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Abstract 
The Digital Health (D-Health) era is expected to be the “next big thing” since the invention of the internet, 
characterized by inexpensive and widespread medical data acquisition devices, widespread availability of identity-
removed health data, and analytics algorithms that provide remote health monitoring feedback to doctors in realtime. 
Recent years have brought incremental developments in three key technological areas towards the realization of the 
D-Health era: data acquisition, secure data transmission/storage, and data analytics. i) For data acquisition, the 
emerging Internet-of-Things (IoT) devices are becoming a viable technology to enable the acquisition of remote 
health monitoring data. ii) For data storage, emerging system-level and cryptographic mechanisms provide secure 
and privacy-preserving transmission, storage, and sharing of the acquired data. iii) For data analytics, emerging 
decision support algorithms provide a mechanism for healthcare professionals to base their clinical diagnoses 
partially on machine-suggested statistical inferences that rely on a wide corpus of accumulated data. The D-Health era 
will create new business opportunities in all of these areas. In this paper, we propose a generalized structure for a D-
Health system that is capable of remote health monitoring and decision support. We formulate our proposed structure 
around potential business opportunities and conduct technical feasibility studies. 
Keywords:  remote health monitoring; medical decision support; Internet of Things (IoT); visualization; analytics; 
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1. INTRODUCTION 
The unprecedented growth in the Internet of Things 

(IoT) technologies makes it possible to talk about 50 billion 

connected devices through the internet by 2020 (Fernandez 

& Pallis, 2014).  Among these devices are body-worn 

sensors that monitor personal health conditions. There has 

been a growing interest in wearable sensors in recent years 

and an emerging set of new products are commercially 

available (Jawbone, 2016; FitBit Inc., 2016; Apple Inc., 

2016) for activity recognition, personal health monitoring, 

and fitness. For clinical use, long-term patient monitoring 

and management has also been considered by researchers 

(Pantelopoulos & Bourbakis, 2010; Son & et al., 2014; 

Page, Kocabas, Soyata, Aktas, & Couderc, 2014; Paradiso, 

Loriga, & Taccini, 2005; Milenkovi, Otto, & Jovanov, 

2006; Istepanian, Sungoor, Faisal, & Philip, 2011; Soyata T. 

, 2015). IoT-based data collection and cloud-based analytics 

are the driving factors of this technology as detailed in 

(Hassanalieragh, et al., 2015). A doctor can prescribe a 2–3 

day period of continuous physiological monitoring of a 

patient using low-cost wearable devices before a patient’s 

periodic physical examination. This monitoring data can be 

transmitted to the database, linked with the health records of 

the patient. Statistical inference algorithms can compare this 

patient’s data to a large database of other patients and 

provide the doctor with a rich set of suggestions. These 

machine-inferred suggestions are invaluable tools which use 

technology for the benefit of human health.  

The Digital Health (D-Health) vision described in the 

preceding paragraph promises to be a disruptive technology 

for human healthcare. In addition to saving the hospitals 

money, this type of decision support could improve 

diagnostic accuracy and might create third party business 

opportunities. However, before this vision can be fully 

realized, a set of challenges that need to be addressed are: (i) 

The privacy and security of the acquired data need to be 

ensured during its acquisition, storage, and processing. (ii) 

A large dataset for specific health conditions takes time to 

build and the accuracy of many decision support algorithms 

depend on the size of the database, thereby creating a 

natural vicious cycle. (iii) Despite being full aware of its 

potential, hospitals will be slow in embracing the D-Health 

concept due to the risks implied in basing decisions that can 

effect human lives on machine suggestions. (iv) It is not 

clear how this technology can turn into business 

opportunities. (v) The IoT technology is still in its infancy 

and it is not clear whether this technology will enable a 

secure and reliable sensing platform. (vi) Even if the data 

can be acquired reliably, it is not certain whether this data 

can be visualized in a non-overwhelming summarized 

format to be useful to the doctors and be embraced by them. 

(vii) Since large databases for many diseases are proprietary 

or simply do not exist, it is not clear whether statistical 



International Journal of Services Computing (ISSN 2330-4472)      Vol 4, No 4, October-December2016 

19 
 

inference is possible for a wide variety of diseases that can 

be detected through remote health monitoring. 

In the rest of this paper, we aim at providing answers to 

challenges (iv)–(vii). Towards that end, we introduce a 

generalized system structure for remote health monitoring 

based on recent research directions, as well as our 

predictions in Section 2. In Section 3, we address challenge 

(iv) and identify a clear list of existing business 

opportunities. In Section 4, we identify the technical 

components of D-Health. In the rest of the paper, we 

provide a technical feasibility study for these technical 

components. A technical feasibility study for challenge (v) 

is provided in Section 5, followed by technical feasibility 

studies for challenges (vi) and (vii) in Sections 6 and 7, 

respectively. 
 

2. PROPOSED SYSTEM ARCHITECTURE 
We define a remote health monitoring and management 

system as a system that provides the interface between a 

patient and a doctor, as shown in Fig. 1. The system 

acquires, stores, and analyzes patient health data along this 

transition. Although a much finer grain sub-layering of a 

typical remote health monitoring system is possible, our 

proposed system consists of two super-layers: Front End 

and Back End. These two super-layers contain similar 

technical functionality and business opportunities, hence our 

rationale for this layering. Details of each layer are provided 

in the rest of this section. Section 2.1 details the Front End, 

which is the interface between “the patient” and “the 

system.” Section 2.2 details the Back End, which is the 

interface between “the system” and “the doctor.”  

2.1 Front End 
The front end of the system is responsible for acquiring 

healthcare data from the patient and transmitting it to the 

back end securely and in a privacy-preserving fashion. 

There are well-established standards for the acquisition of 

health data, such as ISO/IEEE 11703-20601:2010 

(Fernandez & Pallis, 2014). The connection of this layer to 

the back end is usually through the internet (Hassanalieragh, 

et al., 2015), making it necessary to ensure data privacy 

during acquisition and transmission. The functions of the 

front end are detailed in this subsection. 

IoT-based Acquisition infrastructure: Although the 

IoT concept is in its infancy, a particular radio 

communication technology to improve the active bandwidth 

by deflecting IoT traffic from the internet through a special 

ultra-high-bandwidth and energy efficient cellular network 

(900 MHz) has been created by the French company 

SIGFOX (SIGFOX, 2016). The SIGFOX IoT network will 

be first deployed in San Francisco. For general IoT 

networks, three widely available wireless technologies are: 

i) 3G/4G cellular wide area networks, ii) Wi-Fi local area 

networks, and iii) Bluetooth Smart personal area networks. 

A dedicated IoT network has also been proposed as a 

research topic (Fernandez & Pallis, 2014). 

Privacy of the acquired data: In addition to assuring 

data privacy at a cryptographic and system level (Kocabas 

& Soyata, 2016; Kocabas & Soyata, 2015), security 

concerns arising from sensor tampering (Page, et al., 2015b) 

and sensor data trustworthiness (Kantarci & Mouftah, 2014; 

Pouryazdan, Kantarci, Soyata, & Song, 2016) must be taken 

into account in this layer. To create a secure overall system, 

an adversary model must be defined. The most common 

 
 

Figure 1. Layers of the proposed remote patient monitoring system that is based on an IoT-Cloud architecture. Based on 

the challenges described in Section 1, as well as the available business opportunities that will be described in Section 3, 

it suffices to conceptualize the system as two super layers: The Front End represents the hardware and software, 

necessary for the secure acquisition of the patient health data. The Back End represents the cloud infrastructure to store 

and process the data, as well as the visualization and analytics algorithms running in the cloud. 
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adversary model that we will adopt is the honest but curious 

adversary model (Cao, Wang, Li, Ren, & Lou, 2014; 

Goldreich, 2004), in which a given part of the system is 

assumed to perform its duties correctly (i.e., “honestly”), but 

is capable of intentionally or unintentionally observing other 

parties’ data (i.e., “curious”). Such a system is also 

vulnerable to side channel attacks from parties that observe 

the peripherals (i.e., “sides”) of the system and attempt to 

guess the underlying data. Among the many, a few 

examples of these attacks include power analysis attacks 

(Kocher, Jaffe, & Jun, 1999), timing attacks (Kocher P. C., 

1996), fault-based attacks (Boneh, DeMillo, & Lipton, 

1997), and cache attacks (Bernstein, 2005). 

Preprocessing of the acquired data: The amount of 

the acquired data could be unmanageable in terms of 

storage, transmission, or processing. Therefore, it is 

necessary to apply preprocessing algorithms to the acquired 

data to reduce its size (Soyata T. , Muraleedharan, Funai, 

Kwon, & Heinzelman, 2012; Soyata T. , et al., 2012). These 

algorithms are applied to a set of aggregated data, rather 

than the raw data. The hardware components that aggregate 

the data from the IoT-based sensors are concentrators 

(Zhao, Wang, & Nakahira, 2011; Hu, Xie, & Shen, 2013). 

The purpose of a concentrator is to reduce the power 

consumption of the individual IoT devices by directly 

receiving the sensor data from them at a short distance and 

transmitting the aggregated data over much longer 

distances. While this data concentration is a much higher 

workload than what the individual IoT devices can handle, 

concentrators are not necessarily the destinations where the 

pre-processing takes place. For pre-processing, cloudlets are 

used that are substantially more computationally capable 

than concentrators and have dedicated WAN links (Soyata, 

Ba, Heinzelman, Kwon, & Shi, 2013; Powers, et al., 2015). 

The pre-processing of the data turns raw data into a much 

more summarized format, such as the computation of the 

QT and heart rate information from raw ECG signals (Page, 

et al., 2015c). 
 

2.2 Back End 
The back end of the system is responsible for storing 

and processing the data securely. The functions of the back 

end are detailed in this subsection.  

Secure Storage: The data is acquired in a time series 

fashion. To store, retrieve, and query time series data, REST 

APIs are provided within (Zhang, et al., 2013). One of the 

concerns about handling the data in the cloud is identifying 

the attack patterns. One example solution, Zachman 

Framework for enterprise architecture modeling, identifies 

attacks patterns by checking six characteristics (who, what, 

where, when, why and how). The patterns of access in the 

cloud are compared against an independently-running 

“plane” to determine whether each access is normal or 

malicious (Blackwell & Zhu, 2014).  

Secure Computation: While static storage of data is 

feasible by using well-known secure storage standards such 

as SSAE16, this data cannot be operated on. If computation 

has to be performed on the data that is stored in an untrusted 

cloud, emerging cryptographic mechanisms such as Fully 

Homomorphic Encryption (FHE) are required (Kocabas O. , 

et al., 2013). These algorithms allow the cloud to perform 

“blind-folded computation” without observing the 

underlying medical data, thereby eliminating concerns 

regarding data privacy (Page, Kocabas, Soyata, Aktas, & 

Couderc, 2014), however, computations using FHE are 

orders of magnitude slower than their AES-based 

“traditional” cryptographic counterpart (Page, Kocabas, 

Soyata, Aktas, & Couderc, 2014; Kocabas & Soyata, 2015). 

Database Sharing: Much like the concentrator in the 

front end, a portion of the back end is responsible for 

aggregating databases and sharing them across many 

applications or other clouds. The key element of this 

functionality is to aggregate the databases in an identity-

removed fashion. Data obfuscation and identity removal are 

well-established techniques (IBM, 2016) that obfuscate the 

data in a way that makes the data un-identifiable even if 

compromised. This functionality of the back end is 

important since the accuracy of the analytics engine 

improves as the database sizes grow, thereby improving the 

statistical inference related to disease detection. 

Visualization: The visualization engine can be thought 

of as being the “visual aggregator.” This engine turns an 

enormous amount of data into a format that is easily 

comprehensible and understandable by a human, i.e., the 

doctor. Despite occupying mega- or gigabytes of storage, 

the information content in the acquired raw data is very low. 

The visualization engine is necessary to turn the raw data 

into a highly summarized format, potentially occupying 

many orders-of-magnitude less physical space for the same 

(or higher) information content.  

Analytics Engine: Although strictly visualizing the 

data in a summarized format allows the doctor to access 

patient information much faster, this visualized information 

can be further augmented with machine learning (ML) 

algorithms. The function of the analytics engine is to run a 

standard set of machine learning and statistical inference 

algorithms to determine the likelihood of certain diseases 

for a given set of acquired data. These statistical inferences 

can be included in the summarized data provided by the 

visualization engine. The inferences provided by the ML 

algorithms are much simpler than the visualized data. For 

example, while a 24-hour visualization (plot) of the patient 

ECG information could provide the doctor extremely useful 

and summarized synopsis of the patient’s heart condition, it 

is still a lot of data to browse through. This plot could be 

augmented with a single statistically-inferred value (e.g., 

87% probability that the patient has the LQT1 heart 

condition (Page, et al., 2015c). While the initial plot allows 

the doctor to use his/her experience and knowledge to 

potentially reach the same decision, augmenting the plot 

with such a suggestion provides at least a “machine-based 

second opinion” to the doctor. In the best case, it provides a 
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“good starting point” or even “the solution that was not 

obvious to the doctor initially, but was mathematically the 

best inference.” 

 

3. BUSINESS OPPORTUNITIES 
In this section, we will identify the business opportunities in 

the front end and back end layers. 

 

3.1 Categorizing the Business Opportunities 
While a third party business entity can offer the 

entirety of the services encompassing our system in Fig. 1 

as a remote health management and monitoring service, 

separating the front end from the back end makes sense due 

to the major characteristic differences that each layer 

represents. Based on the structure we introduced in Section 

2, the front end of the system can be thought of as the “data 

acquisition” layer, while the back end can be thought of as 

the “data handling layer.” 

Acquisition of the data implies a direct physical 

connection to the patient; This “physical” connotation 

significantly limits the location of the third party companies 

that can provide these services. Alternatively, the back end 

services could be completely “virtual,” since the offered 

services are generally “software” in nature. In the following 

subsections, we provide a detailed list of the potential 

services in each layer. 

 

3.2 Front End Business Opportunities 
In this subsection, we will identify the business 

opportunities related to the front end. Due to the “physical” 

nature of the front end, most of the services that can be 

offered involves making a physical contact with patient at 

some point.  

IoT Hardware and Communications: IEEE 

standards form a basis for common wireless technologies 

which are the main component of the front end layer. 

Relevant sensor networks as LANs are: Wi-Fi 2.40 GHz & 

5 GHz (IEEE 802 n ac); and low-power 900MHz (IEEE 

802.110ah); ZigBee & ZigBee PRO 2.4 GHz & 900 MHz 

(IEEE 802.15.4) and 6LoWPAN (for IoT); as PANs are: 

Bluetooth 2.4 GHz (IEEE 802.15.1) and Bluetooth Low 

Energy (BLE); UWB (IEEE 802.15.4a); RFID (IEEE 

802.15.4f) (Soyata, Copeland, & Heinzelman, 2016) and 

Low Rate WPAN (IEEE 802.15.6), which are identified by 

the IEEE standards for the body area network (BAN). As 

very low-power: DASH7 based on 433 MHz (ISO/IEC 

18000-7). GSM, GPRS, UMTS, HSPA and LTE are the 

current standards in mobile cellular networks (Fernandez & 

Pallis, 2014). Wired and wireless communications working 

on same infrastructure will concentrate with the 5th 

generation communication technology (5G) for people and 

IoT. The future networked society will run on this 

omnipresent communication technology which has ultra-

high bandwidth (EC Horizon 2020, n.d.). Enabling 

breakthrough user controlled privacy, wireless connection to 

over 7 trillion devices for over 7 billion people, better 

optimization for storage, processing and big data analytics, 

90% energy saving per service and 100 times higher 

wireless bandwidth compared to 2010 are expected to be 

allowed by the 5G technology (Fernandez & Pallis, 2014). 

These technologies are considered to support the 

communication between the devices used for health 

monitoring. Thus, network & communication providers such 

as Verizon, AT&T or Cisco are expected to serve with one 

or more aforementioned wireless communication 

technologies in this layer.  

Sharing (renting) databases: The necessity of 

physical contact to the patient doesn’t necessarily mean that 

each contact creates a single business opportunity. Although 

the initial data must be acquired by making a physical 

contact to the patient, say, patient A, this data can be used to 

provide a data sample for patient B through database 

sharing. As described in Section 1, data analytics algorithms 

will work more accurately when the information from 

patient A+B is available, as opposed to only patient A. 

Therefore, this creates a business opportunity for the 

company that acquired the data from patient A. With proper 

user consent, the third party can anonymize the database 

using the obfuscation software described in Section 2.2. The 

obfuscated data provides a business opportunity to be 

“rented” to other third parties, or, corporations such as the 

insurance companies for use in data analytics.  

Self Data Acquisition: One of the important 

implications of technology is that users do not have to have 

deep knowledge of the inner workings of the devices to use 

them. Data acquisition for routine monitoring tasks, such as 

personal ECG monitoring, can be done without the 

intervention of a healthcare professional. However, this 

doesn’t mean that no business opportunity exists for simple 

data acquisition tasks like this. Smartphone applications that 

are approved by healthcare organizations can be sold to 

allow users to acquire their own data. The purpose of the 

smartphone app is to significantly simplify the user’s job by 

providing visual instructions, whether static or interactive 

and calibrate the sensors by directing the user through 

multiple steps. These smartphone apps can be sold either 

with the sensors through pharmacies, or separately.  

Professionally-Assisted Data Acquisition: When the 

level of complexity to acquire the data exceeds a level that 

no longer allows a simple smartphone app to be used, 

healthcare companies specialized in data acquisition can sell 

their services to acquire the medical data. This can involve 

bringing concentrators, cloudlets, and sensors to the user’s 

home and attaching them in proper order and ensuring 

proper communication with the cloud. In many cases, using 

the professional services might be legally necessary due to 

the legal implications involved in the well-being of the 

individual.  

Invasive Data Acquisition: In the extreme case, the 

data acquisition might require a surgery, such as the 

implanting of a defibrillator. Clearly, this operation might 
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be only feasible in a hospital environment or an approved 

company with such expertise. The important note to make 

here is that, such a service is in fact a separate component of 

the overall system and does not necessarily have to be 

provided by the provider of the rest of the services. 

 
3.3 Back End Business Opportunities 

In this subsection, we will identify the business 

opportunities related to the back end. Since this layer does 

not represent a “physical” contact with the patient, it can be 

provided virtually anywhere.  

Infrastructure as a Service: The infrastructure to 

store and manipulate medical data can be rented through the 

widely-accepted Infrastructure as a Service (IaaS) concept. 

Rather than a generalized infrastructure, a more specialized 

infrastructure provides much better business opportunities 

(Powers & Soyata, 2015). For example, the databases that 

store medical information could be optimized to handle 

medical data, potentially incorporating privacy preserving 

storage and data obfuscation methods as built-in features. 

Companies such as IBM, Oracle, Microsoft and Teradata 

are the potential service and technology providers for this 

business opportunity. 

Disease detection (Analytics) algorithms: Although 

well-known standard algorithms exist for detecting certain 

diseases, a one-size-fits-all algorithm is not possible due to 

the sophisticated biological processes involved in different 

diseases. Therefore, a new algorithm that achieves a higher 

detection rate using the same database could provide a 

significant business opportunity to a healthcare organization 

that wants to use it for patient monitoring. 

Visualization Algorithms: Visualization algorithms 

can be thought of being a sub-category of Software as a 

Service (SaaS). As will be exemplified in Section 6, the 

only difference from SaaS is that the visualized data could 

be displayed with either static limits, which do not depend 

on a database, or dynamic limits, which do. In the specific 

case of ECG visualization that we will show in Section 6, 

the knowledge of the specific disease that is being displayed 

is crucial. Therefore, the provider of the visualization 

services is not just renting the software, but the database and 

disease expertise too. So, it is highly likely that, depending 

on the disease that is being visualized, the visualization 

algorithms and their operation change dramatically.  

Prediction and Analytics Services: In addition to 

providing the algorithms as a service, the results of the 

algorithms also provide an opportunity to rent as statistics in 

certain diseases. Parties interested in such information are 

organizations like CDC, or insurance companies that want 

to compare the disease occurrence rates in certain 

geographical regions. 

 

4. BACKGROUND AND RELATED WORK 
In this section, we will introduce the technical details of 

different sub-layers. In the following sections, we will 

perform a technical study of some of these layers. A three 

tier architecture can be considered for most proposed 

frameworks in terms of health monitoring as follows: 1) 

Wireless Body Area Network (WBAN) for wearable sensors 

to gather the data, 2) Communication and networking, and 

3) The service layer (Pantelopoulos & Bourbakis, 2010; 

Paradiso, Loriga, & Taccini, 2005; Milenkovi, Otto, & 

Jovanov, 2006; Bazzani, Conzon, Scalera, Spirito, & 

Trainito, 2012; Benharref & Serhani, 2014). Various 

physiological parameters such as blood pressure and body 

temperature can be measured by the wearable sensors as 

proposed as a system model in (Babu, Chandini, Lavanya, 

Ganapathy, & Vaidehi, 2013). A Bluetooth connection is 

used for relaying the acquired information to a gateway 

server by sensors. The gateway server converts the data to 

an Observation and Measurement file and keeps it on a 

remote server to be acquired by clinicians via internet. In 

(Rolim, et al., 2010), a health monitoring system is 

presented to illustrate medical staff reaching the stored data 

online through content service implementation to utilize a 

similar cloud based medical data storage. To supervise 

patients with high risk of heart failure, WANDA (Lan, et al., 

2012), an end to end remote health monitoring and analytics 

system is presented by aiming at a particular medical 

implementation. 

 

4.1 Data Acquisition and Sensing 
Wearable devices which combine a communications 

platform to convey the measured data, hardware for minor 

preprocessing and miniature sensors that measure various 

physiological parameters acquire physiological data. 

Wearable sensors that are or will be available to measure 

some biomarkers encapsulated in Table I. Those biomarkers 

that can diagnose four common disease categories have the 

applicability levels which are also indicated in the table.  

Wearable sensors have some physical limitations due 

to wearability requirements which are being lightweight and 

small and not blocking patients’ maneuverability. Moreover, 

energy efficiency is essential for those because of the 

limited place for the batteries in the wearable package. 

 

TABLE I 

A list of advanced sensors and their potential 

application potential to the monitoring of certain 

diseases. ** indicates excellent application potential, 

while * indicates some potential for application. 
 

Biomarker CVD COPD Parkinson’s 

Gait (posture) ** ** ** 

ECG ** ** * 

Respiratory rate ** ** * 

EMG * * * 

Blood pressure ** * * 

Title volume ** ** * 

Body movements * * ** 
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Highly durable batteries are eminently preferable to provide 

convenience and to ensure that data is not lost during 

recharging or replacement despite the rechargeable or 

replaceable features.  

A challenge for the quality of the data captured in 

terms of the achievable signal to noise ratio can also be 

presented by the energy efficiency requirements. The closer 

contact with the skin enables measurement of relatively 

more physiological parameters and with better accuracy, 

therefore recent flexible sensor designs (Son, et al., 2014; 

Xu, et al., 2014; Kim, Ghaffari, Lu, & Rogers, 2012) that 

can be located in contact with the skin in various body parts 

are especially alluring for medical implementations. 

Additionally, there have been attempts to make the 

operational lifetime of wearable sensors longer by 

combining low power device and circuit level techniques 

(Olorode & Nourani, 2014; Park, Chou, Bai, Matthews, & 

Hibbs, 2006) and energy harvesting method (Torfs, Leonov, 

Van Hoof, & Gyselinckx, 2006). Furthermore, the 

operational durability can be improved more by utilizing 

smart sensing methods on system level. 

There have been studies about energy efficient sensing 

mechanisms in the related background of wireless sensor 

networks (WSNs) that are accustomed to sense physical 

phenomenon in a distributed fashion. Current WSNs 

methods can be referred again to fulfill our requirements 

despite the more concentrated sensor deployment, compared 

to WSNs, in our health monitoring system. The suggested 

energy efficient sensing approaches hinge on appointing 

sensing duties to the nodes formed on their relative distance 

so as to sense the maximum amount of physical information 

while improving energy efficiency by abolishing probable 

unnecessary sensing duties (Madhani, Tauil, & Zhang, 

2005; Chou, Rana, & Hu, 2009) and by distribution of 

duties formed on the energy availability at each sensor 

(Zhang & Hou, 2005; Huang & Tseng, 2005; Chen & Zhao, 

2005; Cardei & Wu, 2006; Yu & Sharma, 2010). By 

construing and operating an active context which is formed 

on energy availability and the patients’ health condition, our 

system can employ akin mechanisms. For instance, as 

demonstrated in Table I, separately sensed biomarkers have 

distinctive levels of applicability for particular health 

conditions. The other sensors are turned off to enable 

lifetime extension when the energy level is critical and the 

patients sensitive condition forces focusing on a specific 

biomarker. The application of such schemes to develop 

energy efficiency adaptively by approving dynamic 

utilization of sensors formed on the context is enabled by an 

IoT based sensing architecture. It is hard to find such 

flexibility and intelligence in the ordinary data acquisition 

systems where the gathered information is transmitted 

passively by sensors. More sophisticated algorithms can 

also be implemented without patients’ manual intervention 

to wield the sensors or the software on the data concentrator 

by removing the decision making process to sense task 

assignment to the cloud.  

As the communication can account an important part of 

the energy usage in sensing devices, appropriate low power 

communication protocols usage is constrained by energy 

limitation of these devices. In order to support 

communication between low power devices that perform in 

personal operating space (POS) of roughly 10m, ZigBee 

over IEEE 802.15.4 is usually used in low rate WPANs 

(LR-WPANs) (Lee, Su, & Shen, 2007). Energy efficient 

dependable mesh networking is provided by ZigBee. 

Another wireless communication protocol, Bluetooth low 

energy (BLE), is appropriate for low power short range 

communication which is advisable for the particular 

necessities of implementations such as health monitoring, 

sports, and home entertainment. The design purpose of the 

original Bluetooth protocol (IEEE 802.15.1) is to provide 

relatively short range communications for implementations 

of a streaming nature, such as audio. By applying extended 

sleep intervals to enable the general energy efficiency, the 

framework is altered by BLE. A superior energy efficiency 

in terms of number of bytes sent per Joule of energy is 

accomplished by BLE (Siekkinen, Hiienkari, Nurminen, & 

Nieminen, 2012). An intermediate node (data concentrator) 

is required to make sensors data and control available over 

internet while the preceding communication protocols in 

use. IPv6 through Low Power Wireless Personal Area 

Networks (6LoWPAN) has been put forward to perfectly 

connect energy constrained WPAN devices to the internet to 

comprehend the IoT concept additionally (Bui & Zorzi, 

2011). In order to fit IPv6 datagrams into IEEE 802.15.4 

limited frame size to enable IP access to low power, low 

intricacy sensing devices, fragmentation techniques are 

construed by 6LoWPAN. 

 
4.2 Internet of Things (IoT) 

Integration of the IoT paradigm with electronic remote 

health monitoring systems can boost flexibility, intelligence 

and interoperability more while being noticeable of these 

systems has assured to transform the conventional health 

care methods (Bazzani, Conzon, Scalera, Spirito, & 

Trainito, 2012) (Ray, 2014). With the help of IoT 

architecture, identifiable and uniquely addressed devices are 

available through the internet at anytime and anywhere. 

Devices equipped with IoT functionality in health 

monitoring systems, fairly reducing the work load on set up 

and administration tasks, can exchange information with 

each other and health institutes in addition to their capability 

of conventional sensing tasks. Providing services such as 

automatic alarm to the closest healthcare institute during the 

time of a critical accident for a supervised patient can be an 

example for such systems (Bui & Zorzi, 2011). 

 
4.3 Cloud Storage and Processing 

Most of the research on sensors related to healthcare 

monitoring deal with managing of the data on the devices, 

storing the medical data directly on computer nodes, or 
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utilizing intermediate nodes for storage and/or computation. 

Data storage and management through the Cloud 

Technology has been pointed rarely pointed out in the 

related work. A sensor-oriented cloud infrastructure is 

presented by the authors in (Yuriyama & Kushida, 2010). 

The actual devices are not included by the early evaluation 

results since the initial results are formed on simulated 

sensors in the preceding principle. To store sensor-based 

data in a dedicated manner, nonetheless, several Cloud-

based services are currently available (e.g., Pachube, 

Nimbits, ThingSpeak, iDigi). Available services call for 

solutions for data security and provisioning interface for 

linkage to mobile or external implementation on latter 

processes (Doukas & Maglogiannis, 2012).  

Cloud Computing enables favorable, on-demand 

network access to adjustable computing resources 

configured as a shared group which an interaction by service 

provider or slightest managing attempt is enough to 

provision or release in a quick response time. Devices, like 

smart phones, considered as heterogeneous thin or thick 

platforms can reach resources through the network 

accessing over standard mechanisms. Virtual machines, 

network bandwidth, memory processing, and storage are 

mentioned to be examples of resources. The dexterity which 

develops with users being able to quickly and cheaply re-

provision technological infrastructure resources is a huge 

asset by given the essences of Cloud Computing and the 

resilience of the services which can be improved. Since 

there is no need for a specific location or device, any user 

can connect the system using a web browser in any location 

and on any device. Allowing for unification infrastructure in 

locations inexpensively is possible due to multi-tenancy 

facilitating resource and costs sharing by virtue of enormous 

user pool. To manage user data, many Cloud Computing 

applications are accessible for both free (e.g., iCloud, 

Okeanos, Pithos, Dropbox) and commercial usage (e.g., 

GoGrid, Amazon AWS, Rackspace). Building custom 

applications and consolidating Cloud Computing 

functionality are not supported by many of them. 

Furthermore, optimization to service healthcare-based 

implementation is not validated yet (Doukas & 

Maglogiannis, 2012). 

 
4.4 Analytics and Visualization 

Medical data analysis and visualization are also critical 

elements of remote health monitoring implementations 

(aside from the technology for data acquisition, storage and 

access). It is essential to analyze the medical records 

containing various physiological characteristics over a long 

period of time to diagnose accurately and to monitor a 

patient’s medical condition. The data analysis task becomes 

frustrating and error prone for clinicians who work with 

multidimensional data, especially when long term (i.e. high 

quantity) of data is used. Data mining and visualization 

techniques have just reached the considerable level in 

remote health monitoring implementations (Ukis, Tirunellai 

Rajamani, Balachandran, & Friese, 2013; Rao, 2013), 

despite the fact that they have been addressed as a solution 

to the preceding challenge (Wei, et al., 2005; Mao, et al., 

2011).  

We have proposed that decision support be performed 

by a dedicated company, which may or may not be 

responsible for collecting the data. This “Clinical Decision 

Support as a Service” has also been described in (Weaver, 

Ball, Kim, & Kiel, 2015), where they suggest standardizing 

the relevant portions of healthcare records to make 

computerized analysis easier. (Halamka, 2010) agrees with 

this, and further suggests standardizing the decision support 

rules, which we believe will be difficult when using 

machine learning and in the presence of competition. An 

“open” version of the cloud-based health monitoring 

concept is discussed in (Li, Guo, & Guo, 2014), in which 

scientists and healthcare professionals can share their data 

and models. We expect that such a system may still thrive 

alongside paid solutions, while the proprietary versions may 

be based on specialized databases and more refined 

algorithms. 

 

5. FRONT-END FEASIBILITY STUDY 
At this point, we have described all of the pieces of our 

ideal remote monitoring system. We will now present case 

studies which detail specific components.  

The front end segment of remote health monitoring is 

anticipated to be connected to the Internet of Things 

architecture as this segment is responsible for data 

acquisition through wearable sensors, and the sensors are to 

be interfaced via front-end circuitry in nearby devices that 

would offer built-in IoT sensing capability. These include 

smart phones, smart tablets and other personalized devices 

with communication interfaces. A typical cloud-inspired 

service model to acquire data through the front-end of the 

 

Figure 2. Front-end design by IoT sensors interfacing 

wearables. 
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health monitoring could be Sensing as a Service (S2aaS) 

(Sheng, Tang, Xiao, & Xue, 2013). In a cloud-centric IoT 

architecture, uniquely identifiable sensors push data to the 

cloud platform for being aggregated, analyzed and presented 

to the end user (Gubbi, Buyya, Marusic, & Palaniswami, 

2013). Data acquisition through cloud-centric IoT has to 

maximize the usefulness of the collected data for the 

platform whereas the sensing costs of the IoT sensors may 

need to be compensated. A minimalist illustration of the 

concept can be seen in Fig. 2, and the following 

mathematical model can be used to analyze the feasibility of 

such front-end structure.  

Utility of the cloud platform can be calculated as the 

difference between the total usefulness of the data and the 

compensation made to the IoT sensors for their sensing 

costs in a certain time window. It is worthwhile noting that 

we use data to denote a task of sensing a particular 

phenomenon. In (1), Up denotes the utility of the cloud 

platform while Vτ (Sτ) stands for the usefulness/value of the 

data received for sensing tasks handled by the IoT sensors in 

the set, Sτ during the time window, τ. In the same equation, 

ρi
τ denotes the sensing cost/compensation of sensor s of the 

overall sensors set, S during the time window, τ. 

 

 
 

Besides the utility of the platform, utility of the nearby 

IoT sensors is another metric that is to be used in the 

feasibility study of the front-end segment in a remote health 

monitoring system. If the IoT sensor is compensated based 

on the usefulness of its sensor reading, the compensation 

should be no less than the sensing cost. Equation (2) 

formulates the utility of an IoT sensor (Us) as the difference 

between the total compensation received for participating in 

the sensing tasks and total sensing cost. 

 

 
 

As the wearable sensors are interfaced with nearby 

mobile devices and their corresponding built-in IoT sensors, 

the cloud platform can be misinformed due to either of the 

following scenarios: 1) Built-in sensors of mobile devices 

may be malfunctioning. 2) Users may be behaving 

maliciously to send altered sensor data. Regardless of the 

intention of the IoT sensor, misinformation/disinformation 

of the cloud platform may lead to severe consequences in 

patient’s health. In other words, platform utility is 

significantly reduced if wrong sensor data is shared with the 

cloud platform. Here, trustworthiness of the IoT sensors 

introduces an important consequence impacting the platform 

utility. Reputation-based models can be utilized to reduce 

manipulation probability in the aggregated data at the cloud 

platform. In (Kantarci & Mouftah, 2014a; Kantarci & 

Mouftah, 2014b; Kantarci & Mouftah, 2014c), trustworthy 

data acquisition schemes have been proposed for public 

safety purposes in a cloud-centric IoT architecture. This 

concept can easily be adopted by the front-end segment of 

the presented remote health monitoring architecture in this 

paper. In case a particular task is sensed by multiple IoT 

sensors, the percentage of positive readings upon detection 

of outliers can be used via an outlier detection algorithm 

(Zhang, Meratnia, & Havinga, 2010). The statistical 

reputation of an IoT sensor (i.e., sensor i) at the end of the 

time window t (Ri(t)), can be formulated as shown in (3) 

where p(t) and p(t) denote positive and negative readings, 

respectively. Thus, instantaneous reputation and previous 

reputation undergo a weighted sum function, and an IoT 

sensor with low reputation will be less likely to be selected 

and vice versa. Moreover, the usefulness of the data 

provided by an IoT sensor will be scaled by the reputation 

of the sensor. 

 

 
Adopting the IoT-based data acquisition in the front-

end can increase the precision of sensed data as the higher 

the number of sensors the better the performance of a 

distributed estimation system. On the other hand, due to the 

issues reported above, trustworthiness of the data acquired 

through IoT sensors can be guaranteed by reputation-based 

sensing. Fig. 3 illustrates the disinformation probability in a 

distributed sensing environment under reputation-unaware 

sensing and reputation-aware sensing in the presence of 

malicious behavior and malfunctioning sensors where 

sensing costs of IoT sensors vary between 1 and 5 and the 

usefulness of sensor data varies between 1 and 10. In the 

experimental setup, 1000 IoT sensors are deployed in a 

 
 

Figure 3. Manipulation probability in the presence of 

malfunctioning and malicious IoT sensors. 
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1000x1000 terrain with 5% malfunctioning or malicious 

activity. It is worth noting that disinformation denotes the 

case where an IoT sensor is recruited while it is reporting 

wrong sensor data. Reporting of wrong sensor reading can 

be either continuous or intermittent. Intermittent 

disinformation/misinformation denotes the situation where 

true sensor data is sent for a while and then wrong sensor 

data is shared either due to malfunctioning or to lead to 

disinformation. As seen in the figure, reputation awareness 

degrades disinformation probability at the order of 75% 

under various sensing task arrival rates. Malicious or 

malfunctioning sensors can be identified faster if they keep 

sending wrong sensor data continuously. Thus, the 

reputation of a sensor that continuously sends wrong sensor 

reading will be degraded continuously and converge to a 

low value shortly, and the corresponding IoT sensor device 

will not be recruited again due to its reasonably low 

reputation. Therefore, disinformation probability under 

intermittent disinformation is slightly higher, however, the 

improvement over reputation-unaware sensing is still above 

70% even in the presence of malicious sensors that attack 

based on a strategy.  

In addition to the experimental results above, Fig. 4 

presents the utility of the cloud platform and the average 

utility of an IoT sensor calculated by (1)-(2) in the presence 

of malfunctioning and malicious IoT sensors which may 

report wrong sensor data either continuously or 

intermittently. The simulation setup is adopted from the 

study in (Kantarci & Mouftah, 2014a). As seen in Fig. 4a, 

platform utility can be improved by 12% under a lightly 

arriving sensing task load and by 85% under a heavily 

arriving sensing task mode. As seen in Fig. 4b, 

compensation of IoT sensors is always non-zero. Note that 

the compensation mechanism in these examples adopts the 

auction-based payment approach in (Yang, Xue, Fang, & 

Tang, 2015).  

6. VISUALIZATION CASE STUDY 
In order to concretely illustrate backend components, 

Sections 6 and 7 will focus on a single case study: detection 

and monitoring of the Long QT Syndrome (LQTS). 

 

6.1 Background: Long-QT Syndrome 
LQTS is a cardiac illness which may be congenital or 

drug-induced. It is characterized by prolongation of the QT 

interval on an ECG, shown in Fig. 5. This interval is a 

measure of ventricular repolarization time, and its 

prolongation can warn of impending arrhythmias such as 

torsades de pointes (TdP), leading to syncope or death. The 

congenital form of the disease is particularly dangerous, as 

this risk never fully goes away.  

The impact of LQTS varies widely based on gender, 

age, and specific genetic mutation. It also manifests during 

different activities based on genotype. Type-1 LQT (LQT1) 

patients tend to have issues during exercise, while Type-2 

(LQT2) patients are more at risk during sleep. Patients with 

an LQT genotype, or people who are on known QT-

prolonging drugs, may benefit from — or outright require 

— long term monitoring via ECG sensors, providing an 

early warning to the patient, doctor, and/or EMS based on 

QT interval measurements. More specifically, the physician 

is interested in the length of the QT interval in relation to 

heart rate; i.e., whether QT is happening quickly enough, 

before the next cardiac cycle begins. It is common to look at 

a “corrected” QT value, shown in Equation (4), known as 

the Bazett QT correction equation (Bazett, 1920). While it is 

not necessarily the best correction for all purposes, it is 

perhaps the simplest and one of the most commonplace. 

  

 

 
 

Figure 4. (a) Utility of the cloud platform in a distributed IoT sensing scenario, (b) Average utility of an IoT sensor node 

in a distributed IoT sensing scenario. 
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6.2 Decision Support 

One of the most useful types of decision support is not 

for a computer to generate specific recommendations, but to 

simply present the data in a manner that allows the doctor to 

fully understand the situation. Based on this presentation, 

the doctor can make his or her own decision. The challenge 

here is to condense many sensor measurements spanning a 

long period of time into a very concise summary.  

An important consideration in building visual aids for 

decision support is knowing which features are relevant to 

the condition being investigated. In the Long QT Syndrome 

(LQTS), for example, many ECG measurements such as 

QT, RR, or TpTe may all carry some information about the 

disease, not just QT. Additionally, there are several ECG 

leads (sensor locations) to choose from, and certain leads 

may be better for QT measurement. We also know that 

LQTS manifests differently throughout the day based on 

patient genotype, so perhaps there are a few key times of 

day that should be checked (as opposed to looking at an 

overall average of the available data).  

We are building a sizable array of factors that are 

relevant to this disease, and circling back around to the 

original problem: displaying it all to the doctor in a form 

that can be digested very quickly. Remember that in 

addition to each of these factors — ECG marker and lead, 

time of day, etc. — the doctor may also have 20–30 

patients. Further, the advent of long-term remote monitoring 

means that each patient will be generating more data than 

ever before. So we would like to create a picture that 

adequately summarizes a patient’s day with only a few 

seconds of viewing (Page, et al., 2015c). 

The first set of techniques we will apply to LQTS 

monitoring involve the removal of redundant information 

from the ECG recording. For instance, while many ECG 

measurements may contain some information related to the 

patient’s illness, we may focus simply on QTc (which 

combines two measurements, QT and RR). Further, since 

many ECG leads are available, we will combine data from 

all of them using e.g. a median or average (We could also 

choose to look only at a single lead, perhaps the least noisy.) 

Now that we are focused on a single (computed) feature 

on a single (virtual) lead, our visualization problem is much 

more focused. We must plot or tabulate the values of QTc 

for ~120,000 heart beats per day. Again, we know that 

certain times of day are more critical based on genotype. 

However, as they are based on sleep and exercise patterns, 

they will still vary significantly between patients. So, we 

would like to show the entire day if possible.  

The most obvious way to present the remaining data 

would be to simply plot it. However, the scale of the plot 

must be determined to ensure that short duration events are 

still visible. In the case of LQTS, we are mainly interested 

in events that last for several minutes. It is therefore 

practical to plot a full 24 hours in a fairly “typical” plot size 

(e.g. “half page”), which allows us to see with at least one-

minute resolution.  

Finally, we note that for data spanning 24 hours or 

more, polar axes can be beneficial. By using the angle of a 

polar plot to represent time of day, and the radius to 

represent the value of some feature, multi-day data can 

simply continue to circle around the plot. Even with single-

day data, this representation makes it unnecessary to adjust 

 
 

Figure 5. Standard ECG waveform. We will mainly 

look at the QT interval (annotated), but RR — the 

time of one heart beat — is also of interest. Other 

metrics may provide even more detail, such as 

Tpeak–Tend (TpTe). Image source:  

SinusRhythmLabels.png by Anthony Atkielski. 

 
 

Figure 6. Example plot of QTc over 24 hours in the 

“ECG Clock” format. This patient has a relatively 

normal QTc interval during the day, but it becomes 

potentially dangerous at night. 
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the axes range to view different recordings. (For example, 

should the x axis start where the recording does, or at some 

other time like midnight?) We have found it best to 

standardize on a 24-hour polar axis. An example of the 

visualization we’ve just described is given in Fig. 6. 

Because our data was still fairly noisy even after all the 

preceding steps, we used a median filter to smooth it. 

Further uses of this visualization technique have already 

been well-described in (Page, Soyata, Couderc, & Aktas, 

2016) and an open source ECG visualization program is 

available in (Page, Soyata, Couderc, & Aktas, 2015a). 

 

7. ANALYTICS CASE STUDY 
The objective of the visualization techniques developed in 

Section 6 was to present enough data for the doctor to make 

a decision. However, especially in the case of rare diseases 

with which the physician may not be experienced, it would 

be good for the computer to also provide some extra “hints”. 

In this section, we begin to investigate ways to augment the 

visualizations using machine learning (ML) algorithms. The 

goal is to utilize (a subset of) the same data used to generate 

plots to compute the likelihood that a patient has a particular 

medical condition. In this study, we will continue to focus 

on LQTS. 

 

7.1 Background/Methods 
 
We consider machine learning algorithms from three 

general categories: 

1) “Conventional” supervised learning methods, such 

as SVM, decision tree, and nearest neighbors. 

2) Clustering techniques such as GMM, K means, and 

DBSCAN. 

3) Artificial neural networks (ANN). 

 

We will mainly discuss the first category, but will 

present some formulation and results from the third. We will 

also consider “ensemble” techniques such as AdaBoost and 

Random Forest, which attempt to use the results from 

several classifiers improve accuracy. Clustering methods 

will not be discussed, as we have not yet found satisfactory 

parameters to achieve good results with these.  

Which ML algorithm is best to detect and classify 

LQTS? This really depends on properties of our data and 

our long term goals for how it will be used. For instance, 

some algorithms may be lighter in terms of storage and/or 

computation if we intend to continuously update the 

classifier (i.e. “online” machine learning). Additionally, we 

will want to keep the dimensionality of the data as low as 

possible in order to improve the accuracy of many methods. 

For now, we will make some assumptions — e.g. that 

hourly data will be sufficient, as opposed to beat-to-beat 

data, and that the database is small — and test the 

performance of a variety of conventional ML algorithms on 

our data. Incidentally, our database is indeed somewhat 

small; we have access to 639 24-hour Holter recordings of 

healthy, LQT1, and LQT2 patients. LQT2 is the smallest 

cohort, with 145 recordings. LQT1 has 294 recordings, and 

healthy has 200. The scikit-learn (Pedregosa, 2011) Python 

library will be used to perform the tests. 70% of the samples 

will be used for training, and the remaining 30% will be 

used for testing. Again, the data will consist of hourly QTc 

values for each patient, plus their gender (25 “dimensions”), 

and a corresponding classification (0, 1, or 2, for “healthy”, 

“LQT1”, or “LQT2”, respectively). 

To start with, we will test one of the simplest machine 

learning algorithms: nearest neighbors. This method 

simply selects the “closest” training sample to the presented 

sample (i.e. shortest Minkowski distance). An extension of 

this takes a weighted average of the N closest samples. One 

disadvantage of this technique is that you must store and 

search through all previous data in order to find the nearest 

match(es).  

Support vector machines (SVM) are also very 

common, and simple to train and interpret. Depending on 

the nature of the data, they can be highly accurate. They 

operate by defining hyperplanes which separate the data into 

different groups. These planes are created from a subset of 

the training points, known as support vectors, in a way that 

maximizes the distance from the plane to the nearest data 

point of any class. Additionally, the feature space may be 

transformed using different kernels to allow nonlinear 

classification boundaries. Regardless of the kernel, SVM 

offers several advantages including memory efficiency and 

effective classification in high dimensional spaces. We will 

attempt to train SVMs using both linear and radial basis 

kernel functions. While this (and some other) algorithm(s) 

are designed for data from only two categories, the scikit-

learn implementation will internally split our three-category 

data into two-category stages to bypass this limitation. One 

weakness of SVM is in the ability to judge how certain we 

are about a prediction; you can compute the distance from a 

point to the nearest separator plane, but this doesn’t 

necessarily translate well to a “confidence percentage”.  

A very different method that we expect to perform well 

is the random forest algorithm. This method uses training 

samples to construct multiple decision trees — a forest — 

using random subsets of the given features to build each 

tree. It then classifies a new testing point by averaging the 

results of the individual trees (a single decision tree operates 

by splitting the data multiple times until “leaves” are created 

of a single class. Then, to classify a new sample, we simply 

traverse the tree based on the splitting criteria until we 

arrive at a leaf.) By taking the mean, a random forest gets 

rid of the over-fitting problem that is often encountered with 

a single decision tree. Random forests offer other valuable 

features such as processing large amounts of data 

efficiently.  

The random forest is a type of “ensemble” algorithm, 

basing its output on the output of several other classifiers. 

We will test two other ensemble techniques as well: 
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AdaBoost, and voting. The voting classifier simply takes 

the output of several other classifiers and does a majority 

vote if they disagree. In a more advanced version of this, the 

results of the individual classifiers will be weighted based 

on their confidence in it (and/or our confidence in that 

classifier). AdaBoost is somewhat different; it is a 

multistage classifier where each stage is trained on the 

failures of the previous stage (in our case, each stage is a 

Decision Tree, but this can be changed).  

Finally, we will use the NVIDIA Deep Learning GPU 

Training System (NVIDIA-DIGITS, 2016) and Caffe 

(CAFFE, 2016) for ANN-based classification of LQTS. We 

have seen in Section 6 that proper visual 

arrangement/presentation of ECG sensor data can greatly 

aid the doctor’s decision in diagnosis and prescription. As 

there are many ANNs designed for visual recognition tasks, 

we decided to adapt our visual output (i.e. the ECG Clock) 

to a form that could be directly used as input for a pre-tuned 

ANN. One common vision task for ANNs is to classify 

handwritten digits from the MNIST handwriting database 

(LeCun, Cortes, & Burges, 1998b). 

These are binary images, and are 28x28 px each. We 

simply shrink our ECG clocks (the plotted lines only) down 

to this size, and attempt to train an ANN to classify 

“healthy”, “LQT1”, and “LQT2”, from plotted QTc values. 

This format essentially restricts us to 784 data points 

(28x28), and most of the image is blank (i.e. it is sparse); we 

may only plot ~70 points. So it will be interesting to see if 

we are providing enough data to the ANN. This technique is 

shown in Fig. 7. Based on the examples in this figure, we 

expect that “healthy vs. sick” will be fairly simple to 

determine, but “LQT1 vs. LQT2” may be difficult. 

 

7.2 Results 
Classification of “healthy” vs. “long QT” was 

relatively accurate — about 90% — as we expected. Further 

differentiating between LQT1 and LQT2 was more difficult, 

lowering the score of each classifier as shown in Fig. 8. 

Still, an accuracy of about 70–75% was consistently 

achievable with the SVM and Random Forest methods. We 

should note right now that several of the recordings in our 

database were noisy or incomplete, which likely degraded 

our results. Missing data was replaced with average values, 

but very short recordings should probably have simply been 

thrown out. However, we wanted to present a “worst case” 

starting point for further research, so all data was retained.  

Another important consideration is that while our data is 

segregated by LQTS genotype, not all LQTS subjects show 

the corresponding phenotype. In other words, a handful of 

the LQTS patients truly do look healthy, so even a 

cardiologist would be likely to “misclassify” them.  

We just saw that Random Forest and Support Vector 

Machine (SVM) generally proved superior to other 

algorithms. Now, we would like to see what information 

they are using to arrive at their decisions. For example, 

 
 

Figure 7. Classifying LQTS using QT Clocks and 

ANNs. Top: typical samples for ANN handwriting 

classification. Bottom: QTc clocks converted to a 

similar style. The first three clocks are healthy, 

followed by three LQT1 and two LQT2 clocks. While 

this format may not be ideal, it allows us to test 

preconfigured ANNs on our LQTS diagnosis problem. 

 
Figure 8. Comparison of conventional ML classifiers. 

The training+testing cycle was repeated 20 times with 

Holter recordings randomly assigned as training or 

testing each time. Here we see the average performance 

of each classifier when identifying “healthy vs. sick” 

(blue) or “healthy vs. LQT1 vs. LQT2” (red). Error 

bars show the range from worst- to best case 

performance of each classifier over the 20 trials. 
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based on our findings in (Page, Soyata, Couderc, & Aktas, 

2016), we expect that data from ~3AM will be a very good 

differentiator between the classes. We also expect that 

afternoon QTc measurements will not help distinguish 

between LQT1 and LQT2. Fortunately, we can examine the 

internals of these trained classifiers quite easily. In Fig. 9, 

we extract the “importance” of each feature (hour) from the 

Random Forest and Linear SVM classifiers. The results are 

basically what we expected — late-night data is most useful 

to both classifiers — but SVM also used information from 

earlier in the evening. Because of the random nature of the 

training/testing data split, and the random selection of 

features in Random Forest, these results will not be exactly 

the same on every trial. However, we observed the same 

general trend over several trials.  

Finally, we attempted a very basic Artificial Neural 

Network analysis of the QTc data. In this case, we did not 

provide hourly data points, but (28x28 px) QTc clocks as 

shown in Fig. 7 (bottom). These clocks were used to train a 

LeNet network (LeCun, Bottou, Bengio, & Haffner, 1998a), 

which is known to perform well on the MNIST handwriting 

data set. Missing data was not “filled” in any way; we 

simply passed incomplete plots to the ANN. This 

implementation achieved ~70% accuracy with absolutely no 

tuning (and ~90% accuracy when only classifying “healthy 

vs. sick”). i.e., it was comparable to the classifiers we’ve 

already discussed. However, providing QTc clocks based on 

a different correction equation (Fridericia, 1920): 

 

 
 (as opposed to Eqn. 4) yielded a significant improvement: 

three-way classification accuracy increased to ~80%. Using 

this alternate QTc equation did not improve the accuracy of 

any of the other classifiers, only the ANN. 
 
7.3 Future Work 

TensorFlow (TENSOR-FLOW, 2016) and Amazon 

Machine Learning (AMAZON-ML, 2016) are two relatively 

recent ML developments that we have yet to test. Both of 

these solutions appear to be relatively simple to use and to 

collaborate with. The Amazon product is promising as a 

very high level solution, that will simplify the tuning 

process. TensorFlow, developed at Google, is likely to be 

useful for researching and training more complex neural 

networks.  

Another avenue of research will arise as data collection 

and collaboration increases: the analysis of trends and 

disease outbreaks. This analysis may be more statistical in 

nature than what we’ve presented; i.e., machine learning 

may not play a major role. This will also tie in with the 

visualizations of Section 6. For example, the statistically 

“normal” ranges must be continuously updated with new 

recordings.  

In Fig. 9, the low values during the daytime (about 

9AM-5PM) indicate that perhaps we don’t even need to 

monitor that data. In further research, we will attempt to 

select only the necessary features to provide similar results. 

If there are indeed several hours which don’t require 

observation, it may save battery life, storage, and processing 

time. We must also determine which other 

features/measurements would improve performance. 

Gender, for example, was used as a feature in our results 

above, but its importance turned out to be quite low. We 

must attempt to add other ECG markers (such as RR and 

TpTe) to determine the best set of features for classifying 

LQTS. Other researchers will have to do the same for other 

diseases. Many optimizations remain in terms of classifier 

parameters as well, but tweaking them did not affect our 

performance very much at this stage. We therefore believe 

that it is more important to find the correct features before 

finding the optimal classifier configurations.  

At this point, our ANN results are really only a very 

preliminary proof of concept. We must optimize this on two 

fronts: 1) neural network parameters (layers, etc.) and 2) 

input data. The input data side will be beneficial to the 

“conventional” algorithms as well. This is the research we 

just mentioned, where we will attempt to identify other ECG 

parameters to include in the input, and how to best reduce 

the dimensionality of the feature space. Further, we will 

attempt to hand-select only clean, complete recordings of 

phenotype-positive individuals as input; from initial testing, 

 
 

Figure 9. Weight of each measurement in 

classification. A stronger magnitude means QTc 

measurement was more “helpful” at that time. 

Random Forest weights are extracted from the 

classifier’s feature_importances_ array. SVM 

weights are taken as the (normalized) maximum 

amplitudes of the weights in coef_ across all three 

possible classes (healthy, LQT1, LQT2). We see that 

both classifiers focus on late-night QTc values, and 

that SVM also uses information from evening (~7PM) 

while Random Forest does not. 
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this may reduce our error by an order of magnitude! We 

may also try a different branch of research, where we look 

at, for example, 1 hour of ECG data, and attempt to predict 

if there will be a cardiac event in the following hour. This 

will allow us to provide real-time warnings, rather than 

being limited to disease classification. 

 

8. SUMMARY AND CONCLUDING REMARKS 
Emerging technologies such as IoT and cloud-based 

machine learning have opened the door for vast 

improvements to personalized health care. However, we 

must understand the strengths and limitations of each 

technology to assemble a system that is reliable, practical, 

and provides the best possible support to both doctors and 

patients. We have addressed many of the privacy and 

security concerns in this system, and presented our 

approaches to developing some of the key components. We 

have also identified several business opportunities that 

naturally arise from such a system, for instance in the realms 

of data acquisition, sharing, and analytics. In our front end 

feasibility study, we discussed IoT-based data acquisition in 

the presence of malfunctioning/malicious nodes. In our 

backend feasibility studies, we presented decision support 

methods for long-term patient monitoring. The first method 

involved visualization of key features from sensor data, and 

the second method applied machine learning to these 

measurements to identify disease states. Our future work 

will focus on improving the ML-based analysis of long-term 

medical data. 
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