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ABSTRACT In mobile crowd-sensing systems, the value of crowd-sensed big data can be increased by
incentivizing the users appropriately. Since data acquisition is participatory, crowd-sensing systems face the
challenge of data trustworthiness and truthfulness assurance in the presence of adversaries whose motivation
can be either manipulating sensed data or collaborating unfaithfully with the motivation of maximizing their
income. This paper proposes a game theoretic methodology to ensure trustworthiness in user recruitment in
mobile crowd-sensing systems. The proposed methodology is a platform-centric framework that consists of
three phases: user recruitment, collaborative decision making on trust scores, and badge rewarding. In the
proposed framework, users are incentivized by running sub-game perfect equilibrium and gamification
techniques. Through simulations, we show that approximately 50% and aminimum of 15% improvement can
be achieved by the proposed methodology in terms of platform and user utility, respectively, when compared
with fully distributed and user-centric trustworthy crowd-sensing.

INDEX TERMS Ambient intelligence, data acquisition, data analysis, distributed computing, intelligent
sensors, Internet of Things, mobile computing, game theory, crowd-sensing, gamification.

I. INTRODUCTION
In the Internet of Things (IoT) Era, crowd-sensing (MCS)
has emerged from large-scale participatory sensing which
requires an implicit collaboration between crowd-sensing
platforms and sensing data providers, i.e. the participants [1],
[2]. Participants act as service providers in crowd-sensing
campaigns by only using their smart mobile devices such
as smartphones, tablets and wearables. These devices are
equipped with various built-in sensors such as GPS, camera,
accelerometer, gyroscope and microphone. Furthermore, the
widespread use of these devices unveil the potential of them
being an integral part of the IoT sensing. As stated in [3],
because the IoT consists of massive amount of uniquely iden-
tifiable heterogeneous devices with communication, sensing

and computing capabilities, the IoT architecture faces several
challenges concerning the acquisition, processing and storage
of big data streams.

In 2015, more than 1.4 B units of smartphones were
reported to be sold worldwide [4], while 232M units of wear-
ables were sold in 2015 with a projection of 322 M unit sale
in 2017 [5]. Various phenomena such as air pollution, water
quality, road condition for smart transportation, public safety
and emergency preparedness can be collaboratively sensed
through these devices in a participatory, or opportunistic
manner [6], [7]. Mobile crowd-sensing has been attracting the
IT industry for various applications. A research consortium
between IBM, University of Illinois and University of Min-
nesota has developed a middleware crowd-sensing platform
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which is called Citizen Sense [8]. Google has developed a
crowd-sensing application called Science Journal, which is
available via Play Store [9]. Science Journal exploits various
built-in sensors in smartphones to acquire data regarding
users’ interests. The collected data undergoes real time ana-
lytics. Based on these phenomena, mobile crowd-sensing is
listed as a critical component of the IoT [10].

Increasing popularity of the crowd-sensing applications
introduced in mobile platforms implies that tremendous vol-
umes of data need to be processed, analyzed and managed
in order to extract context-aware information and facilitate
decision making procedures [11]–[13]. According a report by
Cisco [14], smart devices are predicted to generate 98% of the
mobile data traffic and monthly mobile data traffic is fore-
cast to reach 30.6 Exabytes by 2020. Recently, researchers
have started tackling data quality assessment [15] especially
in visual crowd-sensed data, and data quality-aware incen-
tives in mobile crowd-sensing in order to avoid unneces-
sary rewards made to participants [16]–[18]. As the advent
of Internet of Things (IoT) concept enables mobile crowd-
sensing via built-in sensors of everyday mobile devices,
uncertainty in the quality of crowd-sensed data is complicated
since the recruited participants and their crowd-sensors are
not professional/dedicated. While the quality of sensory data
can be modeled as a function of the sampling rate, in these
scenarios, it can be any random number. In order to deal with
uncertainty in these scenarios, online learning approaches
have been proposed to acquire the statistical information
about the sensing values throughout the sensor recruitment
process [19]. In [20], uncertainty propagation in distributed
sensing has been modeled via Bootstrap-based methodology
in order to improve system accuracy. Therefore, the inte-
gration of big data analytics into mobile crowd-sensing to
improve the quality of the aggregated data – and consequently
the quality of provided services – presents an important
research area.

Effective user recruitment is a key function to achieve
the desired performance of MCS platforms [21]. There-
fore, it is imperative to incentivize users to promote
participation [22], [23]. Proper recruitment policies allow
selection of users that are able to fulfill sensing tasks with
high accuracy while minimizing the system costs. On one
hand, the central platform organizes and assigns tasks, thus
sustaining a monetary cost to recruit and reward users for
their contribution. On the other hand, users sustain costs for
their contributions in terms of energy consumed for sensing
and data subscription plan use for reporting [24]. Several
incentive strategies have been proposed in the literature with
the aim of addressing the trade-off between platform and
user utility [25]. In [26], the requirements of an effective
incentive design have been listed as compatibility, individual
rationality, and efficiency.

When data analytics are applied to the aggregated data, the
quality of information is closely related to the trustworthi-
ness of the acquired data. In a typical mobile crowd-sensing
scenario, the central platform matches sensing tasks with

suitable participants through the recruitment process [27].
By applying proper recruitment policies, users that are able
to fulfill sensing tasks with high accuracy can be selected,
thereby minimizing platform operating costs. On the other
hand, users incur costs for their contributions in terms of
energy consumed for sensing and data subscription plan use
for reporting.

Recruitement of reliable users requires realistic incen-
tives to attract a sufficient number of users to the platform;
several incentive strategies have been proposed to provide
a mutually-beneficial platform for both the users and the
platform [25]. Gamification is a widely adopted technique
to increase user participation in user-centric systems [28],
[29]. Nowadays, popular social platforms such as Foursquare,
Twitter and Stack Overflow apply gamification in their appli-
cation environment. Gamified incentives award badges to
users. Badges stand for virtual rewards that are meant to pro-
vide a sense of accomplishment in the users and to motivate
them to participate actively and continuously [28].

Analyzing user behavior is a crucial aspect of gamification-
based user incentives [30]. Besides the utility of crowd-
sensing platforms and participants, trustworthiness of the
sensed big data is essential for critical applications such as
public safety [1], crisis management, and disaster prepared-
ness [31]–[33]. User reputations are key indicators of data
trustworthiness in mission-critical crowd-sensing applica-
tions. The presence of malicious users introduces the risk of
modified or altered data to deliberately spread disinforma-
tion. Through anomaly detection techniques, mis-behaving
users can be detected, and their reputation is reduced [34].
Thus, a key objective of a crowd-sensing platform is to
determine the level of reliability/trustworthiness for each
user. To this end, user trustworthiness and reputation need to
be stored and dynamically updated on the basis of the quality
of contributed data.

An interesting challenge pertaining to the quality of
data – and user reputation – is the possibility of inaccu-
rate sensor readings (e.g., malfunctioning sensors in a user’s
smartphone) causing an incorrect classification of a user
as malicious, rather than inaccurate or invalid [31], [35].
Furthermore, because of the limited communication capa-
bility of the acquisition network, intermediary cloudlet —or
concentrator— devices exacerbate the security concerns that
are associated with the acquisition network [36]–[38]. These
concepts alone present different research areas; in this paper,
we will make the simplifying assumption and will treat both
cases as the same.

In this paper, we formulate a game theoretic approach to
recruit smartphone users, in which participants with higher
reputation are considered winners of the user recruitment
phase. Although there is preliminary analysis in gamification-
based crowd-sensing [39]–[41], this topic needs significant
further exploration. We build on our recent study in [42],
where users are incentivized via a repeated Subgame Perfect
Equilibrium (SPE) in a three-step recruitment process. The
first step is user-task matching via a reverse auction whereas
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the second and third steps are collaborative decision making
(i.e., SPE), and badge rewarding for users with high reputa-
tion, respectively.

In this study, we propose a game theoretic vote-based user
recruitment in detail and investigate the impact of environ-
mental settings on platform and user utilities, as well as
the trustworthiness of the acquired data via crowd-sensing.
To this end, we study the impact of initial reputations of
users on platform and user utility, as well as the awards
made to malicious users. The motivation behind this study is
that the user reputations evolve in time and estimating initial
reputation of a participant becomes a challenging issue. Fur-
thermore, we study the impact of similarity scores of the data
reported by participants on user and platform utility under
normal conditions, where users receive positive or negative
votes from their neighbors that sense the same phenomena.
We also investigate the platform and user utility effect of dif-
ferent badge rewarding mechanisms for highly reputed par-
ticipants. We evaluate our proposed framework via extensive
simulations and compare it to our previously proposed user
recruitment scheme [43]. Our proposed framework improves
platform utility by up to 50% and average user utility by 15%
as compared to our previous work.

The rest of the paper is organized as follows. Section II
presents background on big data and mobile crowd-sensing
and motivates the need for trustworthiness in user recruit-
ment and incentives. Section III presents the proposed
trustworthiness-driven and gamification-based users recruit-
ment model in detail. Section IV provides performance eval-
uation via extensive simulation results under various case
studies. Section V concludes the work and outlines future
research directions.

II. BACKGROUND AND MOTIVATION
Khan et al. [7] present a comprehensive overview on urban
sensing. Based on the role of users and how the user is
involved in sensing tasks, two main approaches, namely par-
ticipatory and opportunistic sensing are defined. Users are
self-aware about sharing data with the others in participa-
tory sensing but in opportunistic sensing, mobile devices
are involved in the decision making process instead of the
users. In [44], a framework has been proposed to combine
the strengths of both paradigms.

Mobile crowd-sensing is a new sensing paradigm which
incorporates built-in sensors of mobile devices and human
intelligence to monitor, share, analyze big and heterogeneous
data about diverse phenomena. Data provided by mobile
crowd-sensing is used to design a variety of applications
according to individual or group activities to model their
behavior and predict possible solutions for different patterns.
Personal and community sensing are the two primary cate-
gories under mobile crowd-sensing applications according to
a categorization based on the type of monitored events [6].

The integration of big data analytics, mobile crowd-
sensing, cloud computing, IoT, and wearable technologies
promise to enable applications with broader impacts such

as environmental monitoring [45]–[47], infrastructure man-
agement and social computing [48], road condition mon-
itoring [49], sensor-annotated video surveillance [50], and
remote health monitoring [51]–[53]. For example, the Fly-
sensing application is a remarkable representative of social
crowd-sensing, which runs on passengers’ smartphones en-
route to share data about safety, health monitoring, and
surveillance of events in the air [54]. Social crowd-sensing
concept has been introduced to partition huge sensing tasks
to a network of participants [55].

Zhang et al. [56] formulate a four-stage life cycle for
mobile crowd-sensing applications with the following stages:
Task creation, task assignment, individual task execution and
crowd-data integration. In each stage, the following 4W1H
framework is taken into account: What phenomena should be
sensed, when and where the assigned task should be sensed,
who is responsible for collecting data and how the sensing
task is divided between users as well as how collected data is
communicated to the recruiter.

A. BIG DATA AND MOBILE CROWD-SENSING
During the last decade, a tremendous volume of data has
been generated by means of Information and Communica-
tion Technology (ICT). According to Zikopoulos et al., the
global data volume is expected to reach 35 Zetabytes by
the end of 2020 [57]. As reported in [58], mobile crowd-
sensing generates a substantial volume of heterogeneous big
data that makes it insurmountable for relational databases to
handle. Combination of big data analytics and mobile crowd-
sensing introduces new challenges to assure the veracity of
the acquired data. This motivates the development of novel
methods for the storage, management, and processing of
crowdsensed data by using predictive analytics, data mining,
text analytics, and statistical analysis [59]–[61].

Hashem et al. [62] provide various big data applications
in smart cities, namely smart grid, smart health care, smart
transportation and smart homes. TreSight [63] is an example
smart city big data application that uses Big Data Analyt-
ics (BDA) and Internet of Things (IoT) to form a recom-
mendation system that aims to improve the smart tourism
in the city of Trento, Italy. Furthermore, the output of data
analytics can assist decision making processes. Cities like
Malaga, Amesterdam and Boston are well-known cases for
applying BDA techniques to model the behavior of urban
inhabitants. To cope with computing and storage limitations
in handling crowdsensed big data, and improve data quality,
Khan et al. [64] present the architectural design of cloud
based big data analytics. Authors in [65]–[67] study the big
data analytics using novel encryption algorithms —such as
homomorphic encryption— to eliminate privacy concerns on
medical data.

Integration of big data analytics and mobile crowd-sensing
introduces mutual benefits to both domains as Ren et al. [68]
consider mobile crowdsourcing applications to explore the
big data concept, understand the semantic of business data
and manage crowdsensed big data storage services. Recent
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studies [69]–[72] elaborate on a vast number of business
opportunities that will arise from the IoT phenomena, com-
bined with Big Data analytics. Scalability remains a cru-
cial challenge in big data analysis; to address this issue,
Dobre and Xhafa [73] introduce a context-aware computing
platform and a traffic assistant application on top of it to auto-
mate the collection and aggregation of large scale contextual
data. Tranquilien [74] and Snips [75] are real crowd-assisted
applications that capture urban mobility patterns about users’
daily habits, interactions and surroundings to organize the
users’ transportation activities and improve the urban ser-
vices. ParticipAct [76] is a real world experiment that pro-
vides an architecture for analysis of large scale crowd-sensed
data. ParticipAct provides big data post-processing facilities
as multi-layered data views and the crowd-sensed data-sets
are published for researchers. The incentive mechanism used
in ParticipAct is a threshold-based technique which basically
renews the leased plan upon completion of a specific number
of sensing tasks.

As seen in the brief summary of big data-crowd-sensing
studies, data trustworthiness in the presence of adversaries
remains an open issue. In this paper, we present a new frame-
work to increase the trustworthiness of crowdsensed big data.
Indeed, location-based privacy of the participants has been
raised as an important open issue in mobile crowd-sensing
systems [77]–[79], we leave addressing user location privacy
to the future extensions of this study.

B. CHALLENGES
When compared to the IoT-based sensing where any con-
nected device can provide sensing as a service, imple-
menting sensor networks with stand alone sensors leads to
higher deployment and maintenance costs [33], [80], lim-
ited computing and data storage capabilities [81]. On the
other hand, unique characteristics of mobile crowd-sensing
such as energy limitation of mobile devices [82], security of
stored data [83], [84], quality of sensed data (e.g., accuracy
and trustworthiness of users) lead to further challenges in
comparison to the traditional mote-class sensor networks [6].
Particularly in location-based crowd-sensing systems, task
allocation (i.e. user recruitment), task handling (i.e. queuing),
task delegation and reputation maintenance are reported as
the four main issues to be addressed before mobile crowd-
sensing becomes widely adopted [85]. A grand challenge
in mobile crowd-sensing is incentivizing the users since
users are concerned about the aforementioned limitations,
and hence tend not to share their resources through implicit
recruitment. For these reasons, policies to foster user partic-
ipation have been largely investigated in the literature [86],
[87], along with surveys and reviews to design effective
incentive mechanisms in mobile crowd-sensing [22], [25],
[88]. As reported in [89], incentives can be either monetary
or non-monetary. For example, as a non-monetary incen-
tive, the study in [90], proposes incentivizing the partici-
pants through leveraging social ties between them and their
connections.

Game theory is commonly used for user incentivization,
while maximizing the benefits of the crowdsourcer in the
presence of a central platform [91]–[93] and under the peer
data exchange settings [94]. As an example of game the-
oretic incentivization, Luo et al. [95] formulate a Stack-
elberg game between the platform and users for different
cases.

Among all incentive techniques, gamification has received
limited attention so far when applied to mobile crowd-
sensing [30], [96], [97]. Gamification is applied in non-
gaming contexts by employing game mechanisms with the
objective of motivating users in active participation [28].
Wu and Luo [96] propose to use gamification to reward users
proportionally to their contribution in determining best WiFi
hotspots in an area. Ueyama et al. [30] advocate gamifica-
tion for a generic framework to incentivize user contribution
in participatory mobile crowd-sensing. Kawajiri et al. [97]
show that gamification or monetary reward techniques are
not efficient enough for collecting high quality data. Indeed,
the main objective of gamification is to increase the quantity
of data. To overcome such issue, a voting mechanism is
introduced. In crowdsourcing, use of gamification through
badge awards is studied for a popular platform like Stack
Overflow [29]. The objective is to analyze the impact of
badges on user behavior, and gamification has been proved
to significantly improve user motivation.

A rating system and a reward-based scheme is used to
incentivize users in [98]. Users’ reputation history is main-
tained in order to allocate higher rewards to the users through
a reputation protocol. This approach leaves newly joining
users vulnerable to being eliminated before they can build
reputation. Sun [99] introduce a Subgame Perfect Equilib-
rium (SPE) as a bidding function to make payments to the
users more efficiently. Unlike previous studies leveraging
only monetary-based incentives [99], [100], in this paper,
both game theoretic monetary incentives and gamification
methods are applied.

Primary motivation of most participants is to increase their
utility, especially in terms of monetary achievements. This
introduces vulnerabilities to the crowd-sensing platform in
the presence of malicious users who try to deceive crowd-
sensing platforms by providing false data [101]. Thus, data
trustworthiness is a crucial concern in mobile crowd-sensing
since the trustworthiness of the service is a key indicator of
effectiveness of the mobile crowd-sensing system. To address
this critical issue, Amintoosi and Kanhere [102] adapt a fuzzy
system with the quality of data and user reputation to evalu-
ate the reliability of the sensed data in social participatory
sensing systems. Zhao et al. [103] introduce a cheating-
resilient mobile crowd-sensing system by introducing user
credibility-driven recruitment along with theoretical analysis.
To provide a solution for this problem, we use the sensed data
by other users as a reference for comparison to ensure that
the submitted data is genuine. In the proposed method, users
with higher reputation and more badges have higher chance
to participate in sensing tasks.
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FIGURE 1. Proposed System Model. The crowdsourcer/platform recruits users and assigns them sensing tasks. Users collaborate in voting phase to
ensure data trustworthiness and receive a reward upon providing useful feedback to the system.

Since the evaluation of data reliability inMCS has received
little attention so far, we propose a game theoretic approach to
model the interactions between users. In this game, a voting
phase is formulated to evaluate the quality of the crowd-
sensed data.

III. SYSTEM MODEL
The proposed framework consists of three phases: 1) user
recruitment, 2) game theoretic collaborative decisionmaking,
3) gamification-based rewarding badges to the users. The
crowdsourcer/platform is responsible for matching users with
tasks; our model considers n > 1 users to perform tasks
during each assignment process. Fig. 1 illustrates the applied
algorithms in each phase and Table 1 lists the description of
the symbols used in the following subsections.

A. PHASE 1: USER RECRUITMENT
In this phase, users are recruited based on the follow-
ing methods: Trustworthy Sensing for Crowd Manage-
ment (TSCM) [34], which introduces statistical reputation-
awareness to MSensing [104] and Social Network-Aided
Trustworthiness Assurance (SONATA) [43]. SONATA
adopts a recommendation-based Sybil detection approach for
online social networks [105] to assess user reputations, thus,
it is purely vote-based. Both of these schemes are based on a
reverse auction procedure that consists of user selection and
rewarding steps.

The proposed approach in this paper adopts only the
user selection phase of either TSCM or SONATA. Selec-
tion between either TSCM or SONATA depends on the

operation mode of the proposed framework, i.e., statistical
or vote-based. TSCM calculates instantaneous user reputa-
tion based on true and false sensor readings. On the con-
trary, SONATA, determines instantaneous user reputations
based on votes cast by other users that are sensing the same
phenomenon.

User selection in TSCM, as well as in SONATA, is based
on the winner selection step of MSensing [106], which is
a user-centric reverse auction-based incentive mechanism.
Participants join the auction by reporting their sensing costs
(i.e., bids) as they are ensured that no user will be rewarded
less than their bid in the auction. The recruitment is completed
in two steps: winner selection and reward determination.
MSensing aims at maximum platform and user utility and
selects the winners based on their marginal contributions to
the total value of the sensed tasks and their sensing costs, and
sorts the users in descending order based on the marginal gain
of the platform for recruiting each participant. This also copes
with the situation where untruthful users aim to increase
their income by bidding higher than the actual sensing costs.
While selecting the users, TSCM and SONATA input user
reputations in the marginal contribution function so that users
with higher marginal contribution and higher reputation are
more likely to be selected.

SONATA relies on user votes to ensure trustworthiness.
In Eq. 1, wj is the vote capacity of user i, x ij is the actual vote
of user i and Rj is the trustworthiness of user j at time t .

Ri(t) =

∑
j|cij=1 wjx

i
jRj(t)∑

j|cij=1 wjRj(t)
(1)
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TABLE 1. Notation used in the paper.

In SONATA, the calculation of trustworthiness depends on
the votes from the other users and the initial reputation. The
vote-based user recruitment under the proposed scheme in
this paper defines a user reputation based on the quality of
submitted unlike SONATA where each user casts a negative
or positive vote based on similarity score votes of the sensed
data. In SONATA, each user casts a negative vote for a
malicious user with a certain probability, ∫ .
While the vote capacity of a user in SONATA is

increased/decreased by the positive/negative votes cast for
the user, in our proposed method, the vote capacity of a
user increases only if the user provides useful data. This is
achieved by the collaborative decision making mechanism,
which is defined in the next section. Given that n users are
recruited at time ti, all of the sensed data has to be sent to the
platform by ti + δ, where δ is a specific offset time. At time
ti + δ, all crowdsensed data is submitted to the platform, and
all the participants are aware of the task values.

B. PHASE 2: COLLABORATIVE DECISION MAKING
Phase 2 and Phase 3 involve the payment method; users
interact in a game and make decisions sequentially based

on the submitted tasks. We formulate the problem as a Sub-
game Perfect Equilibrium (SPE), where players participate
in a subset of a game and their strategy represents a Nash
Equilibrium [107]. It is essential to assume that each player
behaves rationally and independently in each subgame.

1) GAME FORMULATION
We define a repeated subgame describing the users’ strategy
and each task is assigned to m users. The adopted strategies
of a user are denoted by a tuple, {V ,N }, where V denotes that
the user is voting, and N denotes that the user is not voting.
From a user’s standpoint, participating in the voting phase is
optional. The terms Voter and Voted denote a user casting a
vote and the user receiving the vote, respectively. In case a
user chooses to remain idle (i.e., not voting), (s)he obtains a
payoff equal to zero.

When a user chooses to vote, the algorithm compares the
measurement distance of both voter and voted data. Mea-
surement distance is defined as follows. Let i and j be two
smartphones each of which is equipped with multi-modal
sensor array used in crowd-sensing campaigns. Given that
ri and rj be two matrices of dimension n × 1 denoting the
sensor readings of users i and j at time t , respectively, the
measurement distance between the two users at time t (1ij(t))
is calculated as shown in Eq. 2.

ri=


ri1
ri2
...

rin

, rj=

rj1
rj2
...

rJn

,1ri,rj (t)=

√√√√ n∑
k=1

(|rik − rjk |)2 (2)

If the distance between two sensor measurements is below
a certain threshold, λs, both users receive an increased payoff.
Otherwise, the payoff of the voted decreases. A systematic
presentation of the game formulation and collaborative deci-
sion making phases are illustrated in the flowchart in Fig. 2.

Determining vote reliability is at the last step of the game
in order to ensure that truthful users receive higher ratings
with respect to dishonest ones. This is achieved by having
dishonest users lose credit upon casting untruthful votes.
Consequently, upon increasing/decreasing their vote capac-
ity, their reputation is directly impacted by Eq. 1 and, in turn,
on their reward.

2) COLLABORATIVE VOTING
The collaborative voting phase consists of two steps:
i) Assessment of the quality of the contributed data, ii) Inves-
tigation of the accuracy of the assigned Voted user.

In step (i), the users compare the data to be judged with the
data they own at time ti + τ . This is a sequential procedure;
once the dissimilarity of the data reported/submitted by Voter
and Voted is above a threshold λs, the Voter casts a negative
vote. In the case of a negative vote, the platform increases
the trustworthiness of the crowdsensed data. As a result, the
voting capacity of the Voter casting truthful negative votes
increases. On the contrary, when a Voter casts untruthful
votes, the platform decreases its voting capacity.
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FIGURE 2. Collaborative decision making phase flowchart.

In step (ii), the platform has knowledge of the value of
the tasks, so it can judge whether the voters have provided
genuine votes or not. Hence, the platform diminishes the vote
capacity of users that cast misleading votes. This game among
the users incentivizes users to collaborate for qualifying the
value of sensed tasks; as users keep casting correct votes, their
vote capacity keeps increasing.

The platform uses the following criteria to rate the partic-
ipants: i) the value of the sensed data they submit, ii) trust-
worthiness of their votes. This rating is assigned according to
the measurement distance between the readings of user i and
j as formulated in Eq. 2. The calculated similarity indicator is
used for badge rewarding. As formulated in Eq. 3, the binary
similarity indicator between user i and user j at time t ,( S ijr (t))
indicates whether the data similarity criterion is satisfied.

S ijr (t) =

{
1 if 1ij(t)

max{|ri|}
≤ λs;

−1 if 1ij(t)
max{|ri|}

> λs.
(3)

At the end of the collaborative voting phase, each user
earns a total voting capacity, which is computed by taking
into account positive and negative votes cast during each time
slot as shown in Eq. 4, where S ijr (t) is the similarity rating
feedback that i receives from its neighbors.

V
′

i (t) =

|Ni(t)|∑
j=1|j∈Ni(t)

S ijr (t)

Ni(t)
, (4)

At the end of voting, the reputation R
′

i(t) of each user is re-
calculated by using the following two parameters: 1) the new
collaborative vote capacity Eq. 5, and 2) the user’s reputation
Ri(t) defined during recruitment phase Eq. 1.

R
′

i(t) = V
′

i (t)+ Ri(t). (5)

To obtain higher vote capacity, users are incentivized to
provide correct feedback. The voting capacity is used in the
badge rewarding step as the criteria for reward assignment.
Thus, hostile and misleading feedback to the system never
leads to awards.

C. PHASE 3: BADGE REWARDING
Incentive mechanisms typically focus on single user actions;
on the contrary, gamification considers the overall user con-
tribution [108], making it more beneficial when applied to
long-term applications. In this paper, we employ a reward-
based gamification method that awards badges to users that
satisfy a certain reward level entry [29]. Distinguishing reli-
able/truthful users increases both platform and user utility.
Therefore, the crowdsourcer tends to recruit users that con-
tribute qualified data in a trustworthy fashion.

In [29], two reward allocation mechanisms are proposed:
1) absolute standard mechanism Mα , and 2) a relative stan-
dard mechanism Mρ . The former issues badges when users
provide a certain level of effort whereas the latter awards
badges when users provide certain level of effort in compari-
son with the top contributor. The relative standardmechanism
is more robust than the absolute mechanism because of being
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FIGURE 3. Platform Utility vs. sensing task arrival rate. Figures are plotted for different percentages of malicious users: (a) Malicious users ratio = 0.03,
(b) Malicious users ratio = 0.05, (c) Malicious users ratio = 0.07.

less susceptible to the particular conditions of the platform.
We adopt the relative standard mechanism to select the win-
ners of awards, which awards users with a badge when their
vote capacity reaches a certain level.

In Phase 3, the users receiving a high reward are grouped in
the ‘‘HI-award’’ class, while users receiving a low reward are
grouped in the ‘‘LO-award’’ class (see Fig. 1). The platform
uses the users’ collaboratively computed vote capacity, in
order to distinguish the users, which is formulated in Eq. 5.

Ri(t) =

{
R
′

i(t) if Vi > γr , ‘‘HI-award’’;
Ri(t) if Vi < γr , ‘‘LO-award’’.

(6)

Equation 6 shows that each user is paid at least as equal as
its total cost. For users in ‘‘LO-award’’ class, their reputa-
tion does not increase from the value they have achieved in
the user recruitment phase. While the members of the ‘‘HI-
award’’ category increase their reputation and, consequently,
they obtain a payment.

IV. PERFORMANCE EVALUATION
We simulate the proposed mechanism and compare the
system performance of SPE-based user recruitment with
the benchmark mechanism SONATA. The SPE-based
user recruitment operates in two modes: i) vote-based
(vote-based reputation + SPE), and ii) statistical reputation-
based (statistical reputation + SPE) modes. The former
adopts the user selection mechanism of SONATA [43]
whereas the latter adopts the user selection phase of
TSCM [34], which is a statistical reputation-based method.

A. SIMULATION SETTINGS
Similar to [109], the simulation environment consists of a
1000m × 1000m terrain. The number of participants varies
between 100 to 1000 users. We assume three different sce-
narios with three different (50%, 70%, 90%) initial reputa-
tion of users in the monitored terrain. The malicious user
probabilities is set to 5%. The duration of an event is set
to 30 minutes and the platform assigns sensing tasks under
various arrival rates, i.e. 20, 40, 60, 80, 100 tasks/min. The
details of the simulation setup are presented in Table 2. Three
metrics assess the performance of the proposed framework:

1) Platform utility: Denotes the total received useful value
from the participants deducted by the total payments

TABLE 2. Simulation setup.

awarded to the user as formulated in Eq. 7:

Uplatform =
∑
τ

(
vR(Wτ )−

∑
i

piτ
)
, (7)

where vR is the total values of the tasks in the platform.
Note that in both Eq. 7 and Eq. 8, piτ is the total
payment to the user i and ciτ is the sensing cost of user
i during t . The parameter Wτ represents the number of
winners during the auction period τduration.

2) Average user utility: Denotes the difference between
the payment received from the platform and the sensing
cost. User utility is averaged by the total numbers of
selected users in crowd-sensing, and the total number
of sensing campaigns as shown in Eq. 8:

Uuser =

∑
t ((
∑

i pi
τ
−
∑

i ci
τ )/|Wτ |)

τduration
. (8)

3) Total amount of payment to malicious users: Denotes
the rewards made to malicious users. The objective of
the platform is to minimize such value to improve the
trustworthiness of contributed data.

B. SIMULATION RESULTS
Figure 3 demonstrates the platform impact of different
malicious user percentages in the terrain. As seen in
Fig. 3, increasing the probability of malicious users leads

22216 VOLUME 5, 2017



M. Pouryazdan et al.: Intelligent Gaming for Mobile Crowd-Sensing Participants

FIGURE 4. Average User Utility vs. sensing task arrival rate. Figures are plotted for different percentages of malicious users: (a) Malicious users ratio =
0.03, (b) Malicious users ratio = 0.05, (c) Malicious users
ratio = 0.07.

FIGURE 5. Reward to Malicious Users vs. sensing task arrival rate. Figures are plotted for different percentages of malicious users: (a) Malicious users
ratio = 0.03, (b) Malicious users ratio = 0.05, (c) Malicious users ratio = 0.07.

FIGURE 6. Average User Utility vs.Sensing Task Arrival Rate. Figures are plotted for different percentage of initial reputation: (a) SONATA, (b) Statistical
reputation + SPE, (c) Vote-based reputation + SPE.

to higher platform utility in all scenarios under SONATA
and SPE-based user recruitment modes. The reason is two-
fold: 1) statistical and vote-based reputation-aware modes
of SPE are able to detect malicious users and reduce their
payments, thereby leading to an increased platform utility,
2) by incentivizing users to provide useful data, the value of
received data is higher in this framework.

At 5%–7% malicious user percentage, the maximum
improvement over SONATA in terms of platform utility is
as high as 55% under the reputation-based SPE recruitment.
When the malicious population is set to 3% of the total
crowd, platform utility is still expected to increase but not as
high as the former two scenarios. As seen in the figure, the
improvement is at most 13%.

Figure 4 compares the three recruitment schemes in terms

of average user utility. As expected, the degradation of user
utility is not significant. The main reason lies in the fact that
the platform paysmore users with high number of badges.We
observe that the statistical reputation-based method improves
SONATA by an average of 15% and outperforms the vote-
based SPE scheme. In the vote-based scheme, the users use
more vote capacity than in the statistical reputation-based
scheme during first voting phase. As a result, their sensing
costs augment, diminishing the utility. Having defined the
metric in function of both cost and income, to maximize
user utility with fixed incomes, it is necessary to reduce the
sensing cost.

Figure 5 illustrates the total payment rewarded tomalicious
users. The results clearly demonstrate significant improve-
ments over the SPE-based user recruitment provides when
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FIGURE 7. Platform Utility vs. Sensing Task Arrival Rate. Figures are plotted for different percentage of initial reputation: (a) SONATA, (b) Statistical
reputation + SPE, (c) Vote-based reputation + SPE.

FIGURE 8. Platform Utility vs.Sensing Task Arrival Rate. Figures are plotted for two methods of game theoretic:
(a) Statistical reputation +SPE, (b) Vote-based reputation +SPE.

compared to state-of-the art solutions like SONATA. The lat-
ter method falsely rewards malicious users while SPE-based
techniques do not reward them at all. In SONATA, the mali-
cious users providing fake data and decreasing system trust-
worthiness are assumed to aim to build bogus reputation; the
adversaries achieve this by manipulating their sensing values
to satisfy a predefined upper threshold. As a result, platform
recognizes them as trustworthy users. The platform continues
to pay the malicious users until their reputation reaches a
lower threshold where the adversary behavior is identified,
and does not reward these users any longer. In the proposed
framework, SPE-based techniques use badges to identify user
trustworthiness and the platform only rewards trusted users to
improve both user and platform utilities.

Figure 6 illustrates the average user utility when the ini-
tial reputation varies between 50% and 90%. Having 90%
initial reputation results in the highest user utility especially
in statistical reputation+SPE whereas designation of 70%
initial reputation does not significantly improve user utility.
This is an expected phenomenon due to the following reason:
Setting the initial reputation to a high value will let the system
start with rewarding more users. On the other hand, as the
users in malicious behavior will be identified in time, the
difference between various cases in terms of user utility is
not significant.

Meanwhile the platform achieves the highest utility when
the initial reputation is 50% as seen in Fig. 7. This is due

to the platform’s making conservative assumption instead of
aggressively recruitingmany users. This phemonenon ismore
obvious under SPE+statistical reputation-based recruitment
as users build reputation based on their readings but not on
other users’ recommendations and votes. Thus, it takes longer
time for the users to build reputation by cooperating with the
platform, which in turn increases the platform utility.

Figure 8 and Figure 9 illustrate applying different dissim-
ilarity thresholds on the development of platform and user
utility under the proposed SPE-based recruitment. Improving
the quality of sensed data is one of the main contributions
of this paper so the percentage of similarity between col-
lected data sets significantly affects the performance metrics.
To provide high quality data, two similarity threshold values
are chosen. The first threshold enforces the dissimilarity
between the collected data by the voter and voted to be less
than 10% whereas the second one enforces dissimilarity less
than 20%. Considering an dissimilarity threshold with higher
range is not rational as the aggregated data may vary signifi-
cantly. In vote-based reputation+ SPE-based recruitment, by
considering a wider range of dissimilarity spectrum leads to
higher user and platform utility while in the case of statistical
reputation + SPE-based recruitment, both thresholds of dis-
similarity percentage introduce almost the same performance
in user and platform utility.

Figure 10 and Figure 11 compare the impact of absolute
standard badge rewarding mechanism and relative standard
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FIGURE 9. Average User Utility vs.Sensing Task Arrival Rate. Figures are plotted for two methods of game theoretic:
(a) Statistical reputation +SPE, (b) Vote-based reputation +SPE.

FIGURE 10. Platform Utility vs.Sensing Task Arrival Rate. Figures are plotted for two methods of game theoretic:
(a) Statistical reputation +SPE, (b) Vote-based reputation +SPE.

FIGURE 11. Average User Utility vs.Sensing Task Arrival Rate. Figures are plotted for two methods of game theoretic:
(a) Statistical reputation +SPE, (b) Vote-based reputation +SPE.

badge rewarding mechanism on user and platform utility
under statistical reputation + SPE-based recruitment and
vote-based reputation + SPE-based recruitment. The highest
platform utility is achieved by applying the relative standard
mechanism in both game-theoretic methods. This is because
more users are recruited in relative standard mechanism and
more accurate data is submitted to the platform (see Section
III.C for detailed explanation on the two mechanisms). As for
the user utility, as users are paid based on their announced
costs, all participants who are recruited will receive pay-
ments; hence under both mechanisms, users will achieve
almost the same utility.

V. CONCLUSION
Mobile crowd-sensing (MCS) has shown a great potential to
make available sensing and computing of large volumes of
data through smart phones, tablets and wearable technolo-
gies. Motivating users for sensing and reporting big data in
a reliable manner is the key challenging issue for the success
in MCS platforms. In this paper, we designed a gamification
incentive framework to foster users participation in crowd-
sensing and to ensure trustworthiness of sensed big data.

Our proposed framework adopts the winner selec-
tion mechanism from a previously proposed method,
namely, Social Network-Aided Trustworthiness Assurance
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(SONATA) [43], and improves the rewarding step by inte-
grating reputation of the users with the awarded badges. To
receive badges, users collaborate to build their reputation
through a voting system, derived from a repeated Subgame
Perfect Equilibrium (SPE). Extensive simulations prove that
SPE method is: 1) trustworthy, meaning that users provide
useful data to achieve higher income, 2) profitable for users,
meaning that not only each user is paid based on its true
cost, but reliable users receive higher payments. Moreover,
based on simulation results, the proposed SPE method pre-
vents completely the platform to pay to malicious users, i.e.,
their reward is zero. Meanwhile MCS opens up a wealth of
concerns about the involvement of users and the accuracy and
reliability of produced data. Clearly, as shown in our proposed
method, real time big data analytics is required to take advan-
tage of provided reliable data to make comprehensive models
of sensed events.

We are currently investigating the real-time cases of MCSs
where delay sensitive crowd-sensing tasks are assigned to
mobile users. Furthermore, we are extending the proposed
framework incorporating other trustworthiness features such
as mobility and residual power levels of participating
devices, as well as context awareness in crowd-sensing
applications.
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