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ABSTRACT

To allow mobile devices to support resource intensive applications beyond their capabilities, mobile-cloud 
offloading is introduced to extend the resources of mobile devices by leveraging cloud resources. In this 
chapter, we will survey the state-of-the-art in VM-based mobile-cloud offloading techniques including 
their software and architectural aspects in detail. For the software aspects, we will provide the current 
improvements to different layers of various virtualization systems, particularly focusing on mobile-cloud 
offloading. Approaches at different offloading granularities will be reviewed and their advantages and 
disadvantages will be discussed. For the architectural support aspects of the virtualization, three plat-
forms including Intel x86, ARM and NVidia GPUs will be reviewed in terms of their special architectural 
designs to accommodate virtualization and VM-based offloading.

INTRODUCTION

In the past decade, significant technological advances in the semiconductor technology have dramatically 
improved the computational and storage capability of handheld mobile devices such as smart phones 
and tablets. This enabled mobile devices not only to access a vast amount information instantaneously 
through fast communications networks, but also to perform ever more sophisticated computational tasks 
such as face and speech recognition, object detection and natural language processing (NLP) pervasively 
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(Wang, Liu, & Soyata, 2014). However, the performance and user experience of these resource-intensive 
mobile augmented-reality applications are still constrained by the relatively low performance CPU and 
GPU, as well as limited memory and flash storage of the mobile devices. These resource constraints 
cannot be easily improved due to the relative size and battery life limitations of mobile devices, as 
compared to mainstream desktop PCs. Therefore, many applications, which are both latency-sensitive 
and compute-intensive, such as real-time face recognition, are still beyond the capabilities of today’s 
smartphones and tablets.

To overcome these resource limitations and extend the capabilities of mobile devices to the point, 
where they can run these resource-intensive applications, mobile-cloud computing (MCC) was introduced 
to leverage the cloud resources. MCC enables mobile devices to utilize powerful cloud servers to store 
and access a vast amount of data and process compute-intensive tasks. Mobile-cloud computing has 
been intensively investigated as an integration of cloud computing into the mobile environment. Utiliz-
ing cloud servers for storage is easy and there have already been many popular applications providing 
data backup and sharing features between the users and the cloud. Unlike storage, utilizing cloud servers 
for computation acceleration is not trivial. Computation offloading is a solution to alleviate resource 
limitations on the mobile devices and provide more capabilities for these devices by migrating partial 
or full computations (code, status and data) to more resourceful computers. The rapid advancement of 
wireless network connectivity and architectural advancements in mobile devices in recent years have 
made computation offloading feasible. Currently, offloading computation from mobile devices to cloud 
servers faces several challenges which is what most of the research in this field focuses on. These chal-
lenges are summarized below:

•	 What to Offload: The entire program cannot be offloaded for remote execution. Before offload-
ing, the program needs to be partitioned in one of three ways: 1) manually by the programmer, 2) 
automatically by the compiler, or 3) at runtime. Manual partitioning will put the burden on the 
programmers but will potentially result in lower overhead and more flexibility. On the contrary, 
the automated partitioning can perform offloading on an unmodified program which is more con-
venient for users, but might result in a higher performance overhead. Different strategies like code 
tagging and dynamic prediction based on profiling can be applied to increase the performance.

•	 When to Offload: Applications may have different requirements on performance and mobile 
devices may have different capabilities and energy limitations. Offloading decisions need to be 
made based on multiple criteria, such as 1) improving performance when the remaining energy 
is abundant, 2) energy savings when the remaining energy is low, and 3) network conditions at 
runtime. These decisions can be made by statically and/or dynamically by profiling, which has an 
impact on the execution overhead.

•	 How to Offload: Emerging cloud computing technologies, combined with virtualization technol-
ogies provide a powerful, flexible, manageable and a secure platform for offloading. This attracted 
a large body of research on VM (Virtual Machine)-based offloading approaches, which study 
offloading at different granularities such as OS-level, application/thread-level and method-level.

To address these challenges, new schemes have been introduced to achieve seamless offloading 
between mobile devices and cloud servers. One of the effective approaches is the VM-based approach, 
where we migrate either an OS-level VM or an application-level VM to remote cloud servers, execute 
the compute-intensive task there and get the response back to the mobile device through either mes-
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sages or joining/migrating the thread/VM. To enable VM-based offloading, which significantly differs 
from traditional mobile cloud computing, we need support from both the software layer (both on mobile 
devices and the cloud servers) and the cloud hardware layer.

The rest of this chapter is organized as follows: We will start with an introduction to general mobile 
cloud offloading, VM-based approaches, and the design and implementation challenges in using virtu-
alization technologies to augment mobile-cloud computing by leveraging cloud resources. In the next 
section, we will provide a detailed discussion of the software support of virtualization. Software aspects 
of various VM-based mobile cloud offloading systems and frameworks, including OS-level VMs and 
application-level VMs will reviewed in detail. Architectural support for virtualization will be elaborated 
on in the following section, where the underlying hardware designs supporting and accelerating virtual-
ization are reviewed. This hardware support section includes specific architectural designs by Intel x86 
and ARM CPUs and NVidia GPUs for both desktop computers and mobile devices. We will conclude 
this chapter and provide pointers to potential future research directions in the final section.

MOBILE CLOUD OFFLOADING

The breakneck pace of the advancement of smartphone technology has turned these devices from mere 
“phones” to devices that are indispensible in everyday life. Sensory capabilities of mobile devices made 
an impressive progress with the incorporation of cameras, temperature, humidity, and acceleration sen-
sors among others. Furthermore, a wide range of networking options like USB, WiFi, IR, and 4G made 
these devices ever more connected with increasing connection speeds. While networking and sensory 
capabilities of mobile devices are a lot less sensitive to the progress in VLSI technology, the same is 
not true for their computational and storage capabilities: Every new generation of VLSI (e.g., 32nm 
vs. 22nm) is expected to improve the performance-per-Watt metric of computational devices, whether 
mobile or desktop, as prescribed by the Moore’s Law.

Since the technological advancement in battery energy densities (i.e., Joules per kg) is significantly 
slower than the VLSI technology-based energy efficiency of CPUs (i.e., performance per Watt), and 
the sizes of mobile devices cannot be increased beyond a certain point to improve their battery energy 
storage capability, the performance-per-Watt metric is expected to dominate the overall performance of 
mobile devices in the foreseeable future. To continue improving the performance of mobile devices, a 
possible approach that comes to mind is to take advantage of the improving networking capability of 
mobile devices by sending the entire or part of the computational task to a mainframe, like a cloud host, 
and receiving the result via the same network. This method is called Mobile Cloud Offloading, in which 
a mobile device accesses a host machine in cloud to perform all or part of a required computationally-
intensive task. Several mechanisms are introduced in the past decades to implement this scheme, among 
which virtualization stands out as a viable alternative due to its advantages in utilizing and sharing 
computational resources. Below is a list of considerations when offloading tasks from mobile devices 
into the cloud.

•	 Utilization: One primary concern for cloud service providers is being able to predict the workload 
in the cloud at a given point in time. If the mobile tasks that are being initiated by different mobile 
devices were mapped to pre-determined servers in the cloud, a cloud service provider would have 
no way to smoothly distribute the workload for optimum efficiency. In other words, while some 



250

Hardware and Software Aspects of VM-Based Mobile-Cloud Offloading
﻿

devices stayed idle, others would be overloaded. Virtualization makes it possible to pool scattered 
tasks into several servers and leave others idle. This not only allows the cloud operator to run 
multiple servers at optimum load for a maximum utilization ratio (e.g., 80%) without overloading 
them, it also allows them to turn off certain servers for maximum power efficiency. These servers 
could be turned on later when the cumulative load of the datacenter increases, based on an opti-
mum predictive allocation algorithm. When additional servers come online, the workload from 
other servers could be migrated to them to prepare for additional future demand.

•	 Compatibility: Mobile devices, like smartphones, are of various types running different operat-
ing systems (e.g., Linux, Android, iOS). Directly running mobile applications on cloud servers 
would be severely restrict the device-server compatibility. This would require cloud servers that 
support pre-determined Operating Systems with no possibility to run applications from mobile de-
vices with different OSs. Virtualization eliminates this compatibility issue by allowing a server to 
run multiple Operating Systems. Compatibility also refers to the ability to be compatible with dif-
ferent server hardware. To exacerbate the compatibility issue, a typical datacenter contains servers 
that have many different server models with different hardware. Since virtual machines run on vir-
tual hardware, issues that are introduced by hardware incompatibility are avoided. Furthermore, 
when datacenter servers are upgraded to better ones, the applications that are running on them can 
be migrated to these new servers seamlessly.

•	 Isolation: Virtualization permits the isolation of two separate applications that are sharing the same 
physical resources, thereby preventing any compromise of data and/or code security. Additionally, 
new tasks can be launched without disturbing tasks that are currently executing. New resources or 
system extensions can be added without modifying or suspending current resources. Not only are 
virtual machines are protected from each other, but also an attack on one of the virtual machines 
can be easily confined by the hypervisor, without spreading to another (or multiple other) VMs.

•	 Ease of Deployment: Virtual machines allow easy and fast installation of new service applica-
tions or user machines. Creation of a virtual machine is extremely simple, as it typically just re-
quires copying an existing image and migrating it to a selected server. On the contrary, a non-VM 
setup of a new system requires purchasing new equipment, new hardware deployment, and OS and 
application software configuration, which is more time consuming and prevents rapid deployment.

VIRTUALIZATION APPROACHES

The development of modern mobile devices, such as smartphones and tablets, has become the enabling 
technology for pervasive or ubiquitous computing. While non-resource-intensive applications run on these 
mobile platforms without a problem, a set of resource-intensive applications, such as augmented reality 
applications including real-time face recognition, natural language processing, do not achieve satisfactory 
performance levels due to their computational limitations. These limitations are not expected to improve 
in the foreseeable future (Satyanarayanan, Bahl, Caceres, & Nigel, 2009) due to the continuous user 
demand for higher performance and the slow progress in battery technology, placing limitations on the 
power consumption of the primary computing elements on the mobile device, such as CPU and GPU.

To enable a mobile device to run such resource-intensive applications, the solution is mobile-cloud 
computing, where the compute-intensive parts of an application are offloaded to a remote server. These 
remote servers amass much higher computation capability, significantly higher flash storage and local 
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memory and high bandwidth, which imply that, an offloaded mobile application can be substantially 
accelerated when it can utilize such cloud resources. Furthermore, since the bulk of the execution of the 
application is being traded-off against potentially higher network traffic to transfer the application data 
(and application code), energy savings on the mobile device can be achieved when the ratios of network 
time vs. computation time are in favorable proportions.

Web services provided through XML-RPC and RESTful are commonly used for mobile applications. 
However, achieving energy savings and/or acceleration when offloading general-purpose computations 
is not trivial. Several approaches have been proposed to achieve efficient offloading from mobile de-
vices to cloud servers. They can be categorized into two types based on whether the offloading is done 
transparently or non-transparently.

•	 Non-Transparent Offloading: Requires the developer to re-design the application with explicit 
mobile-cloud models to benefit from remote servers. To be able to offload, application-specific 
code has to be properly deployed on the remote server, which may require the user to have full 
control over the server.

•	 Transparent Offloading: Requires no modification on existing mobile applications. Programmers 
develop the application as if all of the code is running locally (or at most tag some functions that 
may be suitable for offloading using directives) and the underlying runtime will automatically 
transform most of the mobile applications to benefit from seamless offloading to the remote cloud 
servers.

Virtualization or virtual machine techniques play a key role not only in building cloud computing 
infrastructures but also in supporting both types of the aforementioned offloading approaches. For the 
transparent offloading approach, it is clear that an application-level virtual machine is essential for 
the runtime to dynamically analyze and profile the code, make offloading decisions, and partition and 
transparently migrate the code to the remote servers. For the non-transparent offloading approach, 
code deployment on cloud servers is not trivial due to the co-existence of various platforms, operating 
systems and libraries. Virtualization is able to hide the low-level details from the executing applications 
and provide a uniform environment to each application.

Due to the high latency through the internet which significantly hurts the offloading performance, 
the edge-server or cloudlet idea has been proposed as an accelerator in public areas like coffee shops to 
provide one-hop offloading services to the mobile devices (Soyata T., Muraleedharan, Funai, Kwon, & 
Heinzelman, 2012; Satyanarayanan, Bahl, Caceres, & Nigel, 2009). To provide offloading services as part 
of a public network infrastructure, the inherent sharing characteristics of virtualization can be utilized, 
combined with the ability of isolation and self-management on the cloudlet. To deploy the code, users 
of the mobile device need to have full control over a remote server. So, for purposes of maintenance, 
security, and privacy, user actions should be properly limited and isolated. To achieve this goal, a VM-
based architecture is the inevitable choice.

Virtualization can be achieved at different levels from the hardware level to the application level. 
Based on these different virtualization levels, common VM-based approaches can be categorized into 
OS-level and application-level categories.
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•	 OS-Level VMs: Provide better flexibility and ability for the customization of the virtualization 
environment. However, due to its large overhead, there are challenges in a real deployment us-
ing this approach. The large overhead of OS-level VMs are due to the mechanism of deployment 
which requires one has to transfer the entire VM image over the network before the VM can start. 
This weakens the acceleration benefit and hurts application responsiveness due to the latency in-
curred during the transmission of the VM image.

•	 Application-Level VM: Is a process running on top of the operating system of the remote server. 
It is relatively light-weight and the cost to migrate is relatively low compared to the OS-level 
VMs. The application, however, has limited flexibility in customizing the VM. For example, an 
application may not be able to use libraries written in other languages, which may translate to an 
eventual performance overhead.

VM-BASED OFFLOADING

Virtual Machines have become increasingly more popular in modern cloud computing, since they intro-
duce a new way to run multiple operating systems on a single machine via the decoupling of physical 
resources. VM-based offloading is one of the most common approaches for offloading computational 
tasks to cloud server nodes. Compared to a traditional server management framework, the usage of 
VMs significantly improves certain operational aspects of cloud computing: 1) It enables rational and 
economical resource partitioning among users, 2) increases resource utilization at the datacenter, 3) 
lowers the power consumption at the datacenter, 4) it gives administrators higher flexibility for process 
deployment, and 5) lowers the application programming burden of the programmers.

On the other hand, the virtualization framework for application offloading introduces challenges such 
as 1) runtime management and data transfer overhead, 2) higher demand for design optimization, 3) 
new security concerns. Virtualization is usually implemented via the usage of hypervisors. We will now 
characterize the features of hypervisors and list the strengths and challenges of VM-based offloading.

Hypervisor Layer

Virtualized environments are the foundation of most cloud computing infrastructures. They are usually 
implemented via the use of a Hypervisor, which is generally a software layer that lies between the Virtual 
Machines and the physical hardware. Hypervisors can be divided into two major categories (Popek & 
Goldberg, 1974) .

Type 1 Hypervisors: are directly installed on the physical hardware, and therefore do not require a host 
operating system (OS) and can have direct access to the underlying physical hardware. QEMU, 
Xen and Microsoft Hyper-V are Type 1 hypervisors. Kernel-based Virtual Machine (KVM), on 
the other hand, makes its host OS a Type 1 hypervisor.

Type 2 Hypervisors: are installed above a host OS, and run within the environment provided by the OS. 
Therefore, the host OS would have direct access to the underlying hardware and is responsible for 
hardware source and service management. The hypervisor serves as the second layer and simulates 
virtual machine environments. The widely-adopted VMware Workstation and VirtualBox are two 
typical Type 2 hypervisors.
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We will provide a brief introduction to the three mainstream open-source hypervisors: QEMU, Xen 
and KVM in terms of their Hypervisor mechanism for virtualization.

•	 QEMU: In its broadest sense, QEMU is a generic hardware emulator. It can be used standalone 
to create a virtual machine environment, but more often QEMU is executed under Xen or KVM to 
support device virtualization to the guest. In this case, QEMU provides simulation for peripherals 
including PCI Bridge, VGA card, mouse/keyboard, hard disk, CD-ROM, network adapters, sound 
card, etc. (QEMU), using dynamic translation between virtual and physical devices.

•	 XEN: Xen is an open-source Type-1 hypervisor running directly on hardware and is fully respon-
sible for the resource management of the host machine. It utilizes para-virtualization, which per-
mits it to achieve a near-native performance. Since its publication in 2003, Xen has been widely 
adopted as the basis of many commercial or open-source applications and is in use in the largest 
cloud environments today (Xen). The most distinguished feature of Xen is that it has a specialized 
VM with special privileges, named The Control Domain (or Dom0). Dom0 is a customized Linux 
kernel that can handle resource and I/O access directly, and exposes device control to guest VMs 
via emulators.

•	 KVM: In the open-source hypervisor projects, the Kernel-based Virtual Machine, or KVM, is a 
relatively new product which was first introduced in 2006. Soon after its introduction in February 
2007, KVM was merged into the Linux kernel (version 2.6.20). KVM provides a complete virtu-
alization environment in which virtual machines appear as normal Linux processes and integrate 
seamlessly with the rest of the system (Kivity, Kamay, Laor, Lublin, & Liguori, 2007). After this 
first integration, KVM became the main virtualization package in mainstream Linux OS (e.g. 
Ubuntu, Fedora).

KVM requires CPU virtualization extensions (Intel VT or AMD-V) and is used together with QEMU. 
It consists of a loadable kernel module (kvm.ko) and a processor-specific module (either kvm-intel.ko or 
kvm-amd.ko) at its core. QEMU is also used to provide virtualization for peripherals such as hard disk, 
CD-ROM and network adapters. KVM is a Type 2 hypervisor while its usage makes the host Linux OS 
a Type 1 hypervisor. This structure of KVM makes it very different from Xen and QEMU, as shown 
on Figure 1.

Hypervisor Features

A hypervisor connects the guest VM to the host machine by simulating a near-host environment. To 
accomplish this task, a hypervisor should incorporate a set of services. We present a brief overview of 
these services below.

•	 CPU Virtualization: For a completely virtualized CPU, there are a set of requirements that must 
be met (Popek & Goldberg, 1974). For a CPU architecture that allows virtualization, neither sensi-
tive instructions nor privileged instructions must also be treated as privileged instructions. Since 
virtual CPUs must behave like real CPUs for more than one VM, the Hypervisor translates and 
schedules virtual CPU instructions from different guests to the physical CPUs appropriately. This 
is achieved by allowing a specific guest to have exclusive use of a CPU for a period of time, after 
which this guest is interrupted and the exclusive use is passed onto another guest. During this 
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switch, the CPU state of the first guest is saved, and the state of the next guest is loaded before the 
control is passed onto it. This process is repeated to provide fair and even access to every guest 
(Chisnall, 2008). This is called Symmetric Multiprocessing (SMP).

•	 Memory Virtualization: Modern CPUs (e.g., x86 and ARM) include a Memory Management 
Unit (MMU) which performs virtual-to-physical memory address translation. This translation is 
accelerated by the CPU hardware by providing traps for privileged instructions to map the virtual 
addresses to corresponding physical addresses. However, Guest VMs cannot directly access the 
MMU, which would imply that the hypervisor would lose control of the VMs. The hypervisor 
provides MMU functionality to the guests by utilizing a soft MMU, which utilizes shadow page 
tables to accomplish its task. Every access to an actual page table invoked by a VM is intercepted 
by the soft MMU and is replaced by an access to a corresponding shadow page table.

•	 Interrupt/Timer Virtualization: A hypervisor should be able to virtualize and manage the inter-
rupt/timer, the interrupt/timer controller of the guest OS, as well as the access of the guest OS to 
the controller. At the same time, it must virtualize all interrupts/timers going into the guest OS. 
Both of these would cause considerable overhead. Modern CPUs also provide hardware exten-
sions for Interrupt/Timer virtualization. For example, ARM defines a Generic Interrupt Controller 
(GIC) architecture and Generic Timer Architecture. Recent versions of GIC and Generic Timer 
introduce virtualization extensions that help manage the virtual interrupts/timer from the hyper-
visor, thereby substantially reducing the overhead caused by the interrupts/timer virtualization. 
This means that the hypervisor can directly send virtual interrupt/timer without translation (Dall 
& Nieh, 2014).

Figure 1. Comparison of Xen, KVM, and QEMU.
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•	 I/O Virtualization: I/O virtualization includes two parts of drivers: front-end and back-end. A 
hypervisor emulates I/O devices by a device emulator running in the host OS or directly on the 
hardware. KVM and Xen employ QEMU’s simulators which have full access to hardware devices 
by default to implement back-end simulation. On the other hand, front-end drivers are also needed 
in guest VMs to simulate the usual I/O requests sent by the guest OS. Hypervisor is responsible 
for the communication between front-end and back-end.

Nevertheless, the case for graphics cards (GPUs) is a lot more complicated. A GPU keeps its own 
graphics memory, works independently from the motherboard, and involves large data transfers. Mean-
while, most GPUs do not provide state saving/recovery. These features of GPUs make GPU-virtualization 
a lot more challenging in many aspects, like VM state-switching and multiprocessing management 
(Chisnall, 2008).

CHALLENGES IN VIRTUALIZATION

Despite many of its advantages, virtualization is not without challenges. We will summarize the primary 
challenges facing virtualization in this section.

•	 Overhead of Deployment and Management: In Mobile-Cloud computing, offloading can be 
done via either a VM clone or a VM migration. Additionally, an interactive status transfer is 
needed for VM management. Both of these require an additional computation and introduce a re-
source overhead. VM deployment introduces computational resources in several aspects (Shiraz, 
Abolfazli, Sanaei, & Gani, 2013) including VM creation, VM configuration and VM startup, as 
well as application deployment.

•	 Security Problem: The security vulnerability of the hypervisor is another challenge that deserves 
attention. Since hypervisors serve as a new software layer between the guest OS and the physical 
machine or the host OS, any attack on the hypervisor implies a risk of attack directly to the CPU, 
memory, I/O, or a combination of these resources. Furthermore, since cloud computing involves 
big data management, networking and remote control, any vulnerability of the hypervisor trans-
lates to service disruptions, data confidentiality breaches, reputation fate-sharing among other 
issues.

•	 GPU Virtualization: Nowadays, GPUs are receiving widespread adoption in a range of platforms 
ranging from individual computers to supercomputers. GPU-accelerated computing offers high 
performance computing (HPC) at a large scale due to its cost-effective, and power-efficient fea-
tures (e.g., the mobile-cloud face recognition application). However, the use of GPU-acceleration 
is still at a relatively low level, as compared to CPU-only implementations. Sharing and managing 
GPU resources in a hypervisor faces several big challenges:

First challenge is to determine how to share GPU resources among several VMs. Historically, most 
GPUs keep memory outside of OS’s main framework, and they do not allow access to multiple concurrent 
applications. Furthermore, they are unable to save and restore the state of applications. This makes GPU 
virtualization for cloud computing complex and fragile. As of the preparation of this book chapter, only 
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a few advanced GPUs, like the Nvidia Kepler family, support virtualization to some degree. The new 
Maxwell family from Nvidia is expected to address this issue much better and full GPU Virtualization 
is expected to be accomplished within the next upcoming Nvidia generations.

Second challenge is the virtualization overhead, as encountered in CPU virtualization. Although this 
overhead is unavoidable, some work on GPU virtualization, such as gVirtuS, allows transparent access 
to the GPU and is independent from the hypervisor, with only a slight overhead introduced relative to 
actual GPU implementations (Giunta, Montella, Agrillo, & Coviello, 2010). This project is the joint 
product of the University of Napoli Parthenope and the Open Source Lab initiative and can be accessed 
at http://osl.uniparthenope.it/projects/gvirtus/.

SOFTWARE SUPPORT FOR VIRTUALIZATION

To leverage virtualization technologies for fast and transparent mobile-cloud offloading, additional 
modifications need to be made to the traditional virtualization software platforms. Two virtualization 
approaches are introduced to enable mobile devices to seamlessly offload computation tasks to remote 
cloud servers. The first one is at the OS-level, which migrates a customized full-fledged virtual machine 
from the mobile device to the server. The VM image is customized by the developers to accelerate their 
application on mobile devices. The communication between the mobile and the cloud and the offloading 
procedure are explicitly defined by application developers. The second approach is at the thread-level, 
where the underlying application VM (e.g. Java VM) is extended with the ability to profile the program 
and migrate threads to remote servers. Program partitioning and offloading procedures are transparent 
to developers and users. The two approaches will be discussed in detail in the following sections.

OS-Level VM

As mentioned in the previous sections, OS-level VMs provide the developers with the flexibility in cus-
tomizing the VM and offering specific acceleration services to their applications. Additionally VMs offer 
an isolated environment and good manageability on the remote servers which enables the deployment of 
self-managing cloudlets. However, one of the greatest challenges with OS-Level VMs in mobile-cloud 
computing is the high latency to transfer the necessary states to the remote server. In order to provision 
a customized VM in the cloud, disk images and a VM snapshot (which is typically several gigabytes in 
total), have to be completely migrated from the mobile device before the VM can be resumed to provide 
offloading services for the mobile. This migration will take at least five minutes even on a fast 802.11n 
network at peak network throughput. This time delay is clearly unacceptable for mobile users, especially 
considering that, one of the advantages of virtualization is application performance acceleration.

To achieve the goal of both high performance and manageability, the VM-based Kimberley archi-
tecture was proposed (Satyanarayanan, Bahl, Caceres, & Nigel, 2009) to accelerate the VM migration 
process. A cloudlet, defined as a self-managed datacenter in a box, was introduced in Kimberley. The 
cloudlet is able to support a few users at a time and maintains only the soft state, thereby making a 
loss of connection acceptable. When a mobile client connects to the cloudlet, it notifies the Kimberley 
Control Manager (KCM) on the cloudlet to download a small VM overlay from either the Internet or 
the mobile client. A VM overlay is the difference between the memory snapshot and disk of a base VM 
and the customized VM. Several base VMs are pre-installed on the cloudlet. Application developers 
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will choose one of the base VMs, build their customized VM on top of this base and generate the VM 
overlay after their customization is complete. When the VM overlay is delivered, a technique called 
dynamic VM synthesis applies the overlay to the base VM and launches the target VM. Since the size 
of the overlay is usually much less than the size of the customized VM, the latency of the synthesis is 
greatly reduced. After the computation is complete, the KCM can simply shutdown the VM and free the 
resources, providing self-manageability that only needs minimal maintenance.

The Kimberly system was implemented on a Nokia N810 tablet running Maemo 4.0, and the cloudlet 
infrastructure was implemented on a desktop computer running Ubuntu Linux where VirtualBox was 
used to provide the VM support. System performance was evaluated by considering the size of VM 
overlays and the speed of the synthesis operation. According to experimental results, the size of the 
generated VM overlays is around 100-200 MB for a collection of Linux applications, which is an order 
of magnitude smaller than a full VM image that can be as large as 8 GB. The processing time for VM 
synthesis ranged from 60 to 90 seconds and has plenty of potential room for improvement through further 
optimizations such as parallelized compression and decompression and VM overlay pre-fetching. (Ha, 
Pillai, Richter, Abe, & Satyanarayanan, 2013) showed that the latency of dynamic VM synthesis can 
be further optimized by pipelining the transmission and deduplication of the VM overlay. There will be 
redundant data within and between the memory snapshots and disk images since most of the data in the 
memory is originally loaded from the disk. The size of overlay can be significantly reduced by exploiting 
the redundancy and find the minimal set of data that is necessary to build the customized VM launch. 
The tradeoff between the size of the overlay and the computation complexity can provide significant 
performance improvement by carefully choosing the delta algorithm and the granularity of the chunks. 
Additionally, since there are strong boundaries enforced by the hypervisor between the guest and the 
host systems, it is difficult for the outside layer to accurately interpret higher level abstractions inside a 
VM, which is called a semantic gap. Such a gap prevents a further reduction of the size of the overlay. 
In (Ha, Pillai, Richter, Abe, & Satyanarayanan, 2013), authors bridge the gap for disks by exploiting the 
TRIM support and introspecting the file system inside the VM. For memory, since there is no standard 
(like TRIM for disks), bridging the gap requires the modification of the guest OS and significant effort 
on maintaining and tracking the memory structure changes.

Another technique used in the paper is pipelining the transmission of VM overlays and Early Start. 
To keep both the network and the CPU busy at the same time to reduce the latency, it is straightfor-
ward to divide the large overlay into small chunks and pipeline the chunk transmission and process-
ing so that the transmission latency, as well as computational latency can be partially coalesced. 
Furthermore, observing that the VM does not really need all of the chunks to be transferred before 
it can be resumed, we can order the chunk transmission in a way where the earliest needed chunks 
are transferred first. This way, the VM can be resumed even when a small portion of the overlay is 
transferred. In the paper, authors use static proofing to obtain the order of the accessed chunks and 
use on-demand transmissions for the out-of-order chunks. Utilizing all of the previously mentioned 
techniques, authors evaluated the fully optimized VM synthesis in terms of first response time using 
five software packages. The results show that, except for AR application, the first response time for all 
other four applications come within ten seconds. They also compare the VM synthesis to the remote 
installation approach and the fully optimized VM synthesis approach has significant performance 
advantages in every application except AR.
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Application-Level VM

As some VM-based frameworks involve OS-level VM cloning and complete application offloading, 
others focus on encapsulating applications from its operating system. This may exploit application 
partitioning in which only parts of an application are offloaded. In other words, instead of the physical 
hardware, the applications themselves are virtualized. This is called an application-level VM. Although 
this framework has limited usage since every application cannot be virtualized this way, the resource 
burden is significantly reduced for applications that can take advantage of this form of virtualization.

Application partitioning schemes fall into two main categories: static and dynamic (Chun & Maniatis, 
2010). In earlier cloud environments, static partitioning was typically used due to its easier design and 
reduced resource management burden. However, static partitioning does not provide any optimization 
for a diverse cloud environment and workload patterns. A dynamic partition algorithm is preferred, since 
an optimized partial execution between mobile devices and the cloud is not only determined by the ap-
plication itself but also the mobile platform capability, cloud environment, network speed and specific 
instantaneous workloads in the cloud.

A typical application-level VM is implemented using software dynamic translation (SDT) (Scott, 
et al., 2003). The VM keeps sets of byte-code instructions which are physical hardware and operating 
system independent. Since the translation needs to provide runtime monitoring and function appendix 
by code modification, based on existing application code, SDT can modify the existing byte-code, in-
jecting additional code and control the code execution. The VM framework lies between applications 
and the cloud host operating system. The VM operates by decoding, translating and storing the applica-
tions’ instructions initially. On the host machine, the VM then takes control of application execution by 
capturing a snapshot and synchronizing the current state, including counters, pointers, PC, condition, 
registers etc. Instructions for which a context switch is needed are processed next. Applying dynamic 
translation and offloading, the VM operations are flexible and modular and diverse forms of offloading 
can be implemented.

CloneCloud (Chun, Ihm, Maniatis, Naik, & Patti, 2011) is an example application-level VM frame-
work which exploits dynamic application partitioning and partition offloading. Mobile-cloud computing 
under CloneCloud is performed in several steps:

1. 	 Application partitioning is automatically performed according to a partitioning algorithm. The 
mechanism aims at find a fixed execution point, upon which application is migrated between the 
mobile devices and the cloud. The algorithm optimizes the partitioning ratio considering network 
properties (not the network condition), computing capacity of the mobile and the cloud, as well 
as the estimated energy consumption. Not all of the execution points are valid as there are many 
constraints for execution availability at every given point. To ensure that a given partitioning is 
legal, a Static Analyzer is used to identify all possible partitions.

2. 	 The states (e.g. counters, registers, memory, etc.) of the mobile platform and the cloud platform 
are timely synchronized, during which execution process is suspended.

3. 	 CloneCloud migrates application operations at thread-level, in which way multi-threading is al-
lowed. With the source byte-code transferred, application can perform distributed execution and 
virtualized computation can be conducted seamlessly.

4. 	 The results of clone execution in the cloud are finally re-integrated back to the mobile platform. 
When a thread reaches its re-integration point, execution is suspended. It is then packed and merged 
into the original process.
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Networking Virtualization

For a mobile device user performing computation in the cloud via a wireless network and a cloud ser-
vice, network virtualization is one of the essential and fundamental elements. For a large-scale cloud 
computing system with large VM image collections and a large data center, networking is important in 
the following areas: accessing specific VM images, transmitting images between devices and servers, 
accessing the data center and migrating application offloading. Using traditional networking schema in 
cloud computing faces several limitations: scalability, flexibility and automatic management.

From the standpoint of the cloud service provider, network congestion is difficult to properly gauge. 
A cloud service system may start with tens of tenants but suddenly grow to hundreds. Without network-
ing virtualization, physical devices, like routers, must be upgraded to meet incremental requirements. 
Traditional physical devices are not designed for cloud computing, so the entire networking system 
must be suspended and wait for device upgrades. Considering a similar case as above, when the cloud 
system grows and network requirements increase, it is difficult for cloud operators to use heterogeneous 
networking gear from different vendors, which makes the management and provisioning very difficult. 
This would result in high management costs, as well as wasted resources and increased overhead.

Using networking virtualization, networking is abstracted from the underlying physical hardware. 
Operators can manage networking aspects such as specific connection patterns, switching, routing, and 
security easily. Thus, networking can be organized as a high-level integration and automatically allocated, 
which helps economic use of resources and reduces energy consumption.

Network performance affects the overall performance of a cloud computing system significantly 
in terms of both execution speed and resource consumption. Although networking can be virtualized 
and applied just as in the case of the virtualization of other devices, networking service takes place at 
different levels in different protocols, depending on the cloud system model. These higher layer mod-
els include Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service 
(SaaS) (Dinh, Lee, Niyato, & Wang, 2013). Generally, IaaS provides more flexible protocol selection 
to vendors, while PaaS and SaaS usually provide provider-determined network service to customers 
(Amies, Sluiman, Tong, & Liu, 2012).

When virtual machines are created, IP Addresses are initially allocated. IP Addresses can be generated 
by the system, reserved as provisioned for VMs, and by using VLANs. Using Internet Protocol Version 
6 (IPv6), networks can be created with more available IP addresses and higher security levels. Inside 
the virtual machines, hypervisors can share a single physical network interface with multiple virtual 
machines. Hypervisors usually provide virtual networking in three ways: bridging, routing and Network 
Address Translation (NAT). Under bridge mode, a hypervisor serves as a data transfer interface and the 
virtual machine is exposed to the Ethernet directly. In routing mode, the hypervisor goes into the network 
layer and makes the virtual network interface externally visible at the IP level.

Large-scale clouds can emulate more IP addresses than is otherwise physically available by hiding 
the network of virtual machines from the external network. In this case, NAT is needed as it enables 
communication with the internet using a hidden virtual machine address. NAT assigns virtual IP ad-
dresses, or private local IP addresses which are different from the host IP. As the virtual IP addresses 
are invisible on the Internet, NAT could create a massive amount of internally-accessible IP addresses 
for purposes of serving a large numbers of virtual machines. At runtime, NAT software keeps a rout-
ing table and changes the IP address information in the data packets based on the table, in which way 
hypervisors can forward incoming and outgoing data packages.
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ARCHITECTURAL SUPPORT FOR VIRTUALIZATION

The x86 and ARM architecture were never designed for virtualization. With the increasing demand for 
cloud computing inside enterprise data centers, where virtualization has become a standard practice, pure 
software-based virtualization, without explicit native hardware support, suffered serious performance 
penalties. Hardware vendors like Intel and AMD have responded to the demand for virtualization with 
new processor extensions including Intel VT-x and AMD-V. These hardware-assisted virtualization tech-
niques reduce the performance overhead of the traditional approaches such as binary translation and no 
longer require changes inside the guest operating system. In the following subsections, the architectural 
support for virtualization in x86, ARM and Nvidia GPU will be discussed in detail.

x86 Virtualization Support

As Popek and Goldberg stated in (Popek & Goldberg, 1974), for a virtualizable CPU architecture, any 
instruction that is control-sensitive and related to resource configuration must be privileged. However, 
x86 microprocessor architecture has such features that makes it unable to meet this demand, therefore 
making it very challenging to support full virtualization on an x86 architecture.

Challenges with X86 Virtualization

In order to implement security in accessing resources, a modern x86 architecture, for example, IA32 
(Intel Architecture, 32-bit), provides an instruction segregation mechanism, in which a direct access to 
pivotal functionality, such as CPU control and memory access, are privileged. To achieve this, x86 CPUs 
provide four privilege levels, 0, 1, 2 and 3, from most privileged (Ring 0) to least privileged (Ring 3). 
This model is usually described as a ring structure, named Ring 0 to Ring 3. In practice, Ring 1 and Ring 
2 are rarely used by the operating system developers, since for most cases the protection mechanism only 
has a concept of privileged and unprivileged instructions and the benefits to Ring 1 and 2 are negligible. 
Therefore, we will just talk about the other two levels in this section: Ring 0, where kernel components 
of the OS run, and Ring 3, where most user applications run.

The IA32 architecture includes 16 instructions that run in Protected mode which cannot be accessed 
by user applications. If any code that is running in a Ring greater than 0 attempts to execute one of these 
instructions, a Protection Fault exception is generated. The list of privileged instructions includes LGDT, 
LLDT, LTR, LIDT, MOV (control register), MOV (debug register), LMSW, CLTS, INVD, WBINVD, 
INVLPG, HLT, RDMSR, WRMSR, RDPMC and RDTSC (INTEL-IA-PartGuide, 2010). These instruc-
tions are mainly related to loading/writing-to registers that control CPU operation, control/debug, cache 
state, TLB, model-specific, timestamp etc. For a fully virtualized CPU, the guest OS must be able to 
run some its components in Ring 0 (highest privileged level). However, hypervisor must have privileged 
control and occupy Ring 0, and it cannot allow its guest OSs such control. The only solution for the 
hypervisor is to run the guest OSs in less privileged Ring 1, 2, or 3, which is called ring de-privileging.

The primary task of the hypervisor is to have its guest OS function just like in an non-virtualized CPU 
environment. However, ring de-privileging introduces plenty of challenges in regard to this requirement 
(Neiger, Santoni, Leung, Rodgers, & Uhlig, 2006). For example, some registers contained information 
related to CPU control, which can only be written in Ring 0 but can be read in higher Rings. A guest OS 
that needs to write to one of these registers could end up not being able to function seamlessly, as in an 
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non-virtualized environment. Furthermore, there are some instructions that operate on segmented memory. 
If the guest OS executes one of these instructions, hypervisor may not be able to properly rearrange the 
memory mapping in a virtualized way. To find a solution to these challenges, much effort is made in 
terms of both software and hardware alternatives. As far as software solutions, there are two alternatives:

•	 Binary Translation: Binary translation is made popular by VMware and is widely used in its 
products. The general idea of binary translation is that, the hypervisor scans the instruction stream 
from the guest and re-encodes the privileged instructions into a virtual version. One disadvantage 
of this approach is the performance penalty for scanning and encoding, especially for I/O inten-
sive applications. On the other hand, some special software like debuggers that require setting 
breakpoints, makes hypervisor design extremely complicated. This is due to the binary translation 
changing the actual code, and even the order of the breakpoints and instructions, which makes the 
debugging process extremely challenging.

•	 Paravirtualization: Unlike binary translation, paravirtualization goes to the root of the problem: 
the guest operating system. For paravirtualization, the guest OS is modified in a way that privi-
leged instructions are replaced by hypercalls. Thus, the guest OS communicates with the hypervi-
sor via hypercalls and avoids the aforementioned troublesome instructions. However, since the 
hypervisor is required to handle these interrupts with an extra layer, a performance penalty is 
introduced.

Despite these software-only solutions, INTEL has made significant effort to facilitate / accelerate 
virtualization via hardware support, which is called hardware-assisted virtualization. Hardware-assisted 
virtualization can be conceptualized as allowing hypervisors to run in a Ring “-1” which would free the 
precious Ring 0 for guest VMs. We will talk about the details of Hardware Assisted Virtualization below.

Intel Hardware-Assisted Virtualization

Intel’s virtualization extensions for the 32-bit x86 architecture, VT-x, was first introduced in 2005. VT-x 
refers to a new mode added to the processor, named virtual-machine extensions (VMX) which support 
virtualization for multiple virtual machines. VMX includes two new CPU operations: VMX root opera-
tion and VMX non-root operation. Employing VMX mode, generally a hypervisor runs in VMX root 
operation and its guest operating systems runs in non-root operation.

•	 VMX Root Operation: Is much the same as an ordinary processor operation from the hyper-
visor’s view when it is operating as a host. What is different is that, it allows a series of VMX 
instructions. On the other hand, virtual processors for VMs, running in VMX non-root operation, 
are modified in certain ways to support virtualization. Certain instructions are trapped by the 
CPU, instead of directly executing on the CPU. This causes transitions between the hypervisor 
and the VMs, which are called VM exits. With VM exits, the access boundary of the guest OSs 
is limited, therefore the host hypervisor can retain control of the CPU resources. Similarly, when 
transitioning from hypervisor operation to guest operation, a VM entry occurs.

•	 VMX Non-Root Operation: To manage the VMX non-root operation, as well as the two transi-
tion operations, namely VM entries and VM exits, VT-x introduces a new data structure called 
virtual-machine control structure (VMCS). VMCS contains a guest-state area for VMX non-root 
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operation, and a host-state area for VMX root operation. Upon each transition, VM exits and en-
tries save the current processor state into the corresponding state area in VMCS, and load the next 
required processor state. VMX mode is implemented by a series of instructions extensions. Table 
1 shows a list of the VMX instructions.

VMX operations incorporate all necessary instructions to complete a full lifecycle of a guest virtual 
machine, by allowing the guest to enter and exit and the host to manage the guest OS and stay in control. 
Figure 2 shows the lifecycle of VMX operations.

Figure 2. Operation transitions in Intel VT-x.

Table 1. Additional instructions introduced by INTEL’s VT-x.

Instruction Description

VMXON Enter VMX operation

VMCLEAR Inactive VMCS

VMPTRLD load the VMCS pointer for an active VM

VMWRITE Initial/write fields in the current VMCS

VMLAUNCH Create a VMCS launching

VMCALL Exit from VMX non-root operation

VMREAD Read fields in the current VMCS

VMRESUME Resume VM execution in VMX non-root operation

VMPTRST Store the pointer to an active VM to memory

VMXOFF Leave VMX operation
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•	 VMXON: The primary entry point to VMX mode is the VMXON instruction. After executing 
VMXON, the processor would be placed in VMX_ROOT mode.

•	 VMCLEAR: To ensure that the VMCS region is in a pure state before activated, VMCLEAR 
must be executed before VMPTRLD. VMCLEAR will allocate a new VMCS region in memory 
and set its state to “clear.” Also, the previous VMCS pointer will be invalidated.

•	 VMPTRLD: Executing VMPTRLD initializes a pointer to a new allocated VMCS region for 
each guest virtual machine.

•	 VMWRITE: After VMPTRLD, the hypervisor will issue a sequence of VMWRITE instructions 
to create several memory regions in the VMCS. These regions include host-state fields, guest-state 
fields, VM-exit control fields, VM-entry control fields, and VM-execution control fields.

•	 VMLAUNCH: After the above procedures, VMCS is successfully initialized and is ready to 
use. The hypervisor will then launch the new created virtual machine by applying VMLAUNCH. 
Simultaneously, VMCS state will be changed to “launched.”

•	 VMCALL: To implement the VM exit functionality that is previously mentioned, the VMCALL 
instruction is used. If the software wants to request a service from host processor, it will VMCALL 
that service. The hypervisor will implement a VMCALL through one of the hardware-assisted traps.

•	 VMREAD: VMREAD is used to access specific VMCS fields. For example, if a VM exit occurs, 
the hypervisor uses VMREAD to access the exit-reason field in the VMCS. Depending on differ-
ent exit reasons, hypervisor might want to access other fields in VMCS.

•	 VMRESUME: VMRESUME can be used to resume a VM execution or launch a guest on the 
same virtual processor in a “launched” VMCS. For example, after an exception, the hypervisor 
can resume the state of a virtual machine by VMRESUME.

•	 VMXOFF: If a hypervisor wants to shut down and leave VMX mode, it executes VMXOFF.

In summary, VT-x provides a solution to some of the challenges that exist in pure-software virtualiza-
tion, by introducing assistance directly from the x86 hardware. Using VT-x, guest operating systems can 
work at Ring 0 equivalent privilege levels. Also, a paravirtualization system can make some use of the 
hardware-assisted virtualization features to optimize certain operations. For example, a hypervisor can 
benefit from performing I/O through hardware virtualization extensions rather than software emulated 
I/O which has higher overhead and is therefore less efficient.

AMD Hardware-Assisted Virtualization

Similar to Intel’s VT-x, AMD also provided a set of instruction extensions to assist virtualization, called 
AMD-v, with the code name “Pacific.” The list of the added instructions are shown in Table 2 (AMD64-
Virtualization, 2005). The virtual mode of AMD-v is named SVM. AMD-v also provides a mechanism for 
mode switching and transitioning between the hypervisor to the guest through VMRUN and #VMEXIT 
instructions. The AMD instruction #VMEXIT is similar to the VT-x instruction VMXOFF which facili-
tates a VM exit. The guest OS uses VMMCALL which causes the processor to generate an exception 
and the guest OS requests services from the hypervisor via the use of this instruction, much like the 
VMCALL in the Intel implementation. AMD-v also introduces a data structure similar to VMCS, called 
Virtual machine control block (VMCB). A VMCB is also maintained for each guest virtual machine, and 
contains a set of Control areas and State areas. Control areas contain control and information determine 
the source of #VMEXIT. The state of virtual processors is stored in the State areas.
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In addition to these features similar to VT-x, AMD-v provides several extra features related to the 
x86-64 architecture. Some AMD CPUs contain an integrated memory controller, which allow hypervisors 
to handle memory management. To achieve memory management, AMD-v includes Shadow Page and 
Nest Paging mechanisms. Shadow Page mechanism allows a hypervisor to modify the OS’s page table 
and remap memory partitions. Nest Paging allows two levels of memory address translation performed 
in hardware. Nest Paging keeps a Nest Paging Table to translate guest physical memory addresses to 
host physical addresses, so that the guest OS can fully control and use its own page tables. Since the 
translation is done by hardware, it can achieve a near-native performance.

AMD-V also introduces a special Device Exclusion Vector (DEV) interface. Each DEV is kept in 
an exclusive protection zone. DEV takes charge of upstream accesses for their permission and limit 
the address zones for devices. This mechanism allows it to protect memory mapped I/O (MMIO) and 
DRAM from abuse.

ARM Virtualization Support

CPU virtualization for the ARM architecture is a relatively new field of research with slow growth 
compared to the x86 architecture. ARM brings additional challenges in virtualization (Hwang, et al., 
2008) compared to the x86 architecture. In this section, ARM virtualization will be described briefly.

Challenges with ARM Virtualization

As previously mentioned, a typical x86 architecture introduces a four-level privilege system which in-
troduces challenges for virtualization. The case is even worse for ARM which has only one privileged 
mode and one unprivileged mode. Such a limited scheme forces the guest OS and the applications to run 
in the same unprivileged mode, and makes the protection of the guest OS more difficult. In the ARM 
architecture, cache is virtually tagged and therefore there is no ASID attached to the TLB. This feature 
results in a very high flushing frequency on state switches if we try to distribute memory among guest 
OSs and applications. To provide support for easier virtualization, starting from ARMv7 in 2010, a new 
virtualization extension (VE) was introduced as an optional feature on ARM CPUs. VE, along with 
the previously introduced extension Large Physical Addressing Extensions (LPAE), allow an efficient 
hardware-assisted implementation of a hypervisor possible in the ARM architecture.

Table 2. Additional Instructions introduced by AMD-V.

Instruction Description

CLGI Clear Global Interrupt Flag to 0

INVLPGA Invalidate selective TLB mapping

MOV(CRn) Move between general registers and control registers

SKINIT Secure Init, allowing activating of trust software

STGI Set Global Interrupt Flag to 1

VMLOAD Load processor state from control block (VMCB)

VMMCALL Call hypervisor

VMRUN Run virtual machine

VMSAVE Save the state of a VM into control block (VMCB)
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ARM Virtualization Extensions

The principle of virtualization extensions on the ARM architecture is very similar to that of in the x86 
architecture, which is, in short, the introduction of a new “-1” privilege ring which is even more privi-
leged than the kernel mode. ARM has two working modes: secure mode and non-secure mode, and VE 
are only available under the non-secure mode. The newly introduced privileged level is called the hyp 
mode. Similar to the x86 virtual extension operation, certain additional instructions are introduced to 
facilitate hardware-assisted virtualization in the ARM architecture. For example the “hvc” instruction 
is used to enter the virtualized operation mode. Without an ASID for TLB, the hyp mode has a register 
named VMID which keeps a stable mapping to physical memory during state switches. This allows the 
ARM architecture to eliminate the problems with the aforementioned high flushing rates.

NVidia GPU Virtualization Support

Many compute-intensive applications and games heavily rely on the acceleration attained from Graph-
ics Processing Units (GPUs). Many of the applications in this category are good candidates for a cloud 
computing environment. Although virtualization of such applications in the cloud would provide all of 
the previously mentioned benefits of isolation, resource flexibility and security, one of the major draw-
backs of virtualization in a cloud computing environment is the lack of support for high-performance 
GPU virtualization. One primary hurdle for GPU virtualization is the fact that, unlike a CPU which 
is design to be shared by multiple processes, GPUs usually assumes no multiplexing. Also, the high 
memory bandwidth demands from a GPU will cause significant overhead in a virtualized environment. 
Recent advances in virtualization technologies have enabled virtual machines to directly access physical 
GPUs and exploit their hardware’s acceleration using an I/O Pass-through technique. Meanwhile, GPU 
manufactures like NVidia have also equipped their products with virtualization support assisted by the 
GPU hardware, similar to the hardware-assisted virtualization that the CPU manufacturers introduced.

Recent advances in hardware have enabled virtualization systems to achieve one-to-one mapping be-
tween an I/O device and a VM instance. This allows VMs to use non-virtualization-friendly I/O devices 
without software emulation (e.g., Network Interface Cards (NIC) and GPUs). One problem with these 
I/O devices is the use of the traditional Direct Memory Access (DMA) mechanism which will violate 
the memory isolation enforced by the hypervisor among VMs. A new configurable I/O Memory Man-
agement Unit (IOMMU) provided by Intel VT-d and AMD-Vi allows the hypervisor to reconfigure the 
interrupts and DMA of the physical devices in a way where they are directly mapped into certain guest 
VMs and the DMA requests will pass through the hypervisor, incurring less overhead while preserving 
the isolation.

Even with the ability to map one device to one VM, it is still difficult to virtualize devices like GPUs. 
For these virtualization-unfriendly GPU devices, the hypervisor needs to translate commands from VMs 
so that it appears to the GPU as if the commands are coming from a single system. Even with such a 
mapping, multiple GPUs need to be physically installed in a server so that the hypervisor can achieve the 
mapping, which is not flexible or cost-efficient. To address the problem, NVidia introduced the GRID 
vGPU technology (Nvidia-Grid-VGPU) in the Kepler architecture to make GPUs more virtualization-
friendly. This technology enables multiple VMs to share true GPU hardware acceleration without 
compromising the graphics experience. With the GRID vGPU technology, each VM has its dedicated 
memory in the GPU and the native graphics commands of each VM are passed directly onto the GPU, 
without any translations by the hypervisor.
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CONCLUSION AND FUTURE WORK

In this chapter we discussed the state of art in VM-based mobile-cloud offloading techniques in detail 
both in terms of its software and architectural aspects. We introduced the general structure of multiple 
widely-adopted virtualization platforms (hypervisors), which are Xen, QEMU, and KVM. We docu-
mented the way each one of these hypervisors allow the virtualization of a variety of resources, such 
as CPU, memory, interrupt/timer, I/O, and network. We listed the challenges of running a hypervisor 
in a cloud computing environment, since each one of these resources have unique characteristics which 
cause a different form of a challenge.

We discussed how a guest OS (i.e., a Virtual Machine, or VM) runs CPU instructions as if there is 
no hypervisor. Kimberley and CloneCloud are the two VMs which run at the OS level and application 
level, respectively. We discussed these two popular VMs in detail which run without ever leaving the 
hypervisor’s control. We discussed the current improvements to different layers of these two virtualiza-
tion systems made especially for mobile-cloud offloading purposes. Also, two approaches at different 
offloading granularities, application and thread-level, were reviewed and their advantages and disad-
vantages were discussed.

While the virtualization of resources can be achieved using pure software approaches, this typically 
has a high performance penalty. In 2005 and going forward, almost every CPU manufacturer introduced 
a form of hardware assistance mechanism for the virtualization of various resources. This is through the 
introduction of instruction extensions that run on different privilege levels. We detailed the hardware as-
sisted virtualization mechanisms that are introduced by Intel, AMD, ARM, and Nvidia. These platforms 
are Intel’s VMX in the x86 architecture, AMD’s AMD-v, ARM’s VE (virtualization extensions), and 
Nvidia’s Grid vGPU for GPU virtualization.

As mentioned in this chapter, there still exists challenges yet to be addressed to enable the practical 
use of VM-based mobile-cloud offloading in daily life, which opens the door to potential directions for 
future work. One of the challenges is the overhead of the deployment and management of a VM-based 
offloading system. Offloading via traditional VM clones or VM migration approaches may incur sig-
nificant communication latency over the Internet and further investigations are required to reduce the 
transmission and processing overhead of VM-based coarse-grained offloading approaches. Another ques-
tion that needs to be addressed is the security and privacy for both the offloading service providers and 
the users. It is important for the service providers that they can detect and prevent malicious code being 
offloaded to their systems. On the other hand, it is important for the users to assure that their offloaded 
code and data are secured against other parties including the service providers. Additionally, users also 
need to be able to verify that their offloaded code is actually executing as expected and is returning the 
correct results (i.e., functional verification), which requires further investigation in the future.
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KEY TERMS AND DEFINITIONS

AMD-v: AMD’s hardware-assisted virtualization technology. AMD-V involves similar features for 
instructions extension as VT-x. Besides that, AMD-V also provide several modes that help hypervisor 
to handle memory-partition.
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ARM: ARM Holdings is a publicly-traded company that licenses low power-consumption CPU 
architectures to companies such as Nvidia, Samsung, and many others. This allows the licensees to 
quickly develop products that require CPU cores. ARM is the dominant architecture for smart-phones 
and many other low-power devices.

Augmented Reality: A family of emerging applications that supplement computer-generated in-
formation with acquired real-time information to augment the information content. An example is an 
application that super-imposes a dress -from an existing database- on a person without having to actually 
wear that dress.

Central Processing Unit (CPU): This central piece of hardware controls the movement of the data 
from the main memory into its cores and executes a program that is written by the developer. It is possible 
that, multiple Operating Systems (OS) are running on a CPU (i.e., virtualized). Virtualization allows a 
seamless transition from one OS to another. This is done through hardware support that is built into the 
CPU hardware (e.g., the x86 architecture).

CloneCloud: A web-based system applied for mobile-cloud offloading. CloneCloud handles the 
communication and storage tasks in mobile-cloud system and can automatically do partition for a smart-
phone application and distributed the task between cloud servers and the smartphone via network, in 
which way help user save energy on smartphones and get better performance.

Cloudlet: An intermediate computationally capable device that has direct WiFi access to a mobile 
platform and WAN access to the cloud. A cloudlet can be used to perform numerous tasks, such as pre-
processing the information received from the mobile device. This could ease the computational burden 
the mobile device, thereby improving its perceived performance, as well as power consumption.

CPU Cache Memory: Composed of L1, L2 and L3 cache layers (stylized L1$, L2$, and L3$), the 
purpose of CPU cache memory is to allow quick access to frequently used memory locations by buffer-
ing them within the cache hierarchy. The lower the cache memory level is, the smaller (but, faster) the 
cache is. For example, the Nehalem CPU has a 64KB L1$, which can be accessed in 4 cycles, however, 
L2$ is 256KB, while it requires 11 cycles for access. L3$ requires 50 cycles and is shared by all cores, 
however, it is 8MB. In some server CPUs, L4 is available.

CPU Main Memory: Typically in the Gigabyte (GB) range, CPU memory is the highest latency, 
but high throughput storage medium within the memory hierarchy of the CPU. Access to CPU memory 
is done through a row buffer, thereby making CPU memory not byte-addressable.

Crowd-Sourcing: Crowdsourcing is to outsource a task which is usually huge to a broad, loosely 
defined external group of people or devices that are willing to help. In mobile-cloud computing, crowd-
sourcing is to offload a heavy computation task to the nearby mobile devices through wireless network 
to accelerate the task or improve the quality of the result.

Face Recognition: A computationally-intensive process that associates the faces in a picture with a 
known set of faces that exist in a fixed database. Typical implementations consist of three steps for this 
process: Face Detection identifies the location of the faces in a picture, Projection converts these faces 
into coordinates in a different vector space called Eigenfaces, and the final Face Recognition step is the 
search for the closest match in the database.

GPU Main Memory: An example GPU memory type is GDDR5. The biggest difference of GPU 
memory as compared to CPU memory is its parallelism. GPU memory has 16 banks, and is capable 
of providing consequent memory locations to 16 threads in parallel. However, if some of the threads 
cannot make use of these consecutive locations, certain data elements will be wasted, requiring more 
cycles to feed data to those threads.
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GPU Virtualization: Many I/O devices like GPUs are usually not design to be virtualization-friendly. 
GPU virtualization provides a way for multiple VMs to share a single GPU by adding PCI pass-through 
support and enabling GPUs to save registers and do context switching.

Graphics Processing Unit (GPU): This device is connected to the CPU through an I/O bus, such 
as PCIe (PCI Express). GPU code is responsible for explicit data transfers from CPU memory (main 
memory) and the GPU memory (Global Memory). The GPU code (composed of multiple “kernels”) 
executes inside the GPU cores while using the data within the GPU’s Global memory. GPU virtualiza-
tion is a lot more challenging to implement than CPU virtualization.

gVirtuS: Referring to the GPU Virtualization Service. GVirtuS is an open source project that en-
ables GPU virtualization by giving access of GPU to the virtual machines in a transparent way. GVirtuS 
currently can only runs on NVidia CUDA based GPUs but is going to be applied on other GPUs in the 
future. GVirtuS is usually used for remote GPU sharing and can get a relatively satisfactory performance.

Hypervisor: A software or hardware layer lies upon host machine or host OS. Hypervisors provide 
exclusive virtual runtime environments include CPU, memory and other resources for the virtual ma-
chines, and also manage their operation. A hypervior may directly run on the host hardware machine 
or within a host operating system.

I/O Virtualization: I/O virtualization is to consolidate multiple I/O devices into a single one which 
is shared by multiple VMs and is dynamically allocated to different entities to achieve better flexibility 
and overall utilization of the system.

IA32: Intel’s third generation x86 architecture. In a broad sense, it also refers to all 32-bits x86 ar-
chitecture versions (not only Intel’s).

IaaS (Infrastructure as a Service): A type of cloud computing model. IaaS denotes the case that a 
service provider provides a whole physical computer infrastructure, or a virtual machine when applying 
virtualization technology to the users.

Kimberley: A Virtual machine that is designed to accelerate the virtualization of mobile-cloud ap-
plication by introducing multiple optimizations for the transfer of the VM image. These optimizations 
such as VM overlays and VM synthesis aim at reducing the starting latency of a VM due to the long 
transfer delays required for transferring a VM image.

KVM: A Linux subsystem with full name Kernel-based Virtual Machine, also a type 2 hypervi-
sor which provides virtualization extension to Linux kernel. KVM is only able to work on CPUs with 
hardware-assisted virtualization extension. When merging into the Linux kernel mainline, KVM turns 
the Linux operation system into a type 1 hypervisor.

Memory Virtualization: Memory virtualization is to create a distributed memory pool for a cluster by 
decoupling and gathering the memory from individual systems in the cluster. The pool, which overcomes 
the physical limitation of traditional memory, can be accessed and managed throughout the entire cluster.

Mobile-Cloud Offloading: Due to the hardware limitations on mobile devices, such as tablets and 
smart phones, it is feasible to run certain mobile applications in the cloud by outsourcing the applica-
tion to cloud server. This concept, i.e., mobile-cloud offloading, also saves energy when the cost of 
communication (i.e., the transfer of data and code) amortizes the cost of computation (i.e., the energy 
required to execute the program by the CPU and/or GPU).

PaaS (Platform as a Service): As a kind of cloud computing model, PaaS denotes the case that a 
service provider provides a computation environment including OS, storage device and other servers as 
a software development platform to the users.
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QEMU: A generic device emulator that performs virtualization for kinds of hardware. Working as 
an independent hypervisor, QEMU can either run a single program (user-mode) or a complete operat-
ing system. Besides, QEMU also serves in many other hypervisors, like Xen and KVM, as peripherals 
emulator.

SaaS (Software as a Service): As a kind of cloud computing model, PaaS denotes the case that a 
service provider provides a service upon an exact software application, for which users would get access 
to a certain application without concerning about its maintenance.

Thread: A CPU core could house more than one thread. For example, in the INTEL Nehalem CPU 
architecture, 4C/8T implies (4 cores, 8 threads). This means that, each core can execute two threads. 
The ability to execute multiple threads affords each core more “options” for execution. While these two 
threads share many resources in the core (e.g., fetch and decode units, as well as the L1$ and L2$), this 
doesn’t necessarily hurt the performance, since core-intensive and memory-intensive threads could make 
a good pair, utilizing the resources much more efficiently than a single thread would.

Virtual Machine (VM): A software that simulates real physical hardware or operating system en-
vironment in which programs can execute like in a physical machine. A virtual machine may support 
the execution form a computing process, an application, a complete operating system to multiple guest 
operating systems.

VM Clone: A way of virtual machines creation. VM clone means make a copy of an existing virtual 
machine instead of reinstalling guest OS and/or applications. Creating a VM clone can either fully copy 
the mother virtual machine and make an independent clone, or just make a clone from snapshot and 
sharing virtual disk with the mother virtual machine.

VM Image: A copy of the entire state of a virtual machine. A capable virtual machine monitor is 
able to create and store its VM Images in certain formats (e.g. raw, qcow2, vmdk and vdi) via which the 
virtual machines can be restored to the same state afterwards.

VM Migration: A way of virtual machines creation. VM Migration, also called Live Migration, 
means moving a running virtual machine from one host to another with the same virtualized environ-
ment. VM migration is done by transferring the full state, including memory, network and other devices 
to the destination hardware.

VT-x: Intel’s hardware-assisted virtualization technology. VT-x involves a set of architectural in-
structions extension for IA32 CPUs, including VMX root operations and VMX non-root operations. 
VT-x makes CPU virtualization much simpler in which way reducing the hypervisor complexity and 
software size.

x86: Introduced by INTEL Corporation in the 80’s, x86 is the dominant architecture for server products 
and Windows-based desktop and laptop computers. Apple also started using x86 CPUs in their laptops 
and desktops in the late 2000’s, which increased the x86 market share even more.

Xen: A wide-used type1 hypervisor that allows multiple operating systems operating as virtual ma-
chines on the same host machine. Xen is well-known as its using of paravirtualization, which can run 
modified paravirtualized guest operating systems in order to get high performance on x86 architecture.


