LDetector: A Low Overhead Race Detector For GPU Programs

Pengcheng Li, Chen Ding

Department of Computer Science,
University of Rochester,
Rochester, NY, USA

{pli, cding}@cs.rochester.edu

Abstract

Data race detection becomes an important problem in GPU pro-
gramming. The paper presents a novel solution mainly aimed at
detecting data races happening in shared memory accesses with no
use of atomic primitives. It makes use of compiler support to priva-
tize shared data and then at run time parallelizes data race checking.
It has two distinct features. First, unlike previous existing work, our
work gets rid of per memory access monitoring by data privatiza-
tion technique, which brings a very low performance overhead and
also well scalability. Second, data race checking utilizes massively
parallel resources on GPU. Preliminary results show two orders of
magnitude performance improvement over an existing work.

1. Introduction

Despite its significant undeniable potential for high performance,
Graphics Processing Units (GPUs) rely heavily on the programmer
for properly executing parallel code. While understanding the un-
derlying processor architecture will empower the developer to write
highly efficient code, an increased burden is also placed on the pro-
grammer to ensure correctness of the code. One criteria that the
developer must be aware of is data races. While this phenomenon
also exists in the traditional parallel programming environment, its
impact is significantly more emphasized due to the thousands of
active threads executing inside a GPU, potentially interacting with
shared memory resources.

A rich body of literature exists on race detection for CPUs [14—
17]. However, this existing work cannot be really applied to GPU
environments due to the significantly different architecture. GPU
programs use the SIMD execution model and massive parallelism.
They use synchronization but very little locking. The past solutions
on the CPU side often focused on the problem of complex locking
and required monitoring data accesses to shared memory. Access
monitoring is used in recent GPU studies [9, 10, 19, 20]. Since hun-
dreds of thousands of threads may run concurrently, the overhead
of access monitoring is significant. In this paper, our goal is data
race detection without access monitoring by expanding shared data
and directing concurrent writes to private copies of shared data.

Our approach relies on the compiler’s determination of which
variables should be expanded. We call them target variables. Un-
like CPU programs, GPU programs have reduced pointer-induced
aliasing. We use a set of data structure expansion rules to create
multiple copies of each target variable (one for each warp). In ad-
dition, we keep one original copy as comparison.

We use a two-pass approach to detect data races. The first pass
detects write-write races. Each warp operates on its own private
copy of data, followed by a check for overlapped writes by multiple
warps. If no write-write race is detected, we commence to the
second pass to detect read-write races by restoring the values of
non-target variables to the value before the first pass. We copy the

Xiaoyu Hu, Tolga Soyata

Department of Electrical and Computer Engineering,
University of Rochester,
Rochester, NY, USA

{x.hu, tolga.soyata}@rochester.edu

changed values from other warps, so the warp is to run after all
other warps have finished. After second pass, if the output differs
from the first output by any wrap, we report a read-write race.
Otherwise, there is no data race. Our two-pass approach is aimed
at detecting data races in shared memory accesses with no use of
atomic primitives.

Contributions

e This paper presents a compiler technique for data privatization
for GPU programs. It identifies target variables and expand data
structures automatically.

This paper presents LDetector, a two-pass approach to detect
write-write and read-write races. By relying on data privatiza-
tion, it does not have to monitor per shared memory access. The
runtime design is light weight, using massive parallelism, mem-
ory coalescing to fully leveraging the high performance of GPU
in race detection.

This paper presents LDetector-spec, a tool that detects data
races with a new speculative parallelization technique in GPU.
LDetector-spec can greatly increase performance in utilizing
massive computing core resources, but achieve the same sound-
ness and convergence and precision as LDetector.

This paper compares our tools with existing tools over a range
of applications. While supporting the same detection precision,
our tools outperform others by more than an order of magnitude
in speed and less memory consumption.

2. Background
2.1 Data Race in GPUs

The architecture of the Graphical Processing Unit (GPU) consists
of two major components: the processing component, often re-
ferred to as streaming multiprocessors (SM) and the hierarchical
memory. A GPU program is referred to as a kernel, composed of a
large number of threads. Threads within one kernel are organized
into blocks. A block of threads are divided into several groups,
called warps in CUDA. Warps are the smallest scheduling units on
SM. A warp of threads execute the same instruction in a clock cy-
cle, called the SIMD execution model, by which GPU data races are
different from CPU races. According to the GPU execution model,
data races can be divided into intra-warp and inter-warp data races.
An intra-warp data race happens when more than one thread in a
warp write to the same memory location, that is only write-write
data race. Detecting this type of race is trivial. One can only use
a bitmap shadow memory for each warp to record writes of each
shared access, which can be reused for the following accesses. In
addition, most of them can be decided at compile time. In this pa-
per, we primarily focus on inter-warp data races.

2014/2/18

2.2 A Motivation Example

__global__ void Jacobi(int * data)
{
extern __shared__ int A[];
int tid = threadIldx.x;
if (tid < BLOCK_SIZE-1 && tid > 0)
Altid]l = (A[tid-1] + A[tid] +
Altid+1]) / 3;
__syncthreads() ;
}

In above we show the GPU kernel for the Jacobi computation, in
which all threads in a thread-block compute the average of itself
and two adjacent values. If the code is multi-threaded for CPU,
there is a race between threads i and i+/. However, due to GPU’s
SIMD execution model. Within a warp, all threads are scheduled
together, thus no data race happens within a warp. The threads at
the boundary of two consecutive warps incur a read-write race due
to out of order execution of warps.

3. Data Structure Expansion

This section introduces the rules to expand data structures and to
redirect memory accesses. Figure 2(b) shows a code snippet of the
EM benchmark program [19] for illustration.

3.1 Privatizing Data Copies

Privatization can be performed on all variables with sharing prop-
erty in a GPU program, i.e. the farget variables, including shared
and global variables. This is achieved by promoting the type decla-
ration of data structures. Table 1 shows the expansion rules. A re-
lated technique is Yu et al. [18] for multi-threaded programs. They
use dynamic memory allocation to expand global variables. In com-
parison, we expand them into (higher-dimensional) arrays. For gen-
eral purpose CPU code, it is difficult to determine which variable
is shared, so Yu et al. relies on a dependence profiling to expand
all global variables. For GPU programs, our compiler expands only
the variables shared by different warps.

Type [Declaration | Expansion
shared scalar shared int a shared int a[N]
shared record shared struct S a | shared struct S a[N]
shared array shared int a[M] shared int a[N]M]
global scalar intb int b[N]
global record struct S b struct S b[N]
global array int b{M] int b[N][M]
heap object cudaMalloc(size) | cudaMalloc(N*size)

Table 1: Variable Expansion Rules. The “Type” column shows
all possible sharing types, “Declaration” native type declaration
and “Expansion” the expanded types. N is number of warps in
a block. All above declarations without “shared” keyword denote
declarations of global memory variables.

3.2 Memory Access Redirection

Table 2 shows redirection rules to guide different warps to redirect
their access to their private copy. The variable warpId denotes the
index of different warps. Note that in dynamically allocated objects,
we need to know the original size, denoted by the symbol span,
so as to index warp private copies. We know it is difficult to infer
span having only the pointers. We use shadow variables to record
the span at allocation, and use a compiler to compute the span and
insert it in the right place. Figure 2(b) shows a code example where
the addresses to privatized arrays have been re-directed using these
rules.

Type | Before | After
shared scalar a a[warpld]
shared field a.field a[warpld].field
shared array a[i] a[warpld][i]
global scalar b b[warpld]
global field b.field b[warpld].field
global array b[i] b[warpld][i]
Pointer deref *p | *(p+warpld*span/sizeof(*p))

Table 2: Redirection Rules. The column “Type” shows all shared
types, “Before” the native memory addressing format and “After”
the redirected memory address. warpId is the index of the warp in
a block. “Span” denotes the original size before expansion.

4. Shared-array Oriented Race Detection

The method we introduce is based on performing two passes on
the same program: In the first pass, write-write conflicts are de-
tected. If this pass fails (i.e., when there is a write-write conflict),
the program terminates and reports write-write conflicts. Upon suc-
cessful completion of the first pass, our tools move onto the second
pass, where read-write conflicts are detected. Our tools are primar-
ily aimed at detecting data races in shared memory accesses not
using atomic primitives. We will talk a little about applying this
method to global array and drawbacks of it later. Both of these
passes are explained in details in the following subsections.

4.1 First Pass: Write-Write Race Detection

DEFINITION 1. Synchronized Block A code region between two
adjacent synchronization statements is called a synchronized block.
Inter-warp data races on a shared array happen only in the same
synchronized block.

The detailed steps of write-write race detections for each syn-
chronized block are provided below:

Initialization Our tools first expand target shared arrays in cur-
rent synchronized block. In addition, we keep an extra copy used
for comparison after the first run. For example, if a thread-block
consists of 512 threads and is using a 1KB shared array, since the
warp size is 32 threads, this implies 16 warps, each with a private
replica of the 1KB array. Therefore, it will require 16KB additional
shared array, along with the 1KB for the original copy. If an array
expansion takes space larger than the shared memory size, 48KB on
Nvidia Fermi and Kepler, the global memory will be used to keep
the private copies of the shared array for each individual warp.

Block Start Two-level parallelism is used to copy all data from
original copy to warps’ own copies. On the first level parallelism,
all warps copies data in parallel to its private copy. On the sec-
ond level parallelism, all intra-warp threads, 32 in CUDA, divide
the work of copying. So two-level parallelism refers to as warp-
level parallelism and intra-warp thread-level parallelism. A syn-
chronization is needed for each warp (but not between warps). After
a warp finishes copying, its threads begin to execute the synchro-
nized block.

Execution After redirecting memory addresses, every warp ex-
ecutes on its own copy of data as original. Each thread costs one
register variable to representing base address pointer of the warp’s
private copy. Other than the redirection, all threads execute the pro-
gram exactly the same as the original of program.

Block Commit After executing synchronized block indepen-
dently, two-level parallelism is used to compare warps’ private
copies of data with the original copy of data for potential write-
write race conditions (at a byte granularity) As in the initial copy-

2014/2/18

ing, all warps work in parallel at the first level. At the second level,
every thread compares data in the granularity of one byte. A bitmap
of shadow memory is used to record comparison results. Each one
byte use one bit. Just one bitmap is used for the shared array for
write-write conflict detection. We go through the warps one by
one. If a warp writes, we check the corresponding bits. If the bits
are set, we report write-write data races. Otherwise, we set the bits.
If write-write races are found, we report the races and stop pro-
gram execution. Otherwise, all warps combine the written parts of
an array into to an union. Because there is no overlap in writes,
two-level parallelism can be used for union.

Discussion Compared with existing work, our tool has zero
memory access monitoring overhead. Additionally, the GPU mas-
sive parallelism is utilized three times to perform the copying,
comparison and union operations.

4.2 Second Pass: Read-Write Race Detection

If there are no write-write data races, we start the second pass to
detect read-write races. The following subsection walks through
the steps of the second pass.

Initialization We classify memory loads and stores using com-
piler analysis:

DEFINITION 2. Upward-exposed load A memory load is said to
be upwards-exposed in a synchronized block if the value may be
defined before this synchronized block.

DEFINITION 3. Downwards-exposed store A memory store is
said to be downwards-exposed in a synchronized block if the value
may be used after this synchronized block.

If any variables other than target shared array have upwards-
exposed loads and are modified in target synchronized block, we
must store the values of these variables at the beginning of the
synchronized block for second-pass and stored them before the first
pass.

Block Start Every warp first merges the modified data from the
private copy of all other warps to its own copy and then copies the
original values to its own copy for array that is not modified by
other warps. Between the two copy operations, a synchronization
statement is inserted to ensure that all warps finish the first copying
before the second.

Execution Every warp executes the synchronized block using its
private copy independently.

Block Commit After the second pass, every warp compares the
values of its own copy between the second pass and the first pass
in modified array cells by comparing the warps’ private copy with
the union copy. If a different value is found, we report the presence
of a read-write race and stop program execution. If there is no race,
the union copy will be used as the original copy, and the program
continues.

One may ask that the second pass can overwrite the downwards-
exposed variables. The answer is, if we find data races, although
the second pass may overwrite downwards-exposed variables, the
program stops. If no data race is found, the downwards-exposed
variables must have the correct values. Program execution remains
correct.

Review of Data Copying To illustrate, we use Figure 1 to review
the series of data copying in the two-pass detection. For the target
array, there are three copies and a bitmap. The original copy keeps
the original values. Each warp has a private copy in the expanded
array. Finally, the union copy combines the changes from all warps.
To detect write-write data races, we use the bitmap. One bit repre-
sents the writing records of one byte of shared array.

4.3 A Lightweight Runtime Library

In Figure 2, we use the EM benchmark [19] to show not just the
program transformation but also the API of our runtime library.
As we can see, there are only three runtime functions, region_diff,
region_union and compare _output functions.

Our lightweight runtime library mainly include four algorithms,
including diff, union, combination and comparison operations. diff
is responsible for write-write conflict checking among warps. union
is used to union all warps’ copies of shared array to one union
copy if there are no write-write conflicts. In combination, each
warp copies modified array regions from other warps to its own
copy. comparison is used to compare results of the two runs. In
Figure 2(c), region_diff is the implementation of diff. region_union
function includes union and combination. compare_output is the
implementation of comparison. To make it as efficient as possible,
we make several following considerations:

1. All four libraries are implemented using two-level parallelism,
including warp-level parallelism and intra-warp thread-level
parallelism. Different warps work on their own data copies in
parallel. Each warp divides its working set among the intra-
warp threads, so that intra-warp threads work on different data
elements in parallel. Therefore massive parallel resources on
GPU are well utilized.

2. In GPU programming, thread divergence, which refers to as
different threads execute different paths at a given clock cycle,
is harmful to performance due to the limitation of simple in-
order cores. To prevent thread divergence, we pad data to a size
that can be divided by the number of threads in a warp, 32 in
CUDA, so that no thread is idle when other threads have data to
operate. Although computing padded data are meaningless, this
optimization smartly prevents different threads from executing
different paths.

3. Consecutive accesses to global memory from different threads
in a warp are coalesced, that is, combined into a single larger ac-
cess to shorten high memory access latency. Our algorithms are
designed to meet the requirement for coalesced global memory
access.

4.4 Correctness, Extension and Limitation

Correctness The data races detected by our tools are always
sound inter-warp race. Our two-pass approach is based upon an
assumption that there are no atomic operations in synchronized
blocks. Overall, we have two chances to report data races, after
the first run and the second run, respectively. After the first run,
the races reported by our tool are write-write conflicts, based upon
value-based diff operations. After the second run, our tool reports
if there are inconsistent outputs. The inconsistent outputs suggest
read-write conflicts. If they are caused by write-write conflicts, a
contraction happens because the second run is only executed pro-
vided that the first run does not find any data races. So our two-pass
approach is sound. Although our tools in the first run only find out
write-write races probably, after modifying the bugs and several
later runs, our tools can find out the remaining read-write races.

Extension to Global Array and Other Data Structures The
above description of detection process assumes shared array as tar-
get variables. Detection for a shared array subsumes the problem
of detection for a scalar variable or a record. The same technique
can be extended to a global array, which subsumes the problem of
detection on global scalars and global records.

Data races on a global array can happen among thread-blocks,
not just warps of the same thread block. We use a similar two-
step approach to defect data races. First, we detect data races on
a global array among thread blocks, using the previous approach.

2014/2/18

] D]

original first second conflict
copy written written part

shared

L]
for

\
vt [0 0

L]

[|

union copy

[I]

[
N

/
[T

!

case 1 ! ' read write race
warp 0 warp 1 diff v union copy ' if any difference,
! ! otherwise, no race
! case 2 | temporary map ' '
H fppon: write write race ' '
time : : : : : g
Initialization i first-execution i Finalization Initialization i second-execution i Finalization
Figure 1: The series of data copying during race detection
I device void M_count(int * ...) 1 _device _ void M_count(int * ...) 1 __device_ void M_countfint * ...)
2f 2f 2f
3 extern __shared _ float s_float(]; 3 extern __shared _ float s_float{]; 3 extern __shared _ float s_float/];
4 __shared _ float * s_float_rep(BLOCK_SIZE/ 4 _ shared _ float *s_float_rep(BLOCK_SIZE/
4 float * Rp = 5_floatt index2 + 1536 ; 32f; 32f;
5 float * C=s_floar+ 3840 ; 5 __shared _ float s_float_unionf2048] ; 5 __shared _ float s_float_unionf2048] ;
1] float * templ = 5_float + index0;
7 Sfloat * dist = s_float + index]+768; 6 if (warpld % WARP SIZE==0) { 6 if (warpld % WARP SIZE==0) {
7 s_float_repfwarpld] = malloc(2048); 7 s float_repfwarpld] = malloc(2048);
& Sorfint = 0:<9 5+)Rp[i]=0; 8 mem_cpy(s_float_rep[warpld], s _float, 8 mem_cpy(s_float_rep[warpld], s float,
Jor (int i=0; i<n; i+=THREADS*BLOCKS) 2048%4) ; 2048%4) ;
w0 9 } [}
11 Sor (int j=0; j<K; j++) 10 s_float new=s_float_repfwarpldf ; 10 s_float_new =s_floai_repfwarpldf ;
12 { 11 __syncthreads() ; 11 __syncthreads() ;
13 float x_s = x[*n+{i+n_index)];
14 Sor (int cnt = O; cnt<DIM; cntt++) 12 float * Rp=s5_float_new + index2 + 1536 ; 12 float * Rp =5 _float_new + index2 + 1536 ;
15 { 13 float * C= s_float_new + 3840 ; 13 float * C=s_float_new = 3840 ;
16 distfcnt] = dataf(i+n_index)* DIM+ cnt]- 14 float * templ = 5_float_new + index(); 14 float * templ = 5_float_new + index();
C[i*DIM+cnt]; 15 Sfloat * dist = s_float_new + index]+768; 15 float * dist = s_float_new + index1+ 768;
17 templfcnt] = distfcnt] * x_s; 16 16 ... replica from line 8 to line 27 of (a) ...
18 } 17 if (warpld % WARP _SIZE =) { 17 __syncthreads() ;
19 Jor (int ent = 0; ent< DIM; ent++) 18 free(s_float_repfwarpld]); 18 region_difft s_fleat, 5_float_repfwarpld], 2048) ;
20 { 19 i 19 region_union(s_float, s_float_repfwarpld], s_float
21 Sforfint in=0;in<DIM;in++) 20 __syncthreads(); union, 2048) ;
22 { 21} 20 ... replica from line 12 to line 16...
23 Rpfent* DiM+in]+=templ [ent]*dist{in]; (b) data structure expansion 2 compare_ouiput(s_float_union,
24 } s_float_repfwarpld], 2048) ;
25 } 22 if (warpld%WARP_SIZE == @) {
26 } 23 JSree(s_float_repfwarpld]);
27} 24 }
28 _ syncthreads(); 25 __syncthreads();
29} 26}

(a) original code snippet

(c) data race detection example

Figure 2: A code snippet of EM benchmark program to illustrate the data structure expansion and data race detection. (a) shows an original
program. (b) shows how to expand data structure. The size of shared array float is 2048. (c) shows an example of race detection.

There is only one synchronization point at the termination of a
kernel for different blocks, so the entire kernel is analogous to a
block. Detection among blocks is similar to detection among warps.
Then, we detect data races among warps in blocks. The detection
process is exactly the same with the one for shared array.

Unlike shared array, the size of global array could be very
large, limited by device memory. The data structure expansion for

global array could explode memory consumption. So our two-pass
approach is not fit for detecting data races in global array accesses.
In the future work, we will study specific approaches to detect data
races in global array.

A Limitation Our tool can have false negatives. For example, in
the first run of write-write race detection, if two warps write to the

2014/2/18

same position, but one of them writes with the initial values of the
original copy, our tool cannot detect write-write races.

5. Speculative Parallelization

Nvidia’s new Kepler architecture supports dynamic parallelism,
in particular, launching a kernel inside a kernel asynchronously.
It is like a fork in Linux and raises the possibility to speculative
parallelization in GPU platform in the style of behavior-oriented
parallelization on CPU [3, 8]. In the past, speculation happens
on the host side. With the new support, it can be done on the
device side. It allows GPU work to be speculated on, utilizing the
abundant computing resources on GPU. In this section, we use
GPU speculative parallelization to further reduce the performance
overhead. To our best knowledge, this is the first of such design.

+— synchronization block ------ * child kernel launch

+— target sync-block = race detection

introduced extra operations ‘(—- race happens, kill parent kernel

compiled kernel
kernel

setup environment for child kernel

detected candidate T

_ —

array MRicn

child kernel
Y. Kernel launch

Diff writes

Fe-Fun

comparison between
WO FLAS

FW race
kil main kernel

Figure 3: Utilize speculative parallelization to fast kernel execution

Speculative parallelization is only used in detecting inter-warp
data races. For inter-block data races, because there is only one
”synchronized block”, using speculative parallelization cannot
overlap computations. Inter-warp data race detection is performed
in each thread-block. So launching a child kernel is done by thread
0 in each block, with a configuration <<</, BLOCK _SIZE>>>.
It means that every block launches a block of the same number of
warps to check data races. BLOCK_SIZE is the same number of
threads with the kernel configuration launched by host side.

Figure 3 shows the execution model of speculative paralleliza-
tion in GPU. The main kernel needs to store upwards-exposed vari-
ables for a child kernel, namely setup environment in Figure 3. Af-
ter that, all warps in the main kernel start the first run. At the end
of the first run, a child kernel is launched for write-write race de-
tection. The second run and read-write race detection are also done
in the child kernel. If a child kernel finds a race, it stops execut-
ing and reports it to parent kernel. After launching the child kernel,

without any waits, all warps in the parent kernel assume there is
no data race, merge warps’ copies of target variables to one union
copy, namely array union in Figure 3, and continue to execute. At
the end of the following thread block, the main kernel checks if
there are any races reported by a child kernel. If any, main ker-
nel stops execution and reports results to the user. At the end of
the kernel code, the main kernel collects child kernel’s status and
cleans it up. Note that, current Nvidia Kepler architecture does not
support transferring shared memory addresses between the parent
kernel and the child kernel. All the communication between them
is stored in device memory, including the setup environment, data
race reports and other data.

6. Preliminary Results

A preliminary evaluation has been done on a Nvidia Kepler-
architecture GPU card, namely K20 [7]. EM and Co-clustering [19]
benchmark programs were used to evaluate performance and mem-
ory overhead of our tools. They are both data mining algorithms
and have been aggressively optimized to use shared arrays. The
comparisons between our tools and Grace [19] are done in Table 3
and Table 4.

Programs | EM | Co-clustering
Native 60.27 (1x) 28.91 (1x)
LDetector 250.15 (4.15x) 99.46 (3.44x)
LDetector-spec 177.42 (2.94x) 107.04 (3.70x)
Grace-stmt 104445.9 (1733x) | 1643781.88 (56858x)
Grace-addr 18866.83 (313x) 7236.8 (250x)

Table 3: Performance comparison between LDetectors and Grace
running times in millisecond. The values in parentheses are
speedups.

Performance Overhead Without zero memory access monitor-
ing, our performance overhead is small, as shown by the running
time of a kernel. Our performance overhead includes the memory
allocation and release overhead of shared arrays and global arrays,
the time spent in the run-time library, and the cost of the setup for
the second-run as described in Section 4.2. If we measure the run
time of a thread block, the performance overhead is 2x in theory,
not including the library costs (which is much less than one mil-
lisecond as tested). Table 3 shows our performance in the two pro-
grams is less than 5x. Two orders of magnitude faster than the pre-
vious techniques, Grace-stmt,Grace-addyr.

Speculative parallelization improves EM’s performance, while
slows down Co-clustering. The reason is, EM has three blocks,
and the second one needs race detection. The computation of child
kernels overlaps with the third synchronized block’s execution of
the main kernel. However, Co-clustering has only one block. There
is no computing overlap when launching a kernel. As a matter
of fact, launching a child kernel costs more, which makes the
performance of LDetector-spec is slower than LDetector.

Memory Overhead The memory overhead consists of the three
copies of target variables and a bitmap shadow memory. Assume
the size of a target variable is /N bytes. At most one block has
M warps, such as 32 in Nvidia Fermi and Kepler. The memory
overhead is 3 * M % N + N/8. The lifetime of these variables
is limited within the block, so the same memory is reused for
successive blocks. Table 4 shows our tools have much less memory
cost than Grace [19], which shows in all but one case near or over
10 times reduction in the memory consumption. For Grace-stmt
approach, we didn’t instrument all memory accesses for EM and
Co-clustering. Instead, we instrument as much as memory accesses

2014/2/18

when memory overhead gets up to 1G bytes. As Grace [19] said,
the Grace-stmt cannot work if instrumenting all memory accesses
due to huge memory overhead.

Programs | EM | Co-clustering
LDetector 16K, IM 16K, 1M
LDetector-spec 0K, 1.3M 0K, 1.3M
Grace-stmt 1.1K, 1000M* | 1.1K, 1000M*
Grace-addr 1.1K, 54M 1.1K, 27M

Table 4: Comparing the memory overhead between LDetectors and
Grace in bytes. The left value in table cell denotes shared memory
usage volume and the right value denotes global memory usage
volume.

7. Related work

A growing number of techniques on data race detection on GPUs [2,
6,9, 10, 19, 20] have been proposed. [2, 6] used instrumentation
to record all runtime memory accesses from different threads and
different warps to detect data races. The instrumentation caused or-
ders of magnitude performance degradation. Grace [19] and GM-
Race [20] tried to reduce the performance overhead of instrumen-
tation through compiler analysis. However, static analysis is not
effective in the presence of irregular memory access. The authors
only show its effectiveness against three programs. A number of
methods were studied for kernel verification [1, 10, 11]. Bretts
et al. [1] proposed a new programming semantic in GPU, under
which data races can be detected at programming time. Li et al. [10]
proposed PUG, using a Satisfiability Modulo Theories-based tech-
nique to detect data races. GKLEE [11] extended symbolic analysis
in GPU platform for correctness checking. Since SMT solver and
GKLEE symbolic analysis are static, they have more false positives
than run-time methods. Leung et al. [9] proposed a combination of
static analysis and dynamic analysis based on information flow.
Their performance and memory overhead are low, about 18x slow-
down on average. Our technique, measured on our benchmarks,
has 5x slowdown on average.

Data privatization is standard in auto-parallelization of sequen-
tial programs. It replicates shared data and creates a private copy
for each thread [4, 5, 12, 13]. Recently, Yu et al. [18] proposed a
general approach for privatization to parallelize sequential loops.

8. Conclusion and Future Work

This paper presented new data race detection solutions optimized
for high performance, because it has zero memory access monitor-
ing overhead and fully utilizes the massive parallelism of the GPU
in race checking. The tools use compiler support of data structure
expansion for shared variables, a new two-pass approach for race
detection, and the speculation to overlap race checking and pro-
gram execution. Preliminary results show significant performance
improvement and space overhead reduction over a recently pub-
lished technique. Here are several opportunities of future work:

e Extending our tool to support atomic operations in GPU pro-
gramming model is one future direction. Atomics allows safe
inter-warp data sharing. Our current tools are designed based
upon an assumption that no atomic operations exist in the syn-
chronized blocks. We plan to propose a more generic data race
detection approach.

We have to face the problem of memory consumption explosion
when detecting data races in global memory. In the future, we
will investigate specific approaches for data races in global
memory.

Acknowledgments

We thank Li Lu for helpful discussions and the anonymous review-
ers for insightful feedback on this work.

References

[1] A. Betts, N. Chong, A. Donaldson, S. Qadeer, and P. Thomson. Gpu-
verify: A verifier for gpu kernels. In Proceedings of OOPSLA, pages
113-132, 2012.

[2] M. Boyer, K. Skadron, and W. Weimer. Automated Dynamic Anal-
ysis of CUDA Programs. In Third Workshop on Software Tools for
MultiCore Systems, 2008.

[3] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang.
Software behavior oriented parallelization. In Proceedings of PLDI,
pages 223-234, 2007.

[4] J. Gu, Z. Li, and G. Lee. Experience with efficient array data-flow
analysis for array privatization. In Proceedings of PPoPP, pages 157—
167, 1997.

[5] M. Gupta. On privatization of variables for data-parallel execution. In
Proceedings of the 11th International Symposium on Parallel Process-
ing, pages 533-541, 1997.

[6] Q. Hou, K. Zhou, and B. Guo. Debugging gpu stream programs
through automatic dataflow recording and visualization. In ACM
SIGGRAPH Asia 2009 Papers, 2009.

[7] N. K. K20. http://en.wikipedia.org/wiki/nvidia_tesla.

[8] C. Ke, L. Liu, C. Zhang, T. Bai, B. Jacobs, and C. Ding. Safe parallel
programming using dynamic dependence hints. In Proceedings of
OOPSLA, pages 243-258, 2011.

[9] A. Leung, M. Gupta, Y. Agarwal, R. Gupta, R. Jhala, and S. Lerner.
Verifying gpu kernels by test amplification. In Proceedings of PLDI,
pages 383-394, 2012.

[10] G. Li and G. Gopalakrishnan. Scalable smt-based verification of gpu
kernel functions. 2010.

[11] G. Li, P. Li, G. Sawaya, G. Gopalakrishnan, I. Ghosh, and S. P.
Rajan. Gklee: Concolic verification and test generation for gpus. In
Proceedings of PPoPP, pages 215-224, 2012.

[12] Z. Li. Array privatization for parallel execution of loops. In Proceed-
ings of ICS, pages 313-322, 1992.

[13] D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. Array-
data flow analysis and its use in array privatization. In Pro-
ceedings of the 20th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, POPL ’93, pages 2-15, New
York, NY, USA, 1993. ACM. ISBN 0-89791-560-7. . URL
http://doi.acm.org/10.1145/158511.158515.

[14] S. L. Min and J.-D. Choi. An efficient cache-based access anomaly
detection scheme. In Proceedings of ASPLOS, pages 235-244, New
York, NY, USA, 1991.

[15] A. Muzahid, D. Sudrez, S. Qi, and J. Torrellas. Sigrace: Signature-
based data race detection. In Proceedings of ISCA, pages 337-348,
2009.

[16] M. Prvulovic. Cord: cost-effective (and nearly overhead-free) order-
recording and data race detection. In Proceedings of HPCA, pages
232-243, 2006.

[17] M. Prvulovic and J. Torrellas. Reenact: Using thread-level speculation
mechanisms to debug data races in multithreaded codes. In Proceed-
ings of ISCA, pages 110-121, 2003.

[18] H. Yu, H.-J. Ko, and Z. Li. General data structure expansion for multi-
threading. In Proceedings of PLDI, pages 243-252, 2013.

[19] M. Zheng, V. T. Ravi, F. Qin, and G. Agrawal. Grace: A low-overhead
mechanism for detecting data races in gpu programs. In Proceedings
of PPoPP, pages 135-146, 2011. .

[20] M. Zheng, V. T. Ravi, F. Qin, and G. Agrawal. Gmrace: Detecting

data races in gpu programs via a low-overhead scheme. IEEE Trans.
Parallel Distrib. Syst., 25:104-115, 2014.

2014/2/18

