algorithm is demonstrated on MCNC benchmark 
circuits. These results are discussed in subsection C. 

A. Modelling of the Delay Components 
In order to consider the effects of clock skew, variable 

register delay, and interconnect delay, a number set, the 
Register Electrical Characteristic (REC), is assigned to 
each edge of the graph describing the ASIC in the following 

the clock delay from the clock source to each register, 
TSet--up is the time required for the data at the input of 
a register to latch, Tc-Q is the time required for the data 
to appear at the output of the register upon arrival of the 
clock signal, and T~~tl and  TI^^^ are the interconnect 
delays incurred when the data signal is propagating to 
(from) the logic elements, respectively. If, after the register 
relocation process, no registers exist on an edge e, the 
total interconnect delay along edge e is defined to be 
TIntl + Tlnt2, whereas if one or more registers are located 
on this edge after relocating the registers, the interconnect 
delay is separated into two different values: TIntl is the 
delay from the originating vertex of edge e to the input 
of the first register of edge e, and Tlnt2 is the delay from 
the output of the last register of edge e to the terminating 
vertex of edge e. Figure 5 depicts a graph with attached 

form: TCD : Tset-up/Tc+Q - T1ntl/T1nt2 [61. TCD is 
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REC values. In the graph, vertices represent logic elements 
and the values inside the vertices represent the delays of 
these logic elements. Note that each edge is assigned an 
REC value in the aforementioned form. 

Figure 5: Graph of Figure 4 with attached REC values 

An important step in the retiming process using this algo- 
rithm is the estimation of the REC values. Initial estimates 
of the REC values must be provided to the retiming algo- 
rithm. With these estimates, an initial exploratory retim- 
ing is performed. As the lower level information becomes 
better specified, the exploratory retiming process provides 
more accurate solutions. Therefore, the retiming process 
can be thought of as an iterative process in which low level 
information is continually fed back to the higher pipelining 
level until a satisfactory design is determined. 

B. Retiming Algorithm which Considers RECs 
In the proposed retiming algorithm, path delays are de- 

fined to be edge to edge [6] as opposed to vertex to vertex as 
in traditional retiming algorithms [2]. The delays between 
edges are calculated once and used throughout the retiming 
process. The path delay T ~ D  from edge ei to edge ej is 
the summation of the clock-to-Q delay (Tc-Q), the inter- 
connect delay (TI,~I + Tlrst2), the logic delay ( T L , ~ ; ~ ) ,  the 
set-up time ( T S e t - u p ) ,  and the local clock skew (TskeW) 
between registers i and j, and is 

Tskew (i, j ) ,  the clock skew between edges i and j, is 

Note that if parallel paths exist between any two ver- 
tices, the concept of path delay T p ~ ( i , j )  is extended to 

T p ~ ~ ~ ~ ( i , j )  are the minimum and maximum path delays 
between edges i and j ,  respectively. A matrix called the 
Sequential Adjacency Matrix (or the S matrix) is intro- 
duced whose element S( i ,  j )  contains the path delay from 
edge ei to edge e j .  This matrix is E x E in size, where 
E is the number of edges in the graph. The S matrix is 
also separated into two matrices, Smin and S m a x ,  to eval- 
uate the short and long path delays. The short path delays 
are used to detect race conditions and the long path delays 
are used to calculate the minimum clock period of the syn- 
chronous ASIC. The short paths are those paths that contain 
a negative path delay. Race conditions in the synchronous 
ASIC appear as negative entries in the S matrix. 

TPDmin(i,j) and TPDmaz( i ,  j ) ,  where TPDman(ii j )  and 

The S matrix, which contains the delay of all possible 
data paths for any possible register placement, is created 
once for each circuit and latency. A binary search is then 
performed on the sorted values of the S matrix to decide 
which data path delays are achievable without creating 
any race conditions andlor paths with a delay larger than 
a target clock period. The binary search is terminated 
upon determining the minimum clock period of the ASIC. 
The register locations are calculated so as to realize this 
minimum clock period. Long path constraints are used to 
detect path delays that exceed the maximum allowed clock 
period. The long path constraints are defined as 

where c is the maximum allowed clock period for the circuit 
and i and j are the indices for the initial and terminating 
edges of the long path, i.e., the path p : ei - e .  is not 
permitted if the path delay exceeds the desired clock period 

The algorithm detects and removes race conditions by 
using short path constraints. In short paths, the data signal 
reaches the final register of that local data path before 
the final register is clocked, thereby causing the ASIC to 
function improperly. These short paths are created when 
the clock skew is negative and greater in magnitude than 
the path delays, creating a race condition [5, 391. The short 
path constraints are defined as 

implying paths with negative or zero delay. Negative 
entries in the S matrix create race conditions, since the 
entry represents a local data path with negative delay. 

The addition of the short path constraint adds significant 
complexity and does not allow for simple modification of 
the original retiming algorithm introduced in [2]. Tradi- 
tional methods which ignore negative clock skew produce 
inequalities in the form of 

(14) 
whereas with the added short path constraints due to local- 
ized clock skew, the retiming algorithm presented in this 
paper produces inequalities in the form of 

(15) 
where xi, x . ,  xu and x, are unknowns (used to define the 
locations oflthe registers in the algorithm) and aij and auv 
are constants. The addition of the boolean “or” statement 
is due to the introduction of the short path constraints and 
does not permit the use of standard linear programming 
techniques such as the aforementioned Bellman-Ford algo- 
rithm. To solve this set of inequalities, vertex lag ranges 
are used rather than vertex lags. Each vertex is assigned 
a lag range and the ranges are continuously tightened to 
satisfy all of the constraints for the specified target clock 
period. This process is continued until a minimum clock 
period is reached. 

The S matrix of Figure 5 is shown in Table 1. Path 
delays greater than 23 tu are heavily shaded while path 
delays less than or equal to zero are lightly shaded. For 
Tcp = 23 tu, the heavily shaded elements in the table 
constitute the long paths and the lightly shaded elements 
represent the paths that contain race conditions. Other 
matrix entries indicate data paths with delays less than the 
target clock period of 23 tu and no existing race condition. 
The binary search process used in the algorithm evaluates 
each possible clock period until the minimum achievable 
clock period is determined. 

S m a z ( i ,  j )  > c ,  (12) 

C. 

S m Z n ( i , j )  L 0, (13) 

xi - xj 5 ai j ,  

xi - xj 5 aij or xu - xu 5 auv, 
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Table 1: Sequential Adjacency Matrix for the graph of Figure 5. Light 
shaded entries represent short paths, whereas dark shaded entries represent 

long paths for c = 23. Unshaded entries denote permissible paths. 

C. MCNC Benchmark Application Results 
The proposed retiming algorithm has been implemented 

in C on a SUN 4 workstation. To permit the evaluation of 
the enhanced retiming algorithm, modified MCNC bench- 
marks [45,46] have been analyzed using this algorithm and 
compared with the Leiserson-Saxe retiming algorithm [2]. 

The application of the proposed retiming algorithm to the 
example MCNC benchmark circuits are described in Table 
2. The initial five columns describe the properties of the 
modified benchmark circuits. These properties are 1) the 
name of the benchmark example as it appears in the MCNC 
archive [45, 461, 2) the number of edges and 3) vertices in 
the graph of each circuit, 4) the latency of the circuit, and 
5) the original clock period. The sixth column contains 
the minimum clock period of the retimed circuit using the 
new retiming algorithm. The final column lists the clock 
period of the benchmark circuits that was retimed using the 
standard Leiserson-Saxe retiming algorithms which do not 
consider RECs. In these circuits, the average register delay 
(Tc-Q + T s ~ ~ - ~ ~ )  of the circuit is added to each local data 
path to compensate for the effects of the variable register 
delays. As shown in Table 2, the minimum clock period of 
the majority circuit from the LGSynth89 archive derived 
from the proposed retiming algorithm is less than from 
standard retiming algorithms. This occurs since localized 
negative clock skew [5,39] subtracts delay from the critical 
path such that the worst case path has a smaller delay, 
thereby causing the minimum clock period to be less. Also, 
note that no race conditions are exant in those circuits 
retimed by the proposed algorithm, a conclusion that cannot 
be assumed with other retiming algorithms. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, synchronous circuit optimization tech- 
niques, such as pipelining and retiming, are reviewed and 
contrasted. Insight is provided into how these different ap- 
proaches affect speed, area, power, and efficiency. Pipelin- 
ing of microprocessors, DSPs, and wave-pipelining are 
briefly reviewed. The degradation of pipelining due to 
instruction dependencies and branch instructions in micro- 

Table 2: Application of retiming to MCNC benchmark circuits with 
and without clock skew, heKOMeCt, and variable register delays 

C17 26 I 19 I 6 

d 2 I  

"a 59 37 

majority 26 17 

101 46 

139 41 40 

io3 

I 

processors is discussed and transformation techniques to 
prevent these inefficiencies are described. 

Retiming techniques to optimally relocate the registers in 
a synchronous circuit are reviewed. Different approaches to 
retiming synchronous circuitry for minimizing the number 
of registers, the power dissipation, and the clock period 
are reviewed. Circuit types for which retiming are not 
applicable are mentioned and transformation techniques to 
permit retiming of these circuits are discussed. 

A retiming algorithm for optimally relocating the reg- 
isters of a synchronous pipelined ASIC which considers 
variable clock distribution, register, and interconnect delay 
is presented. To permit the consideration of these delay 
components, register electrical characteristics (RECs) are 
attached to each edge and the path delays are redefined to 
be from edge-to-edge. 

The limitations and advantages of the retiming algorithm 
presented in this paper are compared using a set of modified 
MCNC benchmarks. The results of applying the algorithm 
to the benchmark circuits show that a more accurate and 
generalized relocation of the registers of a pipelined ASIC 
can be performed than with existing algorithms which do 
not consider clock distribution, register, and interconnect 
delay. Furthermore, the clock period can be further min- 
imized due to localized negative clock skew. Also, cata- 
strophic clock skew induced race conditions are detected 
and eliminated. Summarizing, this algorithm represents a 
significant generalization of existing retiming algorithms, 
permitting the accurate synthesis of higher speed and more 
reliable pipelined digital ASICs. 

389 



REFERENCES 
[I] L. W. Cotten, “Circuit Implementation of High-speed Pipeline 
Systems,” Proceedings of the AFIPS Fall Joint Computer Conference, 
Vol. 27, pp. 489-504, November 1965. 
[2] C. E. Leiserson and I. B. Saxe, “Retiming Synchronous Circuitry,” 
Algorithmica, Vol. 6, pp. 5-35, January 1991. 
[3] E. G. Friedman and J. H. Mulligan, “Clock Frequency and Latency in 
Synchronous Digital Systems,” IEEE Transactions on Signal Processing, 
Vol. 39, No. 4, pp. 930-934, April 1991. 
[4] E. G. Friedman and J. H. M$ligan, “Pipelining of High Performance 
Synchronous Digital Systems, International Journal of Electronics, 
Vol. 70, No. 5. pp. 917-935, May 1991. 
[SI E. G. Friedman, “Clock Distribution Design in VLSI Circuits - an 
Overview,” Proceedings of the IEEE International Symposium on Circuits 
and Systems, pp. 1475-1478, May 1993. 
[6] T. Soyata, E. G. Friedman, and J. H. Mulligan, Jr., “Integration of 
Clock Skew and Register Delays into a Retiming Algorithm,” Proceedings 
of the IEEE International Symposium on Circuits and Systems, pp. 1483- 
1486, May 1993. 
171 K. A. Sakallah, T. N.  Mudge, T. M. Burks, and E. S. Davidson. 
“Synchronization of Pipelines,” IEEE Transactions on Computer-Aided 
Design of Integrated Circuits and Systems, Vol. CAD-12, No. 8, pp. 1 132- 
1146, August 1993. 
[8] L. W. Cotten, “Maximum-Rate Pipeline Systems,” Proceedings of the 
Spring Joint Computer Conference, Vol. 34. pp. 581-586, May 1969. 
[9] J. R. Jump and S. R. Ajuha, “Effective Pipelining of Digital Systems,” 
IEEE Transactions on Computers, Vol. C-27, No. 9, pp. 855-865. 
September 1978. 
[lo] T. C. Chen, “Parallelism, pipelining, and computer efficiency,” 
Computer Design, Vol. 10, pp. 69-74, January 1971. 
[ 111 T. G. Hallin and M. J. Flynn, “Pipelining of Arithmetic Functions,” 
IEEE Transactions on Computers, pp. 880-886, August 1972. 
[12] M. C. Papaefthymiou, “On Retiming Synchronous Circuitry and 
Mixed-Integer Optimization,” Master’s thesis, Massachussetts Institute of 
Technology, August 1990. 
1131 K. A. Sakallah, T. N. Mudge, and 0. A. Olukotun, “Analysis and 
Design of Latch-Controlled Synchronous Digital Circutis,” Proceedings 
of the 27th ACM/IEEE Design Automation Conference, pp. 1 1  1-1 17, June 
1990. 
[ 141 M. J. Flynn, “Very High-speed Computing Systems,” Proceedings 
of the IEEE, Vol. 54, No. 12, pp. 1901-1909, December 1966. 
[IS] J.  L. Henessy and D. A. Patterson, Computer Architecture A 
Quantitative Approach. Morgan Kaufmann Publishers Inc., 1990. 
[16] G. S. Tjaden and M. J. Flynn, “Detection and Parallel Execution of 
Independent Instructions,” IEEE Transactions on Computers, Vol. C- 19, 
No. 10, pp. 889-895, October 1970. 
[I71 E. M. Riseman and C. C. Foster, “The Inhibition of Potential 
Parallelism by Conditional Jumps,” IEEE Transactions on Computers, 
Vol. C-21, No. 12, pp. 1405-141 1, December 1972. 
[I81 G. Kane, MIPS RISC Architecture. Prentice-Hall, 1988. 
1191 INTEL Corporation, The Intel PentiumTM Processor. A Technical 
Overview, 1994. 
[20] S. R. Kunkel and J .  E. Smith, “Optimal Pipelining in Supercomput- 
ers,” Proceedings of the 13th Annual Symposium on Computer Architec- 
ture, pp. 404-411, 1986. 
[21] N. R. Strader 11, “VLSI Bit-Sequential Architectures for Digital 
Signal Processing,” Proceedings of the IEEE Conference on Acoustics, 
Speech and Signal Processing, pp. 931-934, February 1987. 
1221 P. R. Capello and K. Steiglitz, “Completely-Pipelined Architectures 
for Digital Signal Processing,” IEEE Transactions on Acoustics, Speech, 
and Signal Processing, Vol. ASSP-31, No. 4, pp. 1016-1023, August 1983. 
1231 K. 0. Siomalas and B. A. Bowen, “Synthesis of Efficient Pipelined 
Architectures for Implementing DSP Operations,” IEEE Transactions on 
Acoustics, Speech, and Signal Processing, Vol. ASSP-33, No. 6, pp. 1499- 
1508, December 1985. 
1241 D. Wong, De Micheli, Giovanni, and M. Flynn, “Inserting Active 
Delay Elements to Achieve Wave Pipelining,” Proceedings of the IEEE 
Conference on Computer-Aided Design, pp. 270-273, November 1989. 
1251 N. V. Shenoy, R. K. Brayton, znd A. Sangiovanni-Vincentelli, 
“Minimum Padding to Satisfy Short Path Constraints,” Proceedings of 
the IEEE International Conference on Computer-Aided Design, pp. 1 5 6 -  
161, November 1993. 

1261 D. C. Wong, G. De Micheli, and M. J. Flynn, “Designing High- 
Performance Digital Circuits Using Wave Pipelining: Algorithms and 
Practical Experiences,” IEEE Transactions on Computer-Aided Design, 
Vol. 12, No. 1, pp. 25-46, January 1993. 
[27] C. E. Leiserson and J .  B.  Saxe, “Optimizing Synchronous Systems,” 
Proceedings of 22nd Annual Symposium on Foundations of Computer 
Science, pp. 23-36, October 1981. 
[28] E. L. Lawler, Combinatorial Optimization: Networkr and Matroids. 
Holt, Rinehart and Winston, NewYork, 1976. 
1291 C. E. Leiserson, F. M. Rose, and J. B. Saxe, “Optimizing Syn- 
chronous Circuitry by Retiming,” Proceedings of the 3rd Caltech Con- 
ference on VLSI, pp. 87-116, March 1983. 
[30] M. C. Papaefthymiou, “Understanding Retiming through Maximum 
Average-Weight Cycles,” Proceedings of the 3rd Annual Symposium on 
Parallel Algorithms and Architectures, pp. 338-348, July 1991. 
1311 A. T. Ishii and C. E. Leiserson, “A Timing Analysis of Level- 
Clocked Circuitry,” Proceedings of the Sixth MIT Conference on Advanced 
Research in VLSI, pp. 113-130, March 1990. 
[32] N.  Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli, “Retim- 
ing of Circuits with Single Phase Transparent Latches,” Proceedings of the 
IEEE International Conference on Computer Design, pp. 86-89, October 
1991. 
[33] A. T. Ishii, C. E. Leiserson, and M. C. Papaefthymiou, “Opti- 
mizing Two-Phase, Level-Clocked Circuitry,” Proceedings of the 1992 
BrowdMIT Conference on Advanced Research in V U I  and Parallel Sys- 
tems, pp. 245-264, March 1992. 
[34] B. Lockyear and C. Ebeling. “Optimal Retiming of Multi-Phase, 
Level-Clocked Circuits,” Proceedings of the 1992 BrowdMIT Conference 
on Advanced Research in VLsl and Parallel Systems, pp. 265-280, March 
1992. 
1351 G. De Micheli, “Synchronous Logic Synthesis: Algorithms for 
Cycle-Time Minimization,” IEEE Transactions on Computer-Aided De- 
sign, Vol. CAD-10, No. l ,  pp. 63-73, January 1991. 
[36] S. Malik, E. M. Sentovich, R. K. Brayton, and A. Sangiovanni- 
Vincentelli, “Retiming and Resynthesis: Optimizing Sequential Networks 
with Combinatorial Techniques,” IEEE Transactions on Computer-Aided 
Design, Vol. CAD-IO, No. I ,  pp. 74-84, January 1991. 
1371 S. Malik, K. J. Singh, R. K. Brayton, and A. Sangiovanni-Vincentelli, 
“Performance Optimization 2f Pipelined Logic Circuits Using Peripheral 
Retiming and Resynthesis, IEEE Transactions on Computer-Aided 
Design of Integrated Circuits and Systems, Vol. CAD-12, No. 5 ,  pp. 568- 
578, May 1993. 
[38] N. V. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli, 
“Resynthesis of Multi-Phase Pipelines,” Proceedings of the 30th Design 
Automation Conference, pp. 490-496, June 1993. 
[39] E. G. Friedman, “The Application of Localized Clock Distribution 
Design to Improving the Performance of Retimed Sequential Circuits,” 
Proceedings of the IEEE Asia-Pacijic Conference on Circuits and Systems, 
pp. 12-17, December 1992. 
[40] B. Lockyear and C. Ebeling, “The Practical Application of Retiming 
to the Design of High-Performance Systems,” Proceedings of the IEEE 
International Conference on Computer-Aided Design, pp. 288-295, 
November 1993. 
[41] A. T. Ishii, “Retiming Gated-Clocks and Precharged Circuit Struc- 
tures,” Proceedings of the IEEE International Conference on Computer- 
Aided Design, pp. 300-307, November 1993. 
[42] J. Monteiro, S. Devadas, and A. Ghosh, “Retiming Sequential Cir- 
cuits for Low Power,” Proceedings of the IEEE International Conference 
on Computer-Aided Design, pp. 398402, November 1993. 
[43] Z. Iqbal, M. Potkonjak, S. Dey, and A. Parker, “Critical Path 
Minimization Using Retiming and Algebraic Speed-up.” Proceedings of 
the 30th Design Automation Conference, pp, 573-577, June 1993. 
1441 S. Dey, M. Potkonjak, and S. G. Rothweiler, “Performance Opti- 
mization of Sequential Circuits by Eliminating Retiming Bottlenecks,” 
Proceedings of the IEEE International Conference on Computer-Aided 
Design, pp. 504-509, November 1992. 
1451 R. Lisanke, “Logic Synthesis and Optimization Benchmarks User 
Guide: Version 2.0,” Tech. Rep., Microelectronics Center of North 
Carolina, December 1988. 
1461 S. Yang, “Logic Synthesis and Optimization Benchmarks User 
Guide: Version 3.0,” Tech. Rep., Microelectronics Center of North 
Carolina, January 199 I .  

390 


