
Synchronous Performance and Reliability Improvement in Pipelined ASICs

Tolga Soyata and Eby G. Friedman
Department of Electrical Engineering

University of Rochester
Rochester. NY 14627

Abstract - The clock frequency of a synchronous circuit
can be increased at the expense of increased system latency,
area, and power using synchronous optimization techniques
such as pipelining and retiming. Pipelining is a well developed
methodology, having been applied to almost every computer
architecture from microprocessors to supercomputers. Re-
timing, on the other hand, has only recently become popular
and practical application areas are currently being developed.
Both pipelining and retiming are reviewed in this paper.

In order to make retiming more generally useful, low-level
circuit delay components inherent to ICs must be incorporated
into the retiming process. These issues include variable regis-
ter delay, clock skew, and interconnect delay. An algorithm
is presented by the authors for incorporating variable regis-
ter delays, interconnect delay, and clock skew into retiming.
This algorithm identifies and eliminates path-dependant race
conditions in synchronous circuits. The results of applying
the algorithm to MCNC benchmarks is presented and both
performance and reliability improvements are observed.

I. INTRODUCTION
The performance of synchronous ASICs can be increased

by pipelining at the expense of increased system latency
and area. Pipelining converts a combinatorial circuit into
its sequential equivalent by breaking the global data paths
into local data paths with smaller delay. This is achieved
by inserting registers (memory elements) between logic
blocks. The intermediate processed results are saved in
these memory elements and used during the following
clock cycles [13. Thus, this technique increases the rate of
data flow by providing concurrent operation, albeit, with
increased circuit area and system latency.

Retiming is a technique used to increase the clock fre-
quency in pipelined synchronous circuits without affecting
synchronous latency. An initial synchronous system is con-
verted via retiming into a functionally equivalent system us-
ing techniques originally described by Leiserson and Saxe
[2]. The locations of the registers are changed so as to mini-
mize the clock period while preserving the system function
and latency. The primary distinction between pipelining
and retiming is that pipelining converts a combinational
circuit into a sequential one, increasing system latency. In
retiming, alternatively, the register locations within a se-
quential circuit are optimized such that the circuit operates
at the highest possible frequency without increasing the
latency.

Even though retiming can achieve a lower clock period,
currently proposed retiming techniques do not incorporate
practical circuit issues such as variable register delay, clock
skew, and interconnect delay. By incorporating these cir-
cuit issues into retiming, a more accurate and reliable esti-
mation of the register locations can be determined. Further-
more, catastrophic race conditions are eliminated as part of
the retiming process.

A detailed review of both pipelining and retiming is pro-
vided herein. A new retiming algorithm that integrates the
aforementioned practical circuit delay components is also
presented. The paper is organized as follows. A discussion
of pipelining techniques and related work in the field is pro-

0-7803-2020-4194 $4.00 0 IEEE 383

vided in Section 11. Retiming of synchronous circuits and
related retiming algorithms are discussed in Section 111. In
Section IV, modeling of path dependent clock distribution,
register, and interconnect delays is presented for use in the
retiming algorithm described in this paper. The algorithm
utilizes these delays to more accurately and reliably opti-
mize the register locations within a pipelined system and
is demonstrated using modified MCNC benchmark circuits.
Finally, some conclusions are drawn in Section V.

11. PIPELINING OF SYNCHRONOUS DIGITAL SYSTEiMS
Pipelining is an effective technique for increasing the

performance of synchronous circuits. After pipelining a
combinatorial circuit, the clock frequency of the circuit is
increased, resulting in higher performance. In subsection
A, a detailed description of the terms pertaining to pipelin-
ing are reviewed. Previous work in the field is summarized
in subsection B, emphasizing speed, area, and efficiency
trade-offs in synchronous pipelined systems.

A. Definitions related to Synchronous Pipelining
In this section, common terms used in the pipelining

literature are defined. This discussion is intended to serve
as a guide for the remainder of the paper.

The latency of a circuit is vaguely defined within the
literature. For a combinatorial circuit, the latency of the
circuit is defined as the time required for the signal to
reach the system output after arriving at the system in-
put. This definition has no ambiguity. For synchronous
systems, however, the definition must be extended. For
a synchronous system, two different latencies may be de-
fined: temporal latency is the time required for a signal to
reach the system output after arriving at the system input,
whereas sequential latency is the number of clock periods
required for the data signals to reach the system output
upon arriving at the system input. The difference between
these two definitions is significant since often sequential op-
timization operations do not change the sequential latency,
but do change the temporal latency. These definitions of
latency are used throughout this paper in order to provide
insight into different effects of sequential optimization on
system latency.

The clock frequency of a sequential circuit is the rate
at which new data flow into the system and appear at
the output. The primary goal of sequential optimization
is to increase the clock frequency or decrease the clock
period, which is the reciprocal of the clock frequency. The
relationship between clock period and latency is further
investigated in [3, 41.

Due to the nature of clock distribution networks in se-
quential circuits [5] , differences in delay are created be-
tween the arrival times of the clock signals at different
registers. The absolute delay of the clock signal from the
clock source to a specific node is the clock delay and the
differences between the clock delays of any two registers
is the clock skew between these nodes. The notion of
localized clock skew and its application to increasing the

clock frequency within pipelines is introduced by Friedman
and Mulligan in 131. They show that only the clock skew
between sequentially adjacent registers (registers that re-
ceive information at successive clock intervals and are ei-
ther directly connected or connected by logic elements) is
important in pipelined systems since non-sequentially adja-
cent registers do not receive data at adjacent clock intervals,
and therefore the clock skew between them is unimportant.

Race conditions are caused by early-clocking, i.e., clock-
ing of registers before the relevant data is successfully
latched. Negative clock skew occurs if the initial clock
signal leads the final clock signal of a local data path. A
race condition occurs if the skew is negative and greater
in magnitude than the total local data path delay [5 , 61.
Those paths with negative delay are called short paths
[7]. Similarly, a long path designates those paths with a
delay greater than the desired clock period of the circuit.

B. Previous Work in the Field of Pipelining
Pipelining has been used to improve the speed of a num-

ber of different applications, ranging from combinatorial
circuits to microprocessors and DSP-based systems. This
section is divided into four subsections: early work in the
field of pipelining combinatorial circuits is reviewed in the
first subsection. Pipelining of microprocessors and DSPs
is discussed in the following two subsections, respectively,
followed by a brief review of wave-pipelining in the last
subsection.

B. I Pipelining of Combinatorial Circuits

One of the earliest studies of pipelining was by Cotten
in 1965 [I] in which he describes the time required for a
data signal to reach the system output once it is applied
to the system input as the pipeline fill-up time, and the
rate at which the data flow in the pipeline as the byte-flow.
Figure 1 depicts a pipelined circuit in which the registers
are placed between logic elements so as to increase the
data flow rate.

The dependance of the maximum flow-rate on the reg-
ister delays was further investigated by Cotten in [8] and
others [3, 41. Their work showed that due to the inher-
ent delay of the pipeline registers, the computational speed
cannot be increased arbitrarily, but rather is bounded by the
register delays. Jump and Ahuja 191 assign costs to reg-
isters and the logic elements and study the average delay,
the average costloperation, and the average time/operation
ratios in a quantitative framework. In this paper, the delay
of the circuit S is defined as

(1)
where N is the number of pipeline stages in the circuit,
and T s and TR are the maximum logic and register delays,

5 = N (T . + TR),

Combinational Circuit
I I

Pinelined Circuit

Figure 1: Pipelining breaks global data paths into local data
paths with smaller delay so as to increase the data flow rate.

respectively. This definition corresponds to that of the
temporal latency introduced earlier. Note that Jump and
Ahuja assume uniform delays for each stage and only the
maximum delay is considered. In the same paper, the
pipeline efficiency is analyzed using measures such as the
average cost per operation v (M) and the average time per
operation r (M) . These ratios are defined as

(3)

respectively, where K p and KR are the total cost of the
logic elements and a single flip-flop per second, respec-
tively, hl is the average number of operations to be per-
formed, and NR is the total number of stages. In this
context the definition of the cost is left open-ended, i.e., pa-
rameters such as power consumption or area can be used as
a measure of the cost depending upon the application. They
further show that as the number of operations increase, the
term (M + N - 1)/M approaches unity. This term is de-
fined earlier as the efficiency of a pipeline by Chen [101
and can be interpreted as N clock periods are required to
perform the initial operation and the remaining M - 1 oper-
ations occur at each following clock period. As the number
of operations increase, the performance degradation due to
the pipeline fill-up time becomes less significant.

Another specific application of pipelining to combinato-
rial circuits is arithmetic functions, investigated by Hallin
and Flynn [113. They define the efficiency of pipelining as

(4)
N

pipe l ine e f f i c i e n c y = - DG '

where N is the number of bits in the operands, D is the
delay of each pipeline stage (assumed uniform), and G is
the total number of gates in the total system including the
latches. A wide range of adders (e.g., carry look-ahead,
conditional-sum) and multipliers (e.g., Wallace, fully iter-
ative array) are contrasted. They show that as the pipeline
depth is increased by a factor k, the efficiency does not
increase by the same factor due to the added overhead of
the registers.

Global data paths are broken up into local data paths
so as to achieve a specified clock period. Papaefthymiou
presents an algorithm in [12] for automating pipelining of
a fully combinatorial circuit in O (E) time.

All of the previously discussed papers assume the
pipelines consist of edge-triggered latches only. In [7],
Sakallah et al. describe synchronizing pipelines consist-
ing of multi-phase latches. A previously introduced timing
model [131 is applied and both short and long path con-
straints are introduced.
B.2 Pipelining of Microprocessors

The application of pipelining to processor design by par-
allelizing the fetch, decode, and execute units was initially
studied by Flynn in 1966 [14]. He showed that by par-
allelizing the events in a SISD (single instruction, single
data) machine, it is possible to increase the rate at which
the input of the system accepts new data and the rate at
which the system outputs processed data. Figure 2 con-
ceptualizes pipelining of the DLX processor [15] in which

384

instruction fetch (F), instruction decode (D), execute (X),
memory access (M) and writeback (W) operations are per-
formed in parallel. Although these five operations are nec-
essary to complete an instruction, each instruction effec-
tively requires a single cycle due to the inherent paral-
lelization. Note the pipeline stall (denoted as “s”) which
occurs at the fetch phase of the sixth instruction. Due to
this hazard, the pipeline is not fully utilized in the sixth
clock cycle. The shaded column denotes the clock cycle in
which there are no pipeline hazards, resulting in a 100%
pipeline utilization.

Although pipelining can increase synchronous operation
dramatically, it cannot be fully exploited in microproces-
sor architectures due to instruction dependencies, structural
limitations, and branch instructions. Complete paralleliza-
tion of the code is not possible since some instructions
need operands produced by previous instructions [16, 171.
Branch delay and branch prediction methods have been em-
ployed to overcome this problem [15, 18, 191. Those defi-
ciencies that decrease pipeline efficiency are called hazards
and cause pipeline stalls (situation where the execution of
an instruction must be delayed due to a hazard).

Pipelining is widely used in supercomputers. The rela-
tionship between the degree of central processor pipelining
and supercomputer performance is discussed by Kunkel and
Smith [20]. They show that overall pipeline performance
peaks at six gates per pipeline segment. Using excessive
gates per segment degrades the performance since the clock
period is increased. Pipeline segments that use too few
gates degrade the performance due to data and clock skews
within the system. Note that data skew is defined as the
difference in delay between the maximum and minimum
signal propagation times through the combinational logic
within the pipeline stages.

B.3 Pipelining of DSPs

The application of pipelining to enhance the performance
of digital signal processors (DSPs) has been well studied
[e.g., 21-23]. Capello and Steiglitz define completely-
pipelined architectures in [22] in which circuits are
pipelined down to the bit level. They apply pipelining
to DSP architectures and show that complete pipelining
is appropriate for array-connected (mesh-connected) DSP
architectures. Capello, LaPaugh, and Steiglitz define an
AP-product to measure the efficiency of pipelining, where
A is the area of the VLSI chip and P is the clock pe-
riod. This definition of efficiency is similar to Hallin and
Flynn’s definition in that the term G has similarities to A
(since the number of gates used in the circuit is directly pro-

I I Clock Cycle 1

Figure 2: Pipelining of microprocessors: five primary operations of
the microprocessor are pipelined to increase computational speed.

portional to the chip area) and D is similar to P. Siomalas
and Bowen investigate [23] strategies for designing DSPs
such that all building blocks within the DSP are active at
the same time. This methodology increases the effective
speed of the DSP operations since the most efficient use of
pipelining is achieved by maximally exploiting the inherent
temporal parallelism. They also demonstrate their method
of pipelining on FFT design.

B.4 Wave-Pipelining

The clock frequency of a pipelined synchronous system
can be increased without increasing the number of registers.
This is possible by applying input signals faster than the
total delay of the data path.

Successive wuves of data are sent through combinatorial
logic paths. If the data skew is small and sufficiently accu-
rate control of the arrival times at every node is maintained,
the successive data waves can act as a pipeline, permitting
fewer synchronizing registers to be used. This technique
is called wave-pipelining and was originally proposed by
Cotten in 1969 [8]. Figure 3 depicts a wave-pipelined cir-
cuit in which successive data waves propagate through the
pipeline.

Although wave-pipelining can be successfully applied to
highly-structured architectures, it fails to work well in those
architectures in which the path delays are unbalanced (sig-
nificant data skew exists). The insertion of active elements
in the system to permit wave-pipelining of unstructured
architectures has been investigated by Wong, De Micheli,
and Flynn [24]. The primary issue in achieving wave-
pipelining is to equalize the path delays within the circuit
by padding delays. Padding is the process in which those
paths that have shorter delays are detected, permitting the
insertion of active delay elements along these paths to en-
sure that all circuit paths have a delay between a lower
and an upper bound. Recently, Shenoy et al. proposed
greedy heuristic algorithms for padding these unequal de-
lay paths [25]. They consider the padding operation as a
post-processing step and offer linear programs for solving
this problem. Wong, De Micheli, and Flynn also propose
algorithms to implement wave-pipelining by padding de-
lays [26]. They demonstrate padding on a 63-bit popu-
lation counter and show that the clock frequency of the
circuit can be increased by a factor of 2-3x using wave-
pipelining. They also show that bipolar technologies, such
as CML and super-buffered ECL, are more suitable for
wave-pipelining than CMOS since they have inherent uni-
form delay (i.e., are less sensitive to input waveform and
output loading).

111. RETIMING TECHNIQUES FOR SEQUENTIAL
CIRCUIT PERFORMANCE OPTIMIZATION

Retiming is a sequential optimization technique used to
increase the operating frequency of a synchronous circuit
without increasing the sequential latency of the circuit. The

Ri
A

Figure 3: In wave-pipelining, successive data waves propagate
through the logic elements, forming an effective pipeline.

385

location of the pipeline registers are reorganized so as to
achieve the minimum clock period of a synchronous circuit
while preserving the latency and the function. The relative
timing of the internal events may change, however, the
overall behavior of the circuit is preserved. In subsection
A, the original paper on retiming published by Leiserson
and Saxe is reviewed and a survey of more recent work in
the field of retiming is presented in subsection B.

A. Overview of the Retiming Process
Leiserson and Saxe originally showed in 1981 [27] that

it is possible to obtain a functionally equivalent sequential
circuit that operates faster by changing the locations of the
registers according to a set of rules. A methodology for
optimally determining the location of these registers such
that the minimum clock period is achieved while retaining
the system latency and functionality is known as retiming
[27] and is recently reviewed in [2].

In retiming, a circuit description containing logic delays
and path connections is transformed into a directed graph
in which the vertices represent logic delays and the edges
between these vertices represent connections between these
logic elements. Weights are assigned to each edge, defining
the number of registers between logic elements. A zero
weight edge, for example, shows that no registers exist
between those two vertices. Edges are assumed to have
no effect on the path delays and each data path is defined
from vertex to vertex. In the Leiserson-Saxe algorithm
[2], the edge weights are varied such that the function and
latency of the original system is preserved, while tracking
the effective latency at each vertex. The location of these
registers are constrained by specific retiming rules, which
ensure functional correctness and equivalency. Note that
in minimizing the clock period, a successive search is
performed to determine the minimum feasible clock period
rather than choosing a register allocation that satisfies a
specified clock period. The original sequential circuit from
[2] is shown in Figure 4a along with a retimed version
which is depicted in Figure 4b. The minimum clock period
of the original circuit is 24 time units (tu) and the retimed
version has a clock period of 13 tu. The clock period
is decreased by changing the register locations such that
data paths with large delays are broken into smaller paths
with less delay. This process reduces the delay of the
limiting critical path which constrains the overall system
clock period. The critical paths in the original and retimed
versions of the circuit are shown in bold in Figure 4.

An important step in the retiming process is producing
a set of edge weights that satisfy a specific set of con-
straints. The process of solving for a set of feasible edge
weights requires a solution for IEl unknowns, where IEl
is the number of edges in the sequential circuit. A key
aspect of retiming, originally described in [27], is the use
of vertex lags to reduce the number of unknowns from [El
to IVI based on the observation that, to preserve functional
equivalency, edge weight changes cannot be made inde-
pendently. An integer lag is assigned to each vertex and
the registers are moved from edge to edge, changing the
vertex lags according to

(5)

where i*i,(e) and w(e) are the weights of edge e after and
before retiming, respectively, and .(U) and . (U) are the
lags of vertices U and v, which are connected to the back
and front of edge e, respectively [2].

wr(e) = w (e) +.(U) - . (U) ,

The retiming process is based on (5) and two primary
rules: 1) edge non-negativity constraints and 2) long path
constraints. These two rules generate inequalities in terms
of vertex lags. The set of linear inequalities are solved
using the Bellman-Ford algorithm [28] and the resulting
lags are used to calculate the retimed edge weights, w,(e),
from (5). The two aforementioned retiming rules are re-
peated here: the edge non-negativity constraint is

.(U) - r(v) 5 w (e) , Ve : U + v , (6)

which ensures non-negative weights on each edge. The
long path constraint is

.(U) - . (U) 5 W(U, U) - 1, v u , v : D(U, U) > c, (7)

where W (u , U) and D (u , v) are matrices containing the
total weight and the total delay of the path from vertex U
and vertex U , respectively, and c is the target clock period.
The last rule states that a register must be placed on all
paths with a delay greater than the desired delay, i.e., a
path with an excessively large delay must be broken into
smaller paths by placing a register in the middle. Note that
in calculating the minimum clock period of the circuit, a
binary search is performed and the minimum achievable
clock period is selected as the clock period of the circuit.

B. Previous Work in the Field of Retiming
The field of retiming has developed to include regis-

ter minimization and improved propagation delay models
[2, 291. A single value is assigned to each vertex and
edge, representing the delay of the logic elements and the

(b)

Figure 4: a) The original graph introduced in [2] and b) its retimed
version. Note that the sequential latency is four clock periods in

both cases. r(v,) denotes the lag of vertex n after retiming.

number of registers between the logic elements, respec-
tively. Using this approach, the problem of clock period
minimization for synchronous circuits can be solved using
the aforementioned Bellman-Ford algorithm [28]. Simi-
lar ideas are used to perform minimum clock pipelining,
minimum clock retiming, and approximate minimum clock
retiming [12]. Papaefthymiou [30] shows that the total de-
lay of the cycles (paths initiating and terminating at the
same vertex) in a graph representing a synchronous circuit
plays a significant role in defining the maximum clock fre-
quency of a synchronous circuit. Upper and lower bounds
for the clock period are derived using the edge weights and
total delays of the cycles. The lower bound on the clock
period is characterized as the maximum ratio of the delay
to weight for any cycle in the graph. In Figure 4a, for ex-
ample, there are four cycles with total delays (10,20,30,33)
and total weights (1,2,3,4). Let CO through C4 represent
these cycles, where the lowest index represents the inner-
most cycle. Thus, CO has a total delay d(C0) and weight
W(CO),

where d() and w() are the delay and weight functions,
respectively. Thus, the data must travel CO (10 tu) in 1
clock cycle, cycle two (20 tu) in 2 clock cycles, etc. The
lower bound on the clock period of this circuit is therefore

where Tmin is the minimum achievable clock period of the
circuit. Note that this clock period can only be achieved
when the delays are properly distributed. In a circuit in
which the delays are non-uniform, this minimum limit is
not achievable. For example, the retimed version of Figure
4a has a clock period of 13 tu, whereas the theoretical
minimum is 10 tu.

Ishii and Leiserson [31] and Sakallah, Mudge and Oluko-
tun [131 develop a theory for analyzing level-clocked cir-
cuitry. In [31], an algorithm is presented for verifying
timing in VLSI circuits. Propagation delays of latches are
considered to be constant and minimum propagation delays
of the logic elements are not considered. Retiming algo-
rithms for synchronous circuits consisting of single-phase
[32], two-phase [33], and multi-phase [34] flip-flops have
also been developed.

Retiming can be made more effective by combining it
with combinational optimization. Algorithms have been
proposed by DeMicheli [35] to minimize the cycle time
using logic transformations, such as elimination, resubsti-
tution, extraction, and decomposition, while also retiming
the synchronous circuit. Another proposed method is to
temporarily shift the registers to the periphery of the syn-
chronous circuit, perform logic minimization on the purely
combinatorial circuit, and return the registers to within the
circuitry [361. Although this methodology temporarily cre-
ates negative edge weights, violating the aforementioned
retiming rules [see (6)], once the registers are replaced,
the negative edge weights are eliminated. This method of
performing logic optimization on the combinatorial circuit
between the registers is defined as resynthesis 136, 371.
Application of this method to multi-phase pipelines is dis-
cussed in [38].

Incorporating clock skew into retiming was initially pro-
posed in [39] and a retiming algorithm which included both
clock skew and variable register delays was first introduced
by the authors in [6]. In [6], delay component values are
attached to each edge describing the delay characteristics
of the registers as well as the clock distribution network.
Following this work, the inclusion of clock skew and reg-
ister delays into retiming was presented in [40] using the
clock model introduced in [13].

Retiming to minimize the number of registers in a se-
quential circuit was proposed by Leiserson and Saxe and
is shown to be equivalent to state minimization in FSMs
[2]. Recently, retiming has been extended to cover gated-
clocks and precharged circuit structures [41]. Retiming to
decrease power dissipation by minimizing the switching ac-
tivity within the synchronous circuit while preserving func-
tional equivalency has also been demonstrated [42].

Although retiming can significantly reduce the clock
period of a synchronous circuit, its usefulness is limited
by the nature of the circuit structure. The application of
retiming to highly-structured circuits such as FIR filters
is studied in [43] by combining retiming with algebraic
speed-up techniques. This method is based on the ERB
(eliminating retiming bottlenecks) method introduced in
[U] in which the computational structure of the original
circuit is changed so as to enhance its ability to be retimed.

IV. INCORPORATION OF ELECTRICAL TIMING
INFORMATION INTO RETIMING

In early work on retiming, it is assumed that the clock
skew is zero, register delays are either zero or constant, and
interconnect delay is negligible [2, 351. In practical inte-
grated circuits, however, these delay terms play a critical
role in circuit operation and must be considered in order to
accurately and reliably retime a synchronous ASIC. In this
section, an algorithm is proposed to more accurately retime
synchronous circuits by considering path dependant clock
distribution, register, and interconnect delays. A discussion
of how these electrical issues are modeled and incorporated
into the retiming delay equations is provided in subsection
A, while the algorithm is briefly reviewed in subsection
B. The algorithm is demonstrated on MCNC benchmark
circuits. These results are discussed in subsection C.

A. Modelling of the Delay Components
In order to consider the effects of clock skew, variable

register delay, and interconnect delay, a number set, the
Register Electrical Characteristic (REC), is assigned to
each edge of the graph describing the ASIC in the following

the clock delay from the clock source to each register,
TSet--up is the time required for the data at the input of
a register to latch, Tc-Q is the time required for the data
to appear at the output of the register upon arrival of the
clock signal, and T~~tl and TI^^^ are the interconnect
delays incurred when the data signal is propagating to
(from) the logic elements, respectively. If, after the register
relocation process, no registers exist on an edge e, the
total interconnect delay along edge e is defined to be
TIntl + Tlnt2, whereas if one or more registers are located
on this edge after relocating the registers, the interconnect
delay is separated into two different values: TIntl is the
delay from the originating vertex of edge e to the input
of the first register of edge e, and Tlnt2 is the delay from
the output of the last register of edge e to the terminating
vertex of edge e. Figure 5 depicts a graph with attached

form: TCD : Tset-up/Tc+Q - T1ntl/T1nt2 [61. TCD is

387

REC values. In the graph, vertices represent logic elements
and the values inside the vertices represent the delays of
these logic elements. Note that each edge is assigned an
REC value in the aforementioned form.

Figure 5: Graph of Figure 4 with attached REC values

An important step in the retiming process using this algo-
rithm is the estimation of the REC values. Initial estimates
of the REC values must be provided to the retiming algo-
rithm. With these estimates, an initial exploratory retim-
ing is performed. As the lower level information becomes
better specified, the exploratory retiming process provides
more accurate solutions. Therefore, the retiming process
can be thought of as an iterative process in which low level
information is continually fed back to the higher pipelining
level until a satisfactory design is determined.

B. Retiming Algorithm which Considers RECs
In the proposed retiming algorithm, path delays are de-

fined to be edge to edge [6] as opposed to vertex to vertex as
in traditional retiming algorithms [2]. The delays between
edges are calculated once and used throughout the retiming
process. The path delay T ~ D from edge ei to edge ej is
the summation of the clock-to-Q delay (Tc-Q), the inter-
connect delay (TI,~I + Tlrst2), the logic delay (T L , ~ ; ~) , the
set-up time (T S e t - u p) , and the local clock skew (TskeW)
between registers i and j, and is

Tskew (i, j) , the clock skew between edges i and j, is

Note that if parallel paths exist between any two ver-
tices, the concept of path delay T p ~ (i , j) is extended to

T p ~ ~ ~ ~ (i , j) are the minimum and maximum path delays
between edges i and j , respectively. A matrix called the
Sequential Adjacency Matrix (or the S matrix) is intro-
duced whose element S(i , j) contains the path delay from
edge ei to edge e j . This matrix is E x E in size, where
E is the number of edges in the graph. The S matrix is
also separated into two matrices, Smin and S m a x , to eval-
uate the short and long path delays. The short path delays
are used to detect race conditions and the long path delays
are used to calculate the minimum clock period of the syn-
chronous ASIC. The short paths are those paths that contain
a negative path delay. Race conditions in the synchronous
ASIC appear as negative entries in the S matrix.

TPDmin(i,j) and TPDmaz(i , j) , where TPDman(ii j) and

The S matrix, which contains the delay of all possible
data paths for any possible register placement, is created
once for each circuit and latency. A binary search is then
performed on the sorted values of the S matrix to decide
which data path delays are achievable without creating
any race conditions andlor paths with a delay larger than
a target clock period. The binary search is terminated
upon determining the minimum clock period of the ASIC.
The register locations are calculated so as to realize this
minimum clock period. Long path constraints are used to
detect path delays that exceed the maximum allowed clock
period. The long path constraints are defined as

where c is the maximum allowed clock period for the circuit
and i and j are the indices for the initial and terminating
edges of the long path, i.e., the path p : ei - e . is not
permitted if the path delay exceeds the desired clock period

The algorithm detects and removes race conditions by
using short path constraints. In short paths, the data signal
reaches the final register of that local data path before
the final register is clocked, thereby causing the ASIC to
function improperly. These short paths are created when
the clock skew is negative and greater in magnitude than
the path delays, creating a race condition [5, 391. The short
path constraints are defined as

implying paths with negative or zero delay. Negative
entries in the S matrix create race conditions, since the
entry represents a local data path with negative delay.

The addition of the short path constraint adds significant
complexity and does not allow for simple modification of
the original retiming algorithm introduced in [2]. Tradi-
tional methods which ignore negative clock skew produce
inequalities in the form of

(14)
whereas with the added short path constraints due to local-
ized clock skew, the retiming algorithm presented in this
paper produces inequalities in the form of

(15)
where xi, x . , xu and x, are unknowns (used to define the
locations oflthe registers in the algorithm) and aij and auv
are constants. The addition of the boolean “or” statement
is due to the introduction of the short path constraints and
does not permit the use of standard linear programming
techniques such as the aforementioned Bellman-Ford algo-
rithm. To solve this set of inequalities, vertex lag ranges
are used rather than vertex lags. Each vertex is assigned
a lag range and the ranges are continuously tightened to
satisfy all of the constraints for the specified target clock
period. This process is continued until a minimum clock
period is reached.

The S matrix of Figure 5 is shown in Table 1. Path
delays greater than 23 tu are heavily shaded while path
delays less than or equal to zero are lightly shaded. For
Tcp = 23 tu, the heavily shaded elements in the table
constitute the long paths and the lightly shaded elements
represent the paths that contain race conditions. Other
matrix entries indicate data paths with delays less than the
target clock period of 23 tu and no existing race condition.
The binary search process used in the algorithm evaluates
each possible clock period until the minimum achievable
clock period is determined.

S m a z (i , j) > c , (12)

C.

S m Z n (i , j) L 0, (13)

xi - xj 5 ai j ,

xi - xj 5 aij or xu - xu 5 auv,

388

Table 1: Sequential Adjacency Matrix for the graph of Figure 5. Light
shaded entries represent short paths, whereas dark shaded entries represent

long paths for c = 23. Unshaded entries denote permissible paths.

C. MCNC Benchmark Application Results
The proposed retiming algorithm has been implemented

in C on a SUN 4 workstation. To permit the evaluation of
the enhanced retiming algorithm, modified MCNC bench-
marks [45,46] have been analyzed using this algorithm and
compared with the Leiserson-Saxe retiming algorithm [2].

The application of the proposed retiming algorithm to the
example MCNC benchmark circuits are described in Table
2. The initial five columns describe the properties of the
modified benchmark circuits. These properties are 1) the
name of the benchmark example as it appears in the MCNC
archive [45, 461, 2) the number of edges and 3) vertices in
the graph of each circuit, 4) the latency of the circuit, and
5) the original clock period. The sixth column contains
the minimum clock period of the retimed circuit using the
new retiming algorithm. The final column lists the clock
period of the benchmark circuits that was retimed using the
standard Leiserson-Saxe retiming algorithms which do not
consider RECs. In these circuits, the average register delay
(Tc-Q + T s ~ ~ - ~ ~) of the circuit is added to each local data
path to compensate for the effects of the variable register
delays. As shown in Table 2, the minimum clock period of
the majority circuit from the LGSynth89 archive derived
from the proposed retiming algorithm is less than from
standard retiming algorithms. This occurs since localized
negative clock skew [5,39] subtracts delay from the critical
path such that the worst case path has a smaller delay,
thereby causing the minimum clock period to be less. Also,
note that no race conditions are exant in those circuits
retimed by the proposed algorithm, a conclusion that cannot
be assumed with other retiming algorithms.

V. CONCLUSIONS AND FUTURE WORK

In this paper, synchronous circuit optimization tech-
niques, such as pipelining and retiming, are reviewed and
contrasted. Insight is provided into how these different ap-
proaches affect speed, area, power, and efficiency. Pipelin-
ing of microprocessors, DSPs, and wave-pipelining are
briefly reviewed. The degradation of pipelining due to
instruction dependencies and branch instructions in micro-

Table 2: Application of retiming to MCNC benchmark circuits with
and without clock skew, heKOMeCt, and variable register delays

C17 26 I 19 I 6

d 2 I

"a 59 37

majority 26 17

101 46

139 41 40

io3

I

processors is discussed and transformation techniques to
prevent these inefficiencies are described.

Retiming techniques to optimally relocate the registers in
a synchronous circuit are reviewed. Different approaches to
retiming synchronous circuitry for minimizing the number
of registers, the power dissipation, and the clock period
are reviewed. Circuit types for which retiming are not
applicable are mentioned and transformation techniques to
permit retiming of these circuits are discussed.

A retiming algorithm for optimally relocating the reg-
isters of a synchronous pipelined ASIC which considers
variable clock distribution, register, and interconnect delay
is presented. To permit the consideration of these delay
components, register electrical characteristics (RECs) are
attached to each edge and the path delays are redefined to
be from edge-to-edge.

The limitations and advantages of the retiming algorithm
presented in this paper are compared using a set of modified
MCNC benchmarks. The results of applying the algorithm
to the benchmark circuits show that a more accurate and
generalized relocation of the registers of a pipelined ASIC
can be performed than with existing algorithms which do
not consider clock distribution, register, and interconnect
delay. Furthermore, the clock period can be further min-
imized due to localized negative clock skew. Also, cata-
strophic clock skew induced race conditions are detected
and eliminated. Summarizing, this algorithm represents a
significant generalization of existing retiming algorithms,
permitting the accurate synthesis of higher speed and more
reliable pipelined digital ASICs.

389

REFERENCES
[I] L. W. Cotten, “Circuit Implementation of High-speed Pipeline
Systems,” Proceedings of the AFIPS Fall Joint Computer Conference,
Vol. 27, pp. 489-504, November 1965.
[2] C. E. Leiserson and I. B. Saxe, “Retiming Synchronous Circuitry,”
Algorithmica, Vol. 6, pp. 5-35, January 1991.
[3] E. G. Friedman and J. H. Mulligan, “Clock Frequency and Latency in
Synchronous Digital Systems,” IEEE Transactions on Signal Processing,
Vol. 39, No. 4, pp. 930-934, April 1991.
[4] E. G. Friedman and J. H. M$ligan, “Pipelining of High Performance
Synchronous Digital Systems, International Journal of Electronics,
Vol. 70, No. 5. pp. 917-935, May 1991.
[SI E. G. Friedman, “Clock Distribution Design in VLSI Circuits - an
Overview,” Proceedings of the IEEE International Symposium on Circuits
and Systems, pp. 1475-1478, May 1993.
[6] T. Soyata, E. G. Friedman, and J. H. Mulligan, Jr., “Integration of
Clock Skew and Register Delays into a Retiming Algorithm,” Proceedings
of the IEEE International Symposium on Circuits and Systems, pp. 1483-
1486, May 1993.
171 K. A. Sakallah, T. N. Mudge, T. M. Burks, and E. S. Davidson.
“Synchronization of Pipelines,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol. CAD-12, No. 8, pp. 1 132-
1146, August 1993.
[8] L. W. Cotten, “Maximum-Rate Pipeline Systems,” Proceedings of the
Spring Joint Computer Conference, Vol. 34. pp. 581-586, May 1969.
[9] J. R. Jump and S. R. Ajuha, “Effective Pipelining of Digital Systems,”
IEEE Transactions on Computers, Vol. C-27, No. 9, pp. 855-865.
September 1978.
[lo] T. C. Chen, “Parallelism, pipelining, and computer efficiency,”
Computer Design, Vol. 10, pp. 69-74, January 1971.
[111 T. G. Hallin and M. J. Flynn, “Pipelining of Arithmetic Functions,”
IEEE Transactions on Computers, pp. 880-886, August 1972.
[12] M. C. Papaefthymiou, “On Retiming Synchronous Circuitry and
Mixed-Integer Optimization,” Master’s thesis, Massachussetts Institute of
Technology, August 1990.
1131 K. A. Sakallah, T. N. Mudge, and 0. A. Olukotun, “Analysis and
Design of Latch-Controlled Synchronous Digital Circutis,” Proceedings
of the 27th ACM/IEEE Design Automation Conference, pp. 1 1 1-1 17, June
1990.
[141 M. J. Flynn, “Very High-speed Computing Systems,” Proceedings
of the IEEE, Vol. 54, No. 12, pp. 1901-1909, December 1966.
[IS] J. L. Henessy and D. A. Patterson, Computer Architecture A
Quantitative Approach. Morgan Kaufmann Publishers Inc., 1990.
[16] G. S. Tjaden and M. J. Flynn, “Detection and Parallel Execution of
Independent Instructions,” IEEE Transactions on Computers, Vol. C- 19,
No. 10, pp. 889-895, October 1970.
[I71 E. M. Riseman and C. C. Foster, “The Inhibition of Potential
Parallelism by Conditional Jumps,” IEEE Transactions on Computers,
Vol. C-21, No. 12, pp. 1405-141 1, December 1972.
[I81 G. Kane, MIPS RISC Architecture. Prentice-Hall, 1988.
1191 INTEL Corporation, The Intel PentiumTM Processor. A Technical
Overview, 1994.
[20] S. R. Kunkel and J . E. Smith, “Optimal Pipelining in Supercomput-
ers,” Proceedings of the 13th Annual Symposium on Computer Architec-
ture, pp. 404-411, 1986.
[21] N. R. Strader 11, “VLSI Bit-Sequential Architectures for Digital
Signal Processing,” Proceedings of the IEEE Conference on Acoustics,
Speech and Signal Processing, pp. 931-934, February 1987.
1221 P. R. Capello and K. Steiglitz, “Completely-Pipelined Architectures
for Digital Signal Processing,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, Vol. ASSP-31, No. 4, pp. 1016-1023, August 1983.
1231 K. 0. Siomalas and B. A. Bowen, “Synthesis of Efficient Pipelined
Architectures for Implementing DSP Operations,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, Vol. ASSP-33, No. 6, pp. 1499-
1508, December 1985.
1241 D. Wong, De Micheli, Giovanni, and M. Flynn, “Inserting Active
Delay Elements to Achieve Wave Pipelining,” Proceedings of the IEEE
Conference on Computer-Aided Design, pp. 270-273, November 1989.
1251 N. V. Shenoy, R. K. Brayton, znd A. Sangiovanni-Vincentelli,
“Minimum Padding to Satisfy Short Path Constraints,” Proceedings of
the IEEE International Conference on Computer-Aided Design, pp. 1 5 6 -
161, November 1993.

1261 D. C. Wong, G. De Micheli, and M. J. Flynn, “Designing High-
Performance Digital Circuits Using Wave Pipelining: Algorithms and
Practical Experiences,” IEEE Transactions on Computer-Aided Design,
Vol. 12, No. 1, pp. 25-46, January 1993.
[27] C. E. Leiserson and J . B. Saxe, “Optimizing Synchronous Systems,”
Proceedings of 22nd Annual Symposium on Foundations of Computer
Science, pp. 23-36, October 1981.
[28] E. L. Lawler, Combinatorial Optimization: Networkr and Matroids.
Holt, Rinehart and Winston, NewYork, 1976.
1291 C. E. Leiserson, F. M. Rose, and J. B. Saxe, “Optimizing Syn-
chronous Circuitry by Retiming,” Proceedings of the 3rd Caltech Con-
ference on VLSI, pp. 87-116, March 1983.
[30] M. C. Papaefthymiou, “Understanding Retiming through Maximum
Average-Weight Cycles,” Proceedings of the 3rd Annual Symposium on
Parallel Algorithms and Architectures, pp. 338-348, July 1991.
1311 A. T. Ishii and C. E. Leiserson, “A Timing Analysis of Level-
Clocked Circuitry,” Proceedings of the Sixth MIT Conference on Advanced
Research in VLSI, pp. 113-130, March 1990.
[32] N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli, “Retim-
ing of Circuits with Single Phase Transparent Latches,” Proceedings of the
IEEE International Conference on Computer Design, pp. 86-89, October
1991.
[33] A. T. Ishii, C. E. Leiserson, and M. C. Papaefthymiou, “Opti-
mizing Two-Phase, Level-Clocked Circuitry,” Proceedings of the 1992
BrowdMIT Conference on Advanced Research in V U I and Parallel Sys-
tems, pp. 245-264, March 1992.
[34] B. Lockyear and C. Ebeling. “Optimal Retiming of Multi-Phase,
Level-Clocked Circuits,” Proceedings of the 1992 BrowdMIT Conference
on Advanced Research in VLsl and Parallel Systems, pp. 265-280, March
1992.
1351 G. De Micheli, “Synchronous Logic Synthesis: Algorithms for
Cycle-Time Minimization,” IEEE Transactions on Computer-Aided De-
sign, Vol. CAD-10, No. l , pp. 63-73, January 1991.
[36] S. Malik, E. M. Sentovich, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “Retiming and Resynthesis: Optimizing Sequential Networks
with Combinatorial Techniques,” IEEE Transactions on Computer-Aided
Design, Vol. CAD-IO, No. I , pp. 74-84, January 1991.
1371 S. Malik, K. J. Singh, R. K. Brayton, and A. Sangiovanni-Vincentelli,
“Performance Optimization 2f Pipelined Logic Circuits Using Peripheral
Retiming and Resynthesis, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol. CAD-12, No. 5 , pp. 568-
578, May 1993.
[38] N. V. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli,
“Resynthesis of Multi-Phase Pipelines,” Proceedings of the 30th Design
Automation Conference, pp. 490-496, June 1993.
[39] E. G. Friedman, “The Application of Localized Clock Distribution
Design to Improving the Performance of Retimed Sequential Circuits,”
Proceedings of the IEEE Asia-Pacijic Conference on Circuits and Systems,
pp. 12-17, December 1992.
[40] B. Lockyear and C. Ebeling, “The Practical Application of Retiming
to the Design of High-Performance Systems,” Proceedings of the IEEE
International Conference on Computer-Aided Design, pp. 288-295,
November 1993.
[41] A. T. Ishii, “Retiming Gated-Clocks and Precharged Circuit Struc-
tures,” Proceedings of the IEEE International Conference on Computer-
Aided Design, pp. 300-307, November 1993.
[42] J. Monteiro, S. Devadas, and A. Ghosh, “Retiming Sequential Cir-
cuits for Low Power,” Proceedings of the IEEE International Conference
on Computer-Aided Design, pp. 398402, November 1993.
[43] Z. Iqbal, M. Potkonjak, S. Dey, and A. Parker, “Critical Path
Minimization Using Retiming and Algebraic Speed-up.” Proceedings of
the 30th Design Automation Conference, pp, 573-577, June 1993.
1441 S. Dey, M. Potkonjak, and S. G. Rothweiler, “Performance Opti-
mization of Sequential Circuits by Eliminating Retiming Bottlenecks,”
Proceedings of the IEEE International Conference on Computer-Aided
Design, pp. 504-509, November 1992.
1451 R. Lisanke, “Logic Synthesis and Optimization Benchmarks User
Guide: Version 2.0,” Tech. Rep., Microelectronics Center of North
Carolina, December 1988.
1461 S. Yang, “Logic Synthesis and Optimization Benchmarks User
Guide: Version 3.0,” Tech. Rep., Microelectronics Center of North
Carolina, January 199 I .

390

