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a b s t r a c t

Among energy buffering alternatives, supercapacitors can provide unmatched efficiency and durability.
Additionally, the direct relation between a supercapacitor's terminal voltage and stored energy can
improve energy awareness. However, a simple capacitive approximation cannot adequately represent the
stored energy in a supercapacitor. It is shown that the three branch equivalent circuit model provides
more accurate energy awareness. This equivalent circuit uses three capacitances and associated re-
sistances to represent the supercapacitor's internal SOC (state-of-charge). However, the SOC cannot be
determined from one observation of the terminal voltage, and must be tracked over time using inexact
measurements. We present: 1) a Kalman filtering solution for tracking the SOC; 2) an on-line system
identification procedure to efficiently estimate the equivalent circuit's parameters; and 3) experimental
validation of both parameter estimation and SOC tracking for 5 F, 10 F, 50 F, and 350 F supercapacitors.
Validation is done within the operating range of a solar powered application and the associated power
variability due to energy harvesting. The proposed techniques are benchmarked against the simple
capacitive model and prior parameter estimation techniques, and provide a 67% reduction in root-mean-
square error for predicting usable buffered energy.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Supercapacitors represent an emerging and rapidly developing
energy storage technology that provides significant robustness and
efficiency benefits over alternative energy storage technologies [2].
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In particular, compared with electrochemical batteries, super-
capacitors can typically survive 100 to 1000 times as many char-
geedischarge cycles before there is significant degradation of
capacity or efficiency [3]. This is a substantial benefit for remote
systems because it can reduce the frequency of maintenance visits
to remotely deployed nodes and thereby achieve greater cost-
effectiveness. Thus far, supercapacitors have been commonly
applied for buffering energy over short durations, e. g.
supercapacitor-battery hybrid storage [4,5], and regenerative
breaking [6e8]. For these applications, peak power and short-term
efficiency are supercapacitors' most important strengths.

The proposed work targets long-term energy storage applica-
tions where accurate energy awareness is important. For example, a
remotely deployed system can rely on solar energy harvesting.
Without a reliable connection to the electrical grid, accurate
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knowledge of a supercapacitor's SOC (state-of-charge) is critical to
know how much energy remains available to the system [9,10].
Long-term energy storage applications are also motivated by the
robustness and durability benefits of supercapacitors. These ben-
efits have been used to prototype a supercapacitor-based, WSN
(wireless sensor node) with 20 years of projected service-free
lifetime [11].

Tracking SOC can also be important when supercapacitors are
used in banks of multiple devices in series or parallel configura-
tions. These configurations benefit from load balancing in order to
prevent specific cells from over-charging and suffering premature
capacity degradation [12]. However, if SOC is not accounted for it
can be difficult to perform on-line measurements of capacity
degradation for the individual cells, or make real-time load
balancing decisions.

Kalman tracking for a supercapacitor's SOC is proposed to
exploit the energy awareness benefits of supercapacitors.
Compared to rechargeable batteries, the stored energy in a super-
capacitor is more directly related to its terminal voltage, vsc, via the
capacitance, C. However, the simple model, Cv2sc=2, for stored en-
ergy neglects important non-ideal behavior: both charge redistri-
bution and leakage affect storage capacity and the net portion of
the energy that is available to a system after internal losses. It is
shown that the total energy needed to fully charge a supercapacitor
to its maximumvoltage can vary up to 23% depending on the power
level at which a supercapacitor is charged. This variation in capacity
cannot be accounted for by the simple model. Extensive work has
been done to model supercapacitor behavior [13e21], but this pa-
per goes to the next step: translating these models into usable
energy awareness. The proposed Kalman tracking technique uses
the three branch equivalent circuit [15] to account for this non-
ideal capacity variability. The Kalman filter balances uncertainty
by weighting the correction due to each new observation on the
estimate of the circuit's SOC.

A common difficulty of Kalman tracking is the accuracy of the
model. The parameter estimation technique proposed here pro-
vides a novel method to fit the parameters of the three branch
equivalent circuit. The proposed technique does not require specific
tests to be performed in the field or before the device is deployed:
fitting is able to utilize the actual current profiles encountered by
the application, provided significant power variability occurs. Prior
methods for parameter estimation have relied on electrochemical
impedance spectroscopy (EIS), which requires specialized test
equipment and cannot be performed in the field [22e24], or have
been designed to only fit the capacitance and series resistance, but
not the parameters for redistribution [25].

In addition to describing the proposed parameter estimation
technique and Kalman tracking methodology, this paper also pre-
sents experimental validation of both techniques for 50 F super-
capacitors and parameter estimation for 5 F, 10 F and 350 F
supercapacitors.

This paper begins with background and modeling for super-
capacitors in Section 2. Sections 3 and4 then present the proposed
parameter estimation and Kalman tracking techniques. Section 5
evaluates the performance of each technique as compared to the
simple capacitive model. Results and discussion of the experiments
are given in Section 6. Conclusions and contributions are summa-
rized in Section 7.

2. Modeling

Charge storage in supercapacitors relies primarily on two phe-
nomena: the EDL (electric double layer) and pseudocapacitance
[13], that are illustrated in Fig. 1a. Voltage applied across the
supercapacitor terminals pushes charge to the surface of the
electrode material forming a surface layer. Oppositely charged ions
in the electrolyte are, in turn, attracted by the surface charge
forming a second layer. The two layers make up the EDL capaci-
tance. Reversible chemical reactions store additional charge on the
surface of the electrodes and contribute pseudocapacitance. Much
higher capacitances than conventional electrolytic devices are ob-
tained because of the small distance (comparable to atomic radii)
between opposite charges and the large surface area of the porous
electrodes.

A simple capacitive model fails to account for three sources of
non-ideal behavior in supercapacitors: both the EDL and pseudo-
capacitance are voltage dependent; the diffusion of ions into the
porous materials is not instantaneous; and there is spontaneous
leakage of stored charge. Diffusion, or charge redistribution, is
observable after a charging current into a supercapacitor is dis-
continued. Diffusion of ions in the electrolyte causes the terminal
voltage, vsc, to spontaneously decay. Diffusion push ions away from
regions of high concentration near the readily accessible (and more
quickly charged) portions of the porous surface. Modeling a
supercapacitor's SOC accounts for charge redistribution as the
penetration of stored charge into a string of resistive-capacitive
(RC) transmission line storage elements [14] as in Fig. 1a, or
simplified as an array of time constants in parallel RC branches [15]
as in Fig. 1b. Leakage has been simply modeled as a fixed parallel
resistance [15], or a variable resistance depending on factors such
as the supercapacitor's voltage, temperature and internal state
[16,26,17,18,27].

Prior work has shown that a simple capacitive model can pro-
vide adequate energy awareness for low powered solar-
supercapacitor WSN (wireless sensor nodes) [28,29]. Online
parameter estimation has also been demonstrated for a single
branch model [30]. Although the simple model is preferable
because of the limited computational capabilities of these systems,
results in Ref. [29] show significant improvement when the fixed
capacitance, Csimple, is tuned to the specific discharge speed, similar
to the manner inwhich three branch equivalent circuit intrinsically
accounts for the effect of charging speed on SOC. Modeling a
supercapacitor using the three branch equivalent circuit is espe-
cially important for higher powered systems with greater power
variability than WSN.

The impact of both redistribution and leakage when the
charging current, isc, is varied over awider range of power is shown
in Fig. 2. The observed supercapacitor behavior is compared to the
baseline, simple capacitive model for stored energy,

E ¼ 1
2
Csimplev

2
sc; (1)

where vsc is the terminal voltage for the supercapacitor, and the
capacitance, Csimple, is fitted to the average slope of the observed
data,

Csimple ¼
 
1
N

XN
n¼1

dvsc
dq

!�1

: (2)

For each of the N observations in (2), taken over the three du-
rations of charging in Fig. 2, the differential charge, dq, is calculated
as iscdt, where isc denotes the (constant) charging current and t
denotes time. In terms of energy awareness, Fig. 2 shows that the
total energy needed to charge the 50 F supercapacitor,

Eobs ¼
Z

vsciscdt ¼
Z

vscdq; (3)

varies between 188 J and 231 J (23% variation) even though the



Fig. 1. As shown in (a), each of a supercapacitor's terminals is connected to a porous electrode material such as activated carbon. The conductive electrodes are immersed in an
electrolyte but separated by a membrane which only allows the ions in the electrolyte to pass through. Diffusion of the ions into the porous surface is modeled by the three branch
equivalent circuit [15], shown in (b). Each branch has a time constant of increasing duration, Rserial C1 < R2 C2 < R3 C3, modeling initial, intermediate, and long term behavior.

Fig. 2. Charging, on the left, shows the terminal voltage of a 50 F Maxwell Boostcap Ultracapacitor as it is charged with 100 mA, 1 A, and 10 A constant currents. Because Charging is
scaled to Coulombs, q, it is easy to see that a supercapacitor does not strictly follow the proportion, nsc ¼ 1/C ∙ q, predicted by the simple model. The supercapacitor always starts in a
completely discharged state, and current, isc, is disconnected when vsc reaches the device's rated voltage, 2.7 V. Redistribution, on the right, shows vsc starting at topen ¼ 0 s when isc is
first disconnected.

Fig. 3. The histogram of solar generation from 21 RadioShack 1.5 W panels (max.
31.5 W at 200 KLux) varies by two orders-of-magnitude, resulting in significant po-
tential for non-ideal supercapacitor behavior while buffering the energy. The marked
data (*) is recorded in Italy [35], whereas the rest of the days are measured in
Rochester NY, USA [10].
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supercapacitor is charged to the same terminal voltage, and only
the charging current, isc, is varied. For a 350 F supercapacitor, the
measured value of Eobs varies from 1.18 kJ to 1.31 kJ (11% variation)
despite the proportionally smaller range of charging currents tested
for the larger supercapacitor. Redistribution predicts this variation
in charge storage because the storage capacity of the super-
capacitor's porous electrode surfaces is more fully accessed over the
longer duration of charging for the lower currents. Redistribution in
Fig. 2 shows that the decline in vsc after charging stops is propor-
tional to the speed of charging.

The proposed Kalman technique uses a simple fixed resistance
to model leakage, and focuses on tracking the supercapacitor's SOC
due to redistribution using the three branch equivalent circuit [15].
The real world implications of tracking a supercapacitor's SOC are
motivated by the power variability shown in Fig. 3, for a system
using supercapacitors to buffer solar energy harvesting. Other work
[31,32] has applied battery modeling to supercapacitors. However,
supercapacitors do not require the complexity of these models
devoted to modeling hysteresis and the nonlinear relationship
between a battery's terminal voltage and SOC. For predicting short-
term supercapacitor performance, it is beneficial to use more
detailed models such as the transmission line elements in Fig. 1a
that are accurate over much wider frequency ranges and tuned
using electrochemical impedance spectroscopy [22,23,33]. For our
target applications the three branch equivalent circuit provides a
good balance between accuracy, complexity, and the ability to use
on-line parameter estimation. Prior work has used the three branch
equivalent circuit to model charge redistribution [34], but this
method did not consider SOC tracking or on-line parameter
estimation.
3. Parameter estimation method

Estimating the parameters of the three branch equivalent circuit
is nontrivial due to the fact that the internal state is not observable.
Linear LMSE (least mean square error) fitting is proposed for
parameter identification because isc in the three branch equivalent
circuit in Fig. 1b can be fitted as a linear combination of the branch
currents,
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isc ¼ C1
dvsc
dt

þ Cvarvsc
dvsc
dt

þ 1
R2

ðvsc � v2Þ þ
1
R3

ðvsc � v3Þ; (4)

where C1 and Cvarvsc are the fixed and voltage dependent capaci-
tances included in the first branch and, R2, R3 and v2, v3 are the
resistances and voltages in the second and third branches, each as
labeled in Fig. 1b. Leakage is neglected as it is much less significant
than redistribution in the short term.

The first and second terms in (4), accurately approximate the
current in the first branch using the observable slope of vsc rather
than the true slope of hidden voltage, v1. This is a safe assumption
because the voltage drop between vsc and v1 due to Rserial is small.
Jumps in vsc when isc switches on or off are omitted in order to
avoid the discontinuities in dvsc/dt. The last two terms in (4), for the
current from the second and third branches, depend on the low
pass filtered branch voltages, v2 and v3, with time constants, t2 and
t3,

v2ðtÞ ¼
1
t2

Zt
0

vscðt0Þ e
�ðt�t0Þ

t2 dt
0
; (5)

v3ðtÞ ¼
1
t3

Zt
0

vscðt0Þ e
�ðt�t0Þ

t3 dt
0
: (6)

Simplifying (4) intomatrix form, isc¼Ub, the circuit parameters,
b¼[C1,Cvar, 1/R2, 1/R3]T, can be estimated as,

bb ¼
�
UTU

��1
UTisc: (7)

The predictor matrix, U, depends only on vsc, which is observ-
able, and t2 and t3 which are determined separately,

U ¼
�
dvsc
dt

; vsc
dvsc
dt

; vsc � v2; vsc � v3

�
: (8)

After using LMSE to calculate bb; the remaining circuit param-
eters are: Rserial, C2, C3, and Rleak. Rserial is found by observing the
change, DV in vsc, that occurs in response to the change, DIwhen isc
is switched off,

Rserial ¼
DV
DI

: (9)

The capacitances, C2 and C3, are calculated from the time
constants,

C2 ¼ 1
R2

t2; and C3 ¼ 1
R3

t3: (10)

The time constants, t2 and t3, are not estimated by the LMSE
procedure, but are needed to calculate, v2 and v3 using (5) and (6).
As in prior work [15], it is possible tomake assumptions that dictate
the time scale of each branch. This is comparable to fixing t2 and t3
heuristically. Alternatively, the LMSE procedure is performed iter-
atively to search over different values for t2 and t3 that minimize
the mean square error in LMSE. For the iterative search, it is
important that the test data for vsc and isc contain a rich variation of
supercapacitor behavior over different time scales. The last
parameter, Rleak, models long-term leakage, and cannot be
observed over a short duration. A fixed value for Rleak can be fitted
to the observed decline in vsc after redistribution is given enough
time to ensure that the supercapacitor is in an equilibrium state.
However, the most significant decline in vsc that occurs
immediately after charging stops and is well modeled by charge
redistribution. Because the impact of leakage on energy awareness
is overshadowed by redistribution for harvesting applications, Rleak
is preset generically based on the manufacturer's specifications.

While calculating bb, it is useful to realize that LMSE penalizes
the squared value of the residual error in the fitted current. When
the scale of the current into supercapacitor varies by orders of
magnitude, it is useful to normalize both isc andU by i�1

sc so errors at
high current do not overshadow all else. LMSE also weights each
sample evenly, so downsampling in proportion to i�1

sc was found to
improve results. This technique devotes equal numbers of samples
to each charging test regardless of the actual duration needed for
each test current to charge the supercapacitor.
4. Kalman tracking method

Using the three branch equivalent circuit, the supercapacitor's
SOC at each time step, tn, can be represented as a vector of the
voltages across each capacitance of the equivalent circuit shown in
Fig. 1b,

xn ¼ ½ v1ðtnÞ; v2ðtnÞ; v3ðtnÞ �T: (11)

Tracking xn, via the classic Kalman technique (Chap. 13, [36]),
relies on the fact that random Gaussian inputs to a linear dynamic
system will produce a random Gaussian output. Consequently, the
three branch equivalent circuit is modeled as a linear system,

xn ¼ Fxn�1 þ Bun þwn; (12)

zn ¼ Hxn þ Dun þ vn: (13)

Using N ðm;SÞ to represent a multivariate Gaussian distribution
with mean, m, and covariance matrix, S, uncertainty is modeled by
the additive white Gaussian noise (AWGN) signals,

wn � N ð0;Q Þ; (14)

vn � N ð0;RÞ: (15)

The assumption of zero means for the noise processes in the
formulation is not particularly limiting and the formulation can be
extended to address the nonzero mean situations as is standardly
done in statistical signal processing.

For the three branch equivalent circuit, the input, un, is the
average value of isc into the supercapacitor over the time tn�1 to tn.
The output, zn, is vsc measured at time tn. Thematrices, F, B,H andD,
are found by solving the system of linear ODE (ordinary differential
equations) from the three branch equivalent circuit,

d
dt

xðtÞ ¼ FDxðtÞ þ BDuðtÞ; (16)

zðtÞ ¼ HxðtÞ þ DuðtÞ: (17)

The matrices, FD, BD, H, and D, are given in Table 1. The solution,
xn, for the system of ODE is a sum of the homogeneous, xhomo and
particular solutions, xpart,

xhomoðtnÞ ¼ eðtn�tn�1ÞFD$xðtn�1Þ; (18)

xpartðtnÞ ¼
Ztn
tn�1

eðt
0�tn�1ÞFD$BDuðt0Þ dt0; (19)

where both (18) and (19) rely on the standard definition of the



Table 1
Parameter matrices for three branch equivalent circuit differential equation system
in (16) and (17).

FD ¼

26666666664

1
t1

Rk � Rserial
Rserial

1
t1

Rk
R2

1
t1

Rk
R3

1
t2

Rk
Rserial

1
t2

Rk � R2
R2

1
t2

Rk
R3

1
t3

Rk
Rserial

1
t3

Rk
R2

1
t3

Rk � R3
R3

37777777775
; BD ¼

1
t1

Rk

1
t2

Rk

1
t3

Rk

2666666664

3777777775
,

H ¼
�

Rk
Rserial

Rk
R2

Rk
R3

�
;

D ¼ ½Rk�:

t1 ¼ Rserial(C1 þ Cvar v1) , t2 ¼ R2C2, t3 ¼ R3C3,

Rk ¼ R�1
serial þ R�1

2 þ R�1
3 þ R�1

leak

� ��1
:
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matrix exponential, eX ¼P∞
k¼0X

k=k!. Using (18) and (19) respec-
tively, the transition matrix, F, and input matrix, B, are,

F ¼ eðtn�tn�1ÞFD ; (20)

B ¼ F�1
D

�
eðtn�tn�1ÞFD � I

�
$BD: (21)

The integral appearing in (19) has been simplified using prop-
erties of matrix exponentiation. The output matrices, H and D, are
taken directly from the equivalent circuit as listed in Table 1.

Due to the voltage dependent capacitance, t1 in FD is not fixed
and (16) is not strictly a linear system. However, the variation of t1
over the time step from tn�1 to tn is minimal. The approximate
linear solution, given by (18) and (19), and referred to as the EKF
(extended Kalman filter), provides accurate results. For many other
applications that require models with greater non-linearity, the
alternative SPKF (sigma point Kalman filter) is needed [37].

The covariance matrices Q and R are set heuristically to balance
convergence speed against noise tolerance. Specifically, we set Q
and R as diagonal matrices,

Q ¼ aðjiscj þ εÞðtn � tn�1Þ

2666666664

Rk
t1

0 0

0
Rk
t2

0

0 0
Rk
t3

3777777775
; (22)

R ¼ aðjiscj þ εÞ�Rk �; (23)

where ε is a small value introduced to ensure invertibility and a is
the gain factor. Intuitively, (22) assumes an uncertainty in each
predicted state variable that is roughly proportional to the
magnitude of its change between adjacent observations; and (23)
assumes an uncertainty in the predicted output that is roughly
proportional to the magnitude of the resistive voltage drop due to
the input current. Values of ε ¼ 0:01 and a ¼ 0.01 were used and
the method was not found to be particularly sensitive to variations
in these parameters.

For each time step, tn, Kalman filtering calculates the MAP
(maximum a posteriori) estimate of the state, bxn, and its error
covariance matrix, bPn,

bxn ¼ ~xn þ Kðzn �H~xn � DunÞ; (24)

bPn ¼ ~Pn � KH~Pn; (25)

where the Kalman gain, K, is,
K ¼ ~PnHT
�
H~PnHT þ R

��1
; (26)

and the mean, ~xn and covariance, ~Pn, of the predicted prior distri-
bution for xn are calculated as,

~xn ¼ Fbxn�1 þ Bun; (27)

~Pn ¼ FbPn�1F
T þQ : (28)

A quick discussion of these Kalman equations is given in Section
8 in the Supplementary material.
5. Evaluation method

Evaluation demonstrates how both of the proposed methods,
parameter estimation and Kalman tracking, each improve energy
awareness. Performance is characterized by the error between the
models' predictions and the actual observed energy that would be
available to an application.

As a baseline, the stored energy in a supercapacitor is predicted
from vsc using the simple capacitive model,

E ¼ 1
2
Csimplev

2
sc: (29)

Alternatively, E is predicted from a supercapacitor's SOC using
the three branch equivalent circuit model,

E ¼ 1
2
C1v

2
1 þ

1
3
Cvarv31 þ

1
2
C2v

2
2 þ

1
2
C3v

2
3: (30)

Intuitively, (29) and (30) can be validated bymeasuring the total
energy that is recovered by completely discharging a super-
capacitor. However, long-term charge storage in a supercapacitor
may still hold significant energy even after vsc is discharged to zero
volts. This unaccounted-for energy complicates validating E
directly.

Rather than completely discharging a supercapacitor, energy
awareness is validated by predicting the change in a super-
capacitor's stored energy, DE, while a supercapacitor is charged and
discharged to various given final voltages. This corresponds to
predicting how much energy would be available to an application
before vsc falls below a minimum operating voltage. Additionally
the three branch equivalent circuit predicts internal losses, W, by
integrating the power dissipated from each of the model's resistors.
The simple model of (29) does not include internal losses. The
observed energy, Eobs, that can be accurately measured is predicted
by the model as,

Eobs ¼ DE þW : (31)

Both the proposedmethods and the simple capacitive model are
tested by estimating DE over durations of constant current charging
(DE > 0) and discharging (DE < 0), and durations of redistribution
where isc is zero. First, the proposed Kalman tracking method es-
timates the initial SOC. Starting at this initial SOC, Equations (12)
and (13) are then used to predict the supercapacitor's behavior
until vsc reaches the same final voltage as the observed data. Finally,
Equations (29) and (30) are used to predict E before and after the
duration of constant current. The change in stored energy, DE, is
compared against the observed energy,

error ¼ Eobs � ðDE þWÞ: (32)

In order to validate parameter estimation, the supercapacitor is
charged from a known completely discharged state, such that there



Table 2
The proposed (LMSE fit) technique is compared to prior work (Ref. [15] fit) for
estimating the parameters of the three branch equivalent circuit. The parameters are
estimated using simulatedmeasurement data for a 470 F DLCwith (true) parameters
specified in Ref. [15].

470 F DLC (simulation)

Truth LMSE fit Ref. [15] fit

C1 270 F 273 F 278 F
Cvar 190 F/V 191 F/V 200 F/V
Rserial 2.5 mU 2.5 mU 2.5 mU
C2 100 F 98 F 138 F
R2 .90 U .92 U .87 U
C3 220 F 231 F 143 F
R3 5.2 U 5.2 U 5.5 U
Rleak 8 kU Fitted separately [15]
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is no need to use tracking to estimate the initial state. Before each
test the supercapacitor is discharged and then left overnight with
its terminals short circuited. Because the initial E is zero, Eobs can be
directly compared to the stored energy, E.

6. Results and discussion

The experimental setup for charging and discharging the
supercapacitors is shown in Fig. 4. Testing is conducted for 5 F, 50 F,
and 350 FMaxwell BoostCap supercapacitors [38], and a 10 F device
from Illinois Capacitor [39]. The range of charging currents for the
50 F supercapacitor is set to coincide with the variability range of
solar energy harvesting shown in Fig. 3. Charging currents are
supplied by a Nemic-Lambda ZUP (36 V-24 A) current source. The
supercapacitor's terminal voltage is measured using an ADC (analog
to digital converter) on a Microchip PIC16F1783 PIC (programmable
interface controller). The PIC also automatically controls the timing.
A power MOSFET allows the PIC to disconnect the charging current
when the supercapacitor reaches its rated voltage. Discharging the
supercapacitor is done by a TekPower 3710A DC Electronic Load (0-
360 V/150 W) in constant current mode. The PIC controls a second
MOSFET that disconnects the load when vsc falls below .35 V
because the constant load current becomes unreliable below that
point.

6.1. Parameter estimation

Because the true parameters of a physical supercapacitor are not
accessible, parameter estimation is first tested using simulated data
rather than observed data. Using known parameters from prior
work [15], Equations (12) and (13) simulate the SOC and vsc of a
470 F DLC supercapacitor as it is charged from a completely dis-
charged state to its rated voltage (2.3 V). Three different constant
currents are used to charge the supercapacitor at approximately 5%,
.5%, and .05% of its listed short circuit current. Using the simulated
isc and vsc data, Equations (7) and (8) are able to accurately recover
the true parameters used to generate the simulated data. Table 2
shows the accuracy of the estimated parameters. The proposed
LMSE method is able to improve on the accuracy of the prior
parameter estimation method [15] because it does not rely on the
assumption that significant current only flows into one branch of
the circuit at a time. This allows the proposed method to more
accurately distinguish the simultaneous effects of charge redistri-
bution and voltage dependent capacitance. Consequently, the
proposed parameter estimation improves the accuracy of both Cvar
and the parameters of the second and third branches. The average
Fig. 4. The validation setup depicted in (a) uses a PIC microcontroller to control the charging
module is done from a workstation running Matlab via RS-232 serial connections. The co
supercapacitor.
deviation between the fitted parameters and the simulation
groundtruth is decreased from 13% error for the method of [15] to
less than 2% error for the proposed method.

In terms of energy awareness for physical supercapacitors, the
benefits of the three branch equivalent circuit model are shown in
Fig. 5. Parameters for the 5 F, 10 F, 50 F, and 350 F supercapacitors
are estimated using the procedure given in Section 3. The required
input data, isc and vsc, is a concatenation of 10 mA, 100 mA, and 1 A
charging patterns for the 10 F supercapacitor; 100 mA,1 A, and 10 A
charging patterns shown in Fig. 6 for the 50F supercapacitor; and
500 mA, 2 A, 10 A, and 20 A charging patterns for the 350 F
supercapacitor. Additionally, a 70 A charging behavior is modeled
for the 350 F, but observed data was not collected for that current.
The fitted parameters are given in Table 3, and used to estimate DE
and W in Fig. 5. In order to test the reliability of the proposed
parameter estimation, multiple 50 F supercapacitors are tested. As
shown in Table S1 in the supplementary material, the fitted pa-
rameters across multiple 50 F devices are consistent within a
reasonable tolerance that is expected for physical devices.

As compared to using the rated capacitance, Crated, to predict the
stored energy, the three branch equivalent circuit is able to account
for the varying behavior of the supercapacitors at different charging
currents. Even when the simple capacitance, Csimple, is fitted using
the same charging data, a fixed capacitance underestimates E at low
currents when a greater portion of the charge storage on the
supercapacitor's porous electrode surfaces is utilized, and over-
estimates E at high current when a smaller portion is utilized. The
simple capacitive models are also unable to model the energy, W,
that is dissipated internally as waste. Neglecting W causes the
simple capacitive model to consistently underestimate E even
and discharging currents via MOSFET gates. Data logging and high level control of each
rresponding arrangement of the test equipment is pictured in (b), showing a 350 F



Fig. 5. The energy (Eobs, observed) that is required to charge the supercapacitor from rest to its rated voltage depends on the charging current. Three techniques for predicting Eobs
are compared. The first two techniques (datasheet Crated) and (fitted Csimple) used a fixed capacitance. Alternatively, the three branch equivalent circuit (branch model) is used to
predict both the stored energy, DE, and internal losses, W. Results for the Maxwell supercapacitors are shown in (a), (b), and (c), while (d) shows the results for the Illinois Capacitor
device.

Fig. 6. These 100 mA, 1 A and 10 A charging tests for the 50 F supercapacitor in (a), (b), and (c), provide the (observed) data used to fit the parameters. The resulting parameters for
the three branch equivalent circuit (branch model) and simple capacitive (simple model) are then simulated in order to predict the duration and energy that are required to charge
the supercapacitor from a completely discharged state to its rated voltage (2.7 V) at each current.

Table 3
The propose LMSE technique is used to estimate the parameters of the 5 F, 10 F, 50 F,
and 350 F supercapacitors using observed training data.

IL Cap [39] Maxwell BCAP [38]

Crated 10 F 5 F 50 F 350 F
Csimple 13 F 7.5 F 57 F 383 F
C1 8.8 F 5.2 F 40 F 264 F
Cvar .63 F/V 1.0 F/V 9.1 F/V 50 F/V
Rserial 39 mU 110 mU 22 mU 6.4 mU
C2 .84 F .68 F 2.2 F 51 F
R2 8.1 U 10 U 3.0 U .13 U
C3 6.0 F 4.4 F 11 F 33 F
R3 79 U 110 U 43 U 14 U
Rleak 90 kU 180 kU 36 kU 9 kU

A. Nadeau et al. / Journal of Power Sources 296 (2015) 383e391 389
when Csimple is fitted to dvsc/dt. Cross-validation of the three branch
equivalent circuit's ability to model E for data not used for fitting is
shown next for the SOC tracking technique.
6.2. Kalman tracking

The energy awareness benefits of proposed Kalmanmethods are
validated by tracking a supercapacitor's SOC as it is repeatedly
charged and discharged. Because the supercapacitor is no longer in
a known completely discharged state at the start of each charge
cycle, the proposed Kalman tracking technique is used to track the
SOC, as shown in Fig. 7. The exception is the very first 5 A charging
current where the supercapacitor starts from rest.

Using the estimated SOC at the start of each duration of
charging, discharging and redistribution, the three branch equiva-
lent circuit predicts DE that is transferred to or from the super-
capacitor. Fig. 8 compares the estimates of DE and W against the
observed energy Eobs. Using the three branch equivalent circuit
model outperforms the simple models that use either the fixed
capacitance, Crated, from the datasheet, or Csimple, fitted to the
observed data. The fixed capacitive models for energy awareness
especially struggle during redistribution when isc is zero. These
models cannot account for the decrease in vsc unaccompanied by
energy output during redistribution. At each point where the
supercapacitor is maximally charged, the estimated energy avail-
able to an application would be subject to both the error during
redistribution and discharging, for a total overestimation of up to
18 J by the simple model. The maximum total error for the Kalman
tracking is 5.8 J. As shown in the results for parameter estimation,
the spontaneous decrease in vsc is best modeled by the three branch
equivalent circuit as opposed to more complex leakage models.
Leakage models would have greater difficulty accounting for the
systematic error of the simple capacitive model during the charging
cycles that is well explained by the three branch equivalent circuit.



Fig. 7. The proposed Kalman technique for tracking the 50 F supercapacitor's internal SOC is experimentally validated over a series of various charging currents designed to show
the range of possible solar variability from Fig. 3. The top, zoomed, axes show the much shorter time scale of the 1st and 2nd branch voltages.

Fig. 8. For each charging (>0 A), redistribution (0 A), and discharging (<0 A) duration of the tracking experiment shown in Fig. 7, the energy transfer, Eobs (observed), is predicted
using both models: the (branch model) and the fixed capacitive models using Crated (datasheet) from the manufacturer, and Csimple (fitted) from the training data. The RMS (root
mean squared) error is 3.8 J for the branch model, compared to 5.5 J and 8.3 J for the respective fitted and datasheet fixed capacitive models. Corresponding numeric data is given in
the supplementary material in Table S2.
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7. Conclusions

This paper has provided a novel technique to monitor the
remaining energy stored in a supercapacitor by tracking its SOC
using the three branch equivalent circuit model in conjunctionwith
a Kalman tracker. Tracking a supercapacitor's SOC is shown to
reduce the error in estimation of the net change in the buffered
energy, DEtot by 67% and 49% as compared to the simple capacitive
model using the datasheet and fitting respectively to set Csimple. It is
shown that charge redistribution is the main source of the simple
model's inaccuracy, justifying the use of the three branch equiva-
lent circuit to model the supercapacitor's SOC. With an eye towards
applicability, a novel parameter estimation technique is also pro-
posed such that the parameters of the three branch circuit can be
calculated from arbitrary current and voltage profiles observed
while the supercapacitor operates normally in its application
setting. The two significant benefits of this on-line parameter
estimation are: 1) there is no need to take device off-line to mea-
sure the parameters or possible degradation of capacity over time,
or perform specific tests before individual systems are deployed to
account for variation in capacity due to manufacturing tolerances;
2) on-line parameter estimation allows themodel to be fitted to the
same data it is tracking such that any biased measurements due to
hardware on a specific system will be incorporated into the pa-
rameters. The performance of both proposed techniques,
parameter estimation and SOC tracking, are physically validated for
5 F, 10 F, 50 F and 350 F supercapacitors and shown to outperform
the simple capacitive model for supercapacitor behavior.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.jpowsour.2015.07.050.
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