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Background: The number of technical solutions for monitoring patients in their daily activities is
expected to increase significantly in the near future. Blood pressure, heart rate, temperature, BMI,
oxygen saturation, and electrolytes are few of the physiologic factors that will soon be available to
patients and their physicians almost continuously. The availability and transfer of this information
from the patient to the health provider raises privacy concerns. Moreover, current data encryption
approaches expose patient data during processing, therefore restricting their utility in applications
requiring data analysis.

Methods: We propose a system that couples health monitoring techniques with analytic methods
to permit the extraction of relevant information from patient data without compromising privacy.
This proposal is based on the concept of fully homomorphic encryption (FHE). Since this technique
is known to be resource-heavy, we develop a proof-of-concept to assess its practicality. Results are
presented from our prototype system, which mimics live QT monitoring and detection of drug-
induced QT prolongation.

Results: Transferring FHE-encrypted QT and RR samples requires about 2 Mbps of network
bandwidth per patient. Comparing FHE-encrypted values—-for example, comparing QTc to a given
threshold—runs quickly enough on modest hardware to alert the doctor of important results in
real-time.

Conclusions: We demonstrate that FHE could be used to securely transfer and analyze ambulatory
health monitoring data. We present a unique concept that could represent a disruptive type of
technology with broad applications to multiple monitoring devices. Future work will focus on
performance optimizations to accelerate expansion to these other applications.
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With the miniaturization of health monitoring
systems and their integration into everyday devices
such as smart phones,1–3 personal computers, and
implantable devices (ICD, ICD-CRT), there is an
increasing number of technical solutions to access
large amounts of data regarding the health state
of patients outside the standard clinical settings.
However, the transmission of increasing amounts
of health information raises ethical and safety
concerns related to patient privacy. Current HIPAA
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regulations list a set of factors defining protected
health information (PHI), but it is uncertain if this
list will remain sufficient when cross checking
techniques of multiple health information sources
may generate opportunities to breach patient
privacy.

This article describes a system that uses end-
to-end encryption to solve the privacy issues of
remote monitoring. This solution allows for data
analysis in the cloud, without making patient
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information available to the cloud provider. A
proof-of-concept system is presented, using ECG-
monitoring of QT prolongation based on continu-
ous Holter recordings from healthy individuals and
cardiac patients. Also, a long-term research path
is proposed to improve the speed (and available
number) of operations that can be performed
on encrypted data, which could expand the
capabilities and clinical use of such technology.

METHODS

We will demonstrate the feasibility of our
concept by simulating clinical cases of patients
exposed to drug-induced QT prolongation while
being continuously monitored using body surface
ECGs. We will simulate patient surveillance for the
acquired form of the long QT syndrome (LQTS)
while providing data storage and limited processing
in the cloud using fully homomorphic encryp-
tion (FHE), an emerging technique that allows
computation on encrypted data (i.e., computation
without observing the actual data). Furthermore,
we will evaluate the impact of using FHE on
the performance of the system for detecting the
presence of QT prolongation using real clinical
data.

The technological infrastructure exists to allow
remote ECG monitoring via a cloud provider;
the data rate required to transfer uncompressed
ECG recordings is on the order of 10 KB/s,4

which is easily accommodated by virtually any
Wi-Fi access point or cellular network, and storage
of encrypted medical data in the cloud is an
accepted practice.5,6 Using existing components,
there are essentially three ways to design a remote
monitoring system:

(1) The hospital itself can maintain its own
datacenter, but this is costly in terms of hard-
ware, utilities, personnel, and space.7,8 Locally
maintained datacenters also limit scalability
and interoperability.9

(2) Servers can be rented from a cloud provider
that’s willing to sign a business associate
agreement (BAA).9–11 However, this restricts
the hospital’s options. Furthermore, while such
an agreement ensures HIPAA compliance,
it cannot guarantee privacy; breaches may
happen even when best practices are followed.

(3) The cloud can be used in a “storage only”
mode, that is, without the ability to analyze
data. Data can be encrypted to prevent any
third parties from reading it, adding a layer of
security to option (2) and also enabling the use
of “untrusted” cloud providers. (In the context
of this article, “untrusted” providers are
providers who should not have the ability to
read the data that they are hosting.) This type
of system provides only the A–B–C chain in
Figure 1, and is the typical configuration for
services such as EVault5 or CareCloud.12

Thus, while it is technically possible to design a
remote-monitoring system using existing tools, it is
typically not possible to do so within the guidelines
of HIPAA without sacrificing computational capa-
bilities or incurring large additional costs. While
we can store encrypted PHI in the cloud, we have
no method to securely process it—for example, to
generate reports or alerts—on an untrusted cloud
platform. Therefore, our aims are: (1) to define a
system that solves the HIPAA/privacy issues with
remote patient monitoring and (2) to demonstrate
a proof-of-concept for this system using a clinically
relevant application.

ECG Monitoring Using Fully
Homomorphic Encryption (FHE)

As alluded to above, conventional cryptography
has a major limitation: it precludes data analysis
in the cloud (unless the decryption key(s) are also
available to the cloud provider). That is, most
basic arithmetic operations will not yield correct
results—or even meaningful results—when applied
to data that has been encrypted by a standard
algorithm such as the advanced encryption stan-
dard (AES).13 To overcome this severe limitation,
we look to FHE.14 FHE is a novel encryption
method that allows analysis (i.e., arithmetic oper-
ations) to take place on encrypted data, yielding
correct, encrypted results. Using this technique,
a server can analyze data and provide results to
a doctor, without the server ever knowing what the
data or results were; the doctor is only able to view
the results because (s)he possesses the decryption
key. This capability does not come without a cost,
though, the set of mathematical operations that
can be performed on FHE-encrypted data is still
somewhat limited, and calculations can be very
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time and memory consuming. Nevertheless, our
initial results indicate that FHE is already practical
for some basic applications, and that there is
great potential for extending and accelerating the
available functions in the future.

We propose a system that allows ECG data
to be: aggregated on a smartphone (or PC) in
the vicinity of a patient, uploaded to a cloud
services provider (such as Amazon Web Services15

or Google Cloud Platform16), analyzed in the
cloud (with results forwarded to the doctor), and
protected along the entire path using a combination
of standard encryption techniques and FHE. The
doctor can review the results (e.g., an annotated
ECG waveform), release the patient’s diagnosis,
and decide on a course of action.

There are three main parts to the proposed
system, shown in Figure 1, which will be described
below. Many of these pieces have already been
implemented and tested in our lab, and will
be described further in the “Implementation”
section:

(1) The sensor(s) and embedded system(s) in the
vicinity of the patient (A, B, D, and E in Fig. 1).

(2) The servers and storage located at a large
datacenter (“Cloud” in Fig. 1).

(3) The doctor’s computer(s) (performing C and G).

The patient wears sensors (A) that transmit
wirelessly and securely (e.g., using AES17) to a
nearby smartphone. The sensor system may be,
for example, an ECG patch with an embedded
microprocessor and Bluetooth transceiver. The
phone decrypts the incoming sensor data, performs
some preliminary analysis (D), re-encrypts the data
using two different techniques—one conventional
(B), the other using FHE (E )—then uploads it to
the cloud. We assume that the hospital provides a
dedicated phone for this purpose; this way, factors
such as free storage/memory, battery life, security,
and data rate/caps are under the hospital’s control,
and not dependent on the patient’s particular
hardware and service plan. So, when we refer to
the “patient’s” phone or PC, we really mean the
one the hospital issued.

A server hosts an upload directory (via a secure
protocol such as SFTP) for patients’ devices to send
their data. The host may have signed a BAA, but
this is not necessarily a requirement since they
will not actually have access to the unencrypted

PHI. When new data is received, it will be one of
two types: (1) conventionally encrypted raw data
or (2) FHE-encrypted, preprocessed data. In case
(1), the server simply holds the data until the doctor
asks for it. In case (2), the server finishes analysis
of the data, and generates results such as “QT
prolongation warning” (all in F ).

An application on the healthcare provider’s
tablet, smartphone, or PC will actively decrypt
the results from the server (in G), and notify the
doctor of any changes in a patient’s status for
which they had requested an alert. In response
to these notifications—or at any other time—the
doctor can request more information. For example,
the doctor may be notified that QTc exceeded
a given threshold for a 30-second interval. The
doctor would then request to see the patient’s
ECG waveform for that 30-second interval. This
waveform would be retrieved from the server, and
decrypted by C for display. (The doctor will be
able to initialize and configure sensors, encryption
keys, alerts, etc. for their patients via a “one-stop”
administration website.)

The Cloudlet: Providing Postacquisition
Assistance

Because D and E (in Fig. 1) may be overwhelming
for a smartphone—especially when battery life is
considered—it could be desirable to bypass the
phone, replacing it with a nearby PC (connected to
the patient’s home power and Internet) instead. A
fast, local computer in this “cloud interface/helper”
configuration is sometimes referred to as a
“cloudlet.”18–21

There are many advantages to this approach;
most importantly, a cloudlet is more capable than
a phone in terms of hardware—both for speed,
and extensibility. It is also likely to have access
to a faster, more reliable Internet connection, and
the patient does not have to carry it or charge it.
And cost-wise, a computer such as an Intel NUC22

would be comparable to the smartphone approach.
The primary disadvantage of a cloudlet compared
to a phone is that it limits the mobility of the
patient, requiring that they stay within range of
a fixed location. Another possible disadvantage is
setup time; since some patients will not know how
to connect a new computer to their home network,
a technician may need to set the cloudlet up for
them. (This could potentially be solved by using
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Figure 1. Overview of proposed system to enable privacy-preserving computation.
A is a wireless ECG patch (or some other sensor), and C allows the doctor to view
its output. The preprocessing step D is in place to circumvent current limitations of
HElib (explained in the “Fully Homomorphic Encryption” section), that is, it provides
an opportunity to compute values before FHE encryption that would be hard to
compute after encryption. Systems providing A–B–C already exist; the addition of
the E–F–G chain is the focus of our research. Without this chain, the cloud cannot
securely perform any kind of signal analysis.

a 4G cellular card in the cloudlet, rather than the
patient’s Internet connection.)

It is also possible to use the patient’s own
computer as the cloudlet, that is, to install
an application on their home computer that
performs B, D, and E , and receives sensor
data via, for example, a USB Wi-Fi adapter.
However, as there are no guarantees of speed,
security, or reliability on a patient’s personal
computer, it is recommended instead that the
hospital maintain a set of preconfigured cloudlet
PCs (similar to the smartphone distribution plan
mentioned in the “ECG Monitoring Using Fully
Homomorphic Encryption” section). These PCs
would be issued for remote-monitoring sessions,
then wiped/reconfigured for the next patients.

LQTS Surveillance

Prolongation of the QT/QTc interval is an
accepted surrogate marker of an increased risk for
life-threatening events.23 As of today, there are
hundreds of drugs available on the U.S. market

that can slightly prolong the QT interval. While
these drugs are generally safe, the accumulation
of their small QT effects when patients are
prescribed with multiple drugs can become a
health concern. The acquired LQTS is modulated
by more than just drug interaction; the variability
in individuals’ response, the diet, the circadian
variation of heart regulations are amongst a set of
factors that can play a crucial role in the patient
response to a drug with potential QT effect. There-
fore, a solution is to continuously monitor patients
and enable QT surveillance. This concept implies
that QT intervals are continuously assessed from
an ambulatory ECG signal and corrected for heart
rate. There are many different methods that are
used for “correcting” QT for heart rate. We opted to
implement Fridericia’s formula,24 QTc = QT

3√RR/sec .
To measure the QT on a beat-to-beat basis,

we selected the algorithm developed by Yuriy
Chesnokov.25 This award-winning open-source al-
gorithm was tested on 548 sample ECG recordings
and delivered a 17.30 ms RMS error (i.e., approxi-
mately 4% error) in QT interval measurement. The
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algorithm also provides fiducials for the PR interval
and QRS complex for all ECG leads. We ported this
code from Windows to Linux, and modified it to
read ISHNE-formatted data files4 from the THEW
database.26 It was then extended to output QT and
RR values for use in our FHE comparator. The
resulting program currently runs on an Amazon
server, and the source code is much more cross-
platform than the original—that is, it is closer to
being executable on a smartphone or embedded
microprocessor, which will be helpful during later
development.

Conventional Security

Certain data—namely, the ECG waveform—
should be forwarded unaltered from the patient
to the doctor. This data does not need to be
encrypted using FHE; instead, we can encrypt
it with a conventional algorithm. This encrypted
waveform will simply be held on the server until
the doctor retrieves and decrypts it. In this section,
we describe standard cryptographic/security tech-
niques that will be used to accomplish this. Our
requirements are:

(1) Algorithms should be lightweight in terms of
storage and processing.

(2) The overall configuration should provide as
much security as possible in “worst case”
scenarios (e.g., a lost or stolen phone/tablet).

(3) Patient data should be easily transferred
between doctors when authorized.

(4) Patients should not be able to see other patients’
data.

One system that satisfies these requirements is
PGP,27 which is typically used to secure email
communications. PGP compresses data and uses
AES for encryption, which is good for requirements
1 and 2. Communications are “wrapped” with
RSA28—a crypto algorithm that helps secure much
of the Internet—also satisfying 2. By providing
only public keys to the patients, we satisfy both
2 and 4. Finally, since PGP-encrypted data contains
a header of “allowed recipients,” transferring an
encrypted patient file to another doctor is simply
a matter of (an approved doctor) adding the new
doctor to the file header (satisfying 3).

On the server receiving PHI, file permissions
should be set to prevent a patient from download-
ing or viewing any other files. Also, to ensure that

only intended patients are able to access the server,
we recommend using the SFTP protocol. A unique
key can be assigned to patient for a particular
monitoring session, and then revoked/removed
from the server. This protocol also adds an extra
layer of security to the system, as SFTP not
only authenticates clients,29 but encrypts data
transfers30 as well. (Note that these security
steps are somewhat redundant, as the files being
transferred are already encrypted. However, they
help mitigate attacks that could corrupt data or
degrade service.)

Steps must be taken to ensure that PHI is
protected at the phone/tablet level, as well; for
example, keeping sensor data in RAM rather than
on an SD card makes it harder for an attacker to
retrieve. Further, phones should be wiped between
patients, sensor keys should be rotated, and other
details of key distribution must be planned in such
a way to minimize privacy risks. And as always,
the doctor must protect their password.

Fully Homomorphic Encryption

As we have discussed, conventional encryption
is useful when a server is storing data for a doctor
to retrieve. It is not useful if the (untrusted) server
needs to perform any calculations—identifying
a patient’s heart rate from raw ECG data, for
example. These tasks are impossible because
basic mathematical operations such as addition or
multiplication cannot be applied to conventionally
encrypted data in a meaningful way. Since data
analysis in the cloud is a key goal of our system,
we must choose (or create) an FHE library to be
used for this task. While there are a few options,
the de facto library for this is HElib.31

HElib was created in 2013 and is based
on the Brakerski–Gentry–Vaikuntanathan (BGV)
encryption scheme.32 It provides the ability to
encrypt/decrypt data homomorphically, and in-
cludes several mathematical functions (such as
addition and multiplication) that can operate on
the encrypted data. On top of HElib’s default
primitives, we have built new functions to allow
for computation of statistics (such as the average
value for a list33,34) and comparison of values.

There are a couple of key concepts that must be
kept in mind when working with data in HElib:
(1) every algorithm you want to run has a “depth”
or “level,” which is essentially an indicator of its
complexity, and (2) you can “pack” more than
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one value into a single variable/ciphertext. These
ideas have important implications for us: the depth
determines the speed and memory requirements
of the algorithm, and the ability to pack many
values into a ciphertext grants us some parallel
computation capabilities.

The FHE comparison operator (>) is used in our
prototype system to compare QTc to a threshold.
This operator has some special requirements. One
important limitation is that only unsigned integers
can be compared. Further, since we would like to
look at median QTc for about 40–50 heartbeats at
a time (in order to filter out noisy/erroneous data),
it could be desirable to pack that many heart beats
into a single ciphertext for HElib to operate on. The
“integer” requirement is important to keep in mind,
as converting floating-point inputs to integers will
cause the results to be less precise (especially if
they are also dropped from, e.g., 32 bits to 16 bits).

Implementation

A prototype system has already been developed
in our lab. Because a full, general implementation
is so complex, we chose to focus on a single
proof-of-concept application: detecting prolonged
QT interval in ambulatory condition. The current
components of this system are illustrated in
Figure 2.

Rather than capturing data from a live ECG
sensor, prerecorded ECG data from the University
of Rochester’s THEW database26 is used. An
application on an Android-based phone uploads
this ECG data to an Amazon EC2 server. This
communication is authenticated and encrypted by
the SSH protocol.

The flow of data in the cloud proceeds as
follows:

(1) A Linux-based server running on an Amazon
EC2 instance receives the patient’s ECG
data—an ISHNE-formatted file—over an SFTP
connection.

(2) The delineation program (from the “LQTS
Surveillance” section) takes the raw ECG file,
and annotates QT and RR. (This algorithm is
too complex to be performed under FHE at this
point, so in the proof-of-concept, the server is
running it on the unencrypted data.)

(3) For each heartbeat, the FHE comparison
“QTc > threshold?” is performed (where
“threshold” is a value such as 0.470 seconds). If

FHE is not required (i.e., on a trusted server),
the comparison can be performed very quickly
and accurately by bypassing HElib. Using
HElib, though, the process is much slower, and
some precision is lost due to the QT and RR
values being scaled and converted to integers—
see the “FHE-based Prolonged QT Detection”
section for more details.

(4) The results are encrypted using PGP, and
emailed to the doctor. At the moment, results
are reported for every heartbeat, but in the
future we will filter out noise by only looking
at the median for groups of beats.

Finally, the doctor uses an email client that
supports PGP (such as Thunderbird with Enigmail,
or K-9 Mail with APG) to open the message con-
taining the results. Development is underway to
allow viewing the ECG plot in a smartphone/tablet
application.

RESULTS

Using the system in Figure 2, we calculated:
the bandwidth that would be required to transfer
raw ECG data and FHE-encrypted values to/from
the cloud, the processing time for the QT/RR
delineation algorithm, and the processing time to
detect prolonged QTc using FHE.

Data Rate Requirements

A 3-lead ECG recording at 200 Hz generates
approximately 1 KB of data per second, while a
12-lead recording at 1000 Hz generates approxi-
mately 23 KB of data per second. Even without
compression, these rates are well-within typical
Internet bandwidth limitations for a cellular system
or home/commercial Internet provider (which
covers all expected configurations at the doctor’s
or patient’s end of the system).

However, we also need to transfer FHE-
encrypted data to and from the cloud. D in Figure 1
takes raw ECG data and selects/computes a smaller
set of values that should be FHE-encrypted. In
our case, these are (equivalent to) QT and RR for
each heartbeat. (On the other end of the system—F
and G in the figure—FHE-encrypted results must
be transferred to the doctor. In our application,
though, these results require less throughput than
the inputs, and therefore do not set any new
restrictions on bandwidth.) Assuming an average
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Figure 2. Our current system. Communication links are secure, but several of
the functions that need to take place at the endpoints are currently running on
the server.

heart rate of 80 bpm, the patient must transmit
2–4 FHE ciphertexts per minute to the server for
both QT and RR, since each ciphertext contains
QT or RR values for about 20–40 heartbeats. (The
exact number of values per ciphertext depends
on hardware limitations and HElib parameters.
For this particular operation, we are setting the
HElib parameter L to values between 10 and 15.)
Each ciphertext is 2–3 MB, so the bandwidth
requirement for the FHE-encrypted QT and RR
values averages about 260 KB/s (i.e., 2 Mbps). This
is not an extremely prohibitive data rate, but it does
require a higher end consumer Internet plan; a 3G
cellular data plan, for example, would not be able
to support it. This level of sustained throughput
will also exacerbate the battery life issues we
were already anticipating, which suggests that
a cloudlet-based approach (described in “The
Cloudlet: Providing Postacquisition Assistance”)
may be best for our next system revision.

QT, RR Delineation

Twenty-four-hour ECG recordings for 202 pa-
tients were processed using the program from the
“LQTS Surveillance” section. The sample rate for

the recordings was 200 Hz, and only the first lead
was analyzed. The total processing time on an i7
CPU was approximately 2.2 hours. Based on this
timing, delineation of three leads is expected to run
about 730× faster than real-time on a desktop or
server CPU. On a smartphone, performance will
be worse; based on a few standard benchmarks,35

a typical smartphone CPU is roughly 6–8 times
slower than an Intel Core i7. If we conserva-
tively assume, then, that a smartphone will take
8× longer to run the delineation program than a
desktop PC, it can still accomplish the task almost
100× faster than real time.

FHE-based Prolonged QT Detection

For the HElib parameters we typically use, with
32-bit precision for QT and RR, running on an i7
processor, FHE comparison can process about 83
heartbeats per minute. At 16 bits, we lower the data
rate and speed up the processing to roughly 220
heartbeats per minute, but lose precision. Either
way, this operation is fast enough to keep up with
the data streaming from the patient.

Because of the clear advantage of 16-bit precision
in terms of data rate and CPU speed, we prefer
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Figure 3. Impact of converting 32-bit floating-point QT and RR values to 16-bit integers prior to FHE-based QTc
evaluation. Both lines were median-filtered with a radius of 10 heart beats. (The line for 32-bit integers is not shown,
as it is virtually indistinguishable from the floating-point version.)

it over 32-bit. However, we must quantify the
precision loss (mentioned in the “Fully Homomor-
phic Encryption” section) at 16 bits to verify that
we still receive correct, useful results. For 32-bit
QT and RR values, the float → int conversion
process introduces only 0.25 ms RMS error to QTc.
(Error was computed as the RMS of the differences
between corresponding integer and floating-point
QTc values.) When using 16-bit messages, though—
that is, short int rather than int—the error
increased to about ±10 ms RMS. These results
were computed across >17 million heartbeats.
Figure 3 illustrates this error in computed QTc
values during continuous monitoring of a female
subject exposed to a IV dose of sotalol (2 mg/kg
body weight) at approximately 30 minutes into
the recording (see database E-OTH-12–0006–009
from the THEW). This example demonstrates the
ability of our method to monitor QT and to detect
QT prolongation (above threshold line) that would
trigger an alarm message to the subject’s physician.

DISCUSSION AND FUTURE WORK

Homomorphic encryption techniques preserve
patient privacy in the cloud, at the cost of additional
computational resources. We have shown that
while these resource costs can be quite daunting,
FHE is already practical for a basic application.
In our proof-of-concept, we detect prolonged QTc
from QT and RR samples in real-time. Several
tradeoffs are present, including precision and
privacy versus computational efficiency and speed.

Much work remains to improve the realism and
practicality of our prototype. Most importantly,
we must port HElib and other libraries to run on
smartphones/tablets rather than in the cloud. The
main reason that this has not been completed yet
is simply that the source code and prerequisite
libraries for our chosen QT/RR delineation and
homomorphic encryption algorithms are written
in C++; this code is therefore not (trivially)
compatible with Android or iOS. The next stage of
development will focus on porting these libraries
to Android, either by (a) rewriting them in
Java, (b) taking advantage of the Java JNI to
load C++ libraries onto Android, (c) loading an
alternate operating system such as Debian onto
a smartphone, (d) using a cloudlet rather than a
phone, which would support all required libraries
natively, or (e) some combination of these. Once
all of our libraries are running on a phone or
cloudlet, the cloud will be operating in a fully
homomorphic mode. From this point, we will
be adding primitives to our FHE library and
slowly begin transferring more work back to
the cloud. The primary focus of our research at
this stage will be acceleration techniques (e.g.,
via parallel programming, cache optimization,
GPUs, and/or FPGAs) to make the increasing
number of FHE operations practical in the cloud.
These performance improvements will allow for
expansion into other applications in both medical
and non-medical fields. In addition to the FHE-
oriented development path, we must also build a
suite of applications giving the doctor (and hospital)
control of the remote-monitoring process. Finally,
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for system completeness, we intend to acquire
live ECG signals, as opposed to using prerecorded
signals from the THEW database.

It is noteworthy that the delivery of large
amounts of monitoring data to health care
providers represents a challenge; a cardiologist
would probably not need to receive a daily ECG
from all his patients, yet this cardiologist would be
interested in learning about changes in his patients’
cardiac status. Therefore, the development of mon-
itoring systems must be coupled with intelligent
algorithms appropriately warning physicians. Our
concept proposes to manage health information
securely while delivering the information that
health providers need to be aware of. We have
described an example of a QT interval warning
system, but one could easily apply such concept
to any other physiological markers of risk.
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