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Abstract—As servers are placed in diverse locations in
networked services today, it becomes vital to direct a client’s
request to the best server(s) to achieve both high performance
and reliability. In this distributed setting, non-negligible latency
and server availability become two major concerns, especially
for highly-interactive applications. Profiling latencies and send-
ing redundant data have been investigated as solutions to these
issues. The notion of a cloudlet in mobile-cloud computing is
also relevant in this context, as the cloudlet can supply these
solution approaches on behalf of the mobile. In this paper, we
investigate the effects of profiling and redundancy on latency
when a client has a choice of multiple servers to connect
to, using measurements from real experiments and simula-
tions. We devise and test different server selection and data
partitioning strategies in terms of profiling and redundancy.
Our key findings are summarized as follows. First, intelligent
server selection algorithms help find the optimal group of
servers that minimize latency with profiling. Second, we can
achieve good performance with relatively simple approaches
using redundancy. Our analysis of profiling and redundancy
provides insight to help designers determine how many servers
and which servers to select to reduce latency.

Keywords-Cloud computing; server selection; latency profil-
ing; data redundancy; measurement study

I. INTRODUCTION

Today, servers (or replicas) in the Internet are increasingly

placed in diverse locations to offer efficient and reliable

services that handle a huge amount of data. These networked

services include online shopping (e.g., Amazon), social net-

working (e.g., Facebook), video streaming (e.g., YouTube),

and file hosting (e.g., Dropbox). This trend has only acceler-

ated with the emergence and success of cloud computing that

allows users to remotely access elastic servers with ample

resources in a pay-as-you-go manner over the network. In

this distributed setting, a client’s request is ideally directed

to a server (or a group of servers for parallelized process-

ing) that minimizes response time seamlessly without user

intervention.

In providing networked services, non-negligible latency

for remote access is considered a technical hurdle with

respect to performance, and server availability is another

concern for reliability. These concerns become more critical

for highly-interactive applications that require frequent com-

munications but relatively lightweight computation such as

distributed database queries and updates, stock quotes and

trading, and content distribution services, e.g., GFS [1] and

Akamai [2]. One approach to deal with these concerns is pro-

filing latencies to servers based on network measurements

and solving server selection as an optimization problem

given profiled latencies [3]. Another approach is sending

data redundantly to servers, as this increases the probability

to receive responses even in case of server failures and

reduces response time by extending the pool of servers

accessed [1].

As mobile devices like smartphones proliferate, these

approaches also become important from the mobile-cloud

computing perspective. Mobile devices use the cloud as the

backend servers transparently, offloading heavy computing

parts to the cloud [4], [5], [6], [7], [8], or creating an ad-

hoc cloud of computing resources available at the distributed

mobile devices [9]. In this case, an application running

on the mobile may suffer from long latency and lack of

informed server selection. The notion of a cloudlet was

introduced as the agent that provides sufficient resources

to the mobile and coordinates the connections between

the mobile and the cloud [7], [10], [8], [4]. Mobile-cloud

computing can benefit from having an intelligent function of

server selection using profiling or redundancy in a cloudlet.

We study the effects of profiling and redundancy on

latency when a client has a choice of multiple servers to

connect to based on network measurements. Network profil-

ers in existing server selection approaches [3] and mobile-

cloud computing systems [6], [5] characterize the quality

of network connections by measuring their performance

such as average latencies and throughput, and their standard

deviations. Beyond these performance metrics, we measure

latencies to servers as samples when different sizes of data

are sent, and create models to estimate latencies for an arbi-

trary data size. Using the estimated latencies at a given data

size, we compare the latencies of server selection strategies

with and without profiling or redundancy as the number of

servers changes and data is partitioned into multiple chunks

being sent to the servers. Our contribution is to characterize

latency behaviors when profiling or redundant data transfer

is adopted for server selection using network measurements.

Such characterization helps gain insight in determining the

number of servers and which servers should be selected.

Our key findings are summarized as follows. First, if data
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Figure 1. Estimated latencies as a linear model using latency measurements for different data sizes.

are evenly distributed across servers, latencies decrease ini-

tially as more servers take the burden, but eventually increase

as more and more servers are involved. Second, if data are

distributed greedily–use the server with short response time

first (see Section III-A for details)–utilizing the profile of

average latencies to servers, latencies decrease and stabilize

at the lowest point. Third, when data are evenly distributed

to random servers without profiling, latencies do not change

much even when more servers participate. Fourth, if data

are distributed to random servers, this time redundantly but

without profiling, latencies indeed decrease as more servers

join, and moreover, latencies further decrease with higher

redundancy.

The rest of the paper is organized as follows. Section II

discusses our latency measurements. Section III discusses

server selection and data partitioning algorithms using our

measured latencies and their analysis. We summarize related

work in Section IV and conclude in Section V.

II. MEASUREMENT OF LATENCIES

We discuss our approach for obtaining latency measure-

ments and latency estimation, and then present the results.

A. Configurations and Metrics

We conduct experiments on PlanetLab in which 1,168

computers (or nodes) are available at 550 sites around the

world [11]. Also, the geographically diverse nodes in Planet-

Lab allow us to test different parts of the network with more

comprehensive observations. We record our measurement

data in February 2013. Five nodes operate as clients, and

a total of 150 nodes are randomly selected as servers: 36

in North America, 6 in South America, 27 in Asia, 58 in

Europe, and 3 in Oceania. Each client sends data to 30

servers (again randomly selected) over TCP, and we are able

to obtain valid measurement data from 130 nodes out of the

150 servers. A client sends five different data sizes, namely

8 KB, 64 KB, 256 KB, 512 KB and 1 MB, giving 400

measurements for each data size totally, with 200 over the

weekends and the other 200 on weekdays. This provides

us with 2,000 measurements per server and totally 300,000

measurements.

We use latency as the primary performance metric. We

measure round-trip time as latency, which is defined as

the elapsed time between sending the first packet by the

client and receiving an acknowledgment message for the last

packet (at the application layer) from the destination server

via the same connection. Due to clock drifts (clocks at the

sender and the receiver are not synchronized), it is nearly

impossible to measure one-way latency from the sender to

the receiver. We analyze the latency distributions and basic

statistics like average and standard deviation when various

file sizes are transferred to see their characteristics. Through-

put can also be estimated indirectly using the inverse of our

latency measurements as needed.

B. Results

Figure 1 depicts the latencies measured at three servers

(Argentina, Germany, and the West Coast of the United

States) as an example out of the 130 servers. The dots denote

the average latencies measured when the five different sizes

of data are sent. The error bars show the standard deviation

of the measured latencies. Both of the latencies and standard

deviations increase as data size increases for all of the

servers. The latency increase fits well a linear model, and

thus we estimate latencies for other data sizes using linear

regression. The resulting estimated latencies are represented

as a line in the figure, and the values for a and b in the

linear model, y = ax+ b, are shown in Table I where x is

data size and y is latency.

Table I
LINEAR MODEL y = ax+ b (IN MS) FOR THE THREE SERVERS IN

FIGURE 1.

Server a b

Buenos Aires 23.535531 13.3258792
Berlin 22.162589 40.1769235
Oregon 10.825825 25.1895639

The measured latencies will be used to estimate and

profile latency to a target server for an arbitrary data size
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when original data can be split into multiple chunks and

be sent to multiple servers. For example, if 1 MB data are

evenly distributed and sent to two servers, the linear model

for the first server is used to estimate the latency for the first

chunk of 512 KB and the linear model for the second server

is used to compute the latency for the other half chunk. More

details are discussed in the following section.

III. USE OF ESTIMATED LATENCIES

Using the estimated latencies, we compare different server

selection strategies in detail in this section. Our results

provide insight and tradeoffs to be considered when profiling

latencies for server selection. We consider data redundancy

as well in this comparison.

A. Server Selection Algorithms

Latencies to servers vary widely depending on the lo-

cations of the servers and on the network conditions, as

shown in the previous section. In some instances, a client

has the option to divide data into smaller chunks and send

these data chunks to a set of servers (possibly a different

number). An interesting question is whether the latency

linear model computed for each server can be utilized for

the client to select server(s) to minimize the latency of its

data transfer. Motivated by this question, we devise three

data partitioning and server selection algorithms, namely

random, fixed, and greedy, and conduct simulations, based

on the estimated latencies as well as real experiments. Note

that these algorithms allow requests to be sent to multiple

servers concurrently and be processed in parallel.

In the random algorithm, a client sends m bytes data to

n randomly selected servers located in different places for

n ≥ 1. The data are evenly divided among servers, i.e., m
n

bytes to each server. Moreover, the client may send copies

of data chunks to more servers redundantly. In this case, it

is possible for the client to receive multiple responses for

a data chunk due to this redundancy. Latency in this case

is defined as the elapsed time from when the client starts

sending the first data chunk until when the first responses

for all of the data chunks are received. The redundant data

transfer thus exploits more servers and networks, and hence

reduces latency by increasing the probability that a response

returns earlier.

The fixed algorithm is the same as the random algorithm

except 1) there is no redundancy, and 2) there is server

selection. In this algorithm, the servers are sorted in non-

decreasing order in terms of the average estimated latencies,

and then the first n severs from the lowest latency upward

are selected when sending the data to n servers. Latency is

the time that it takes for the last response to be returned

(note that there is no redundant response).

In the greedy algorithm, we first order the servers by their

latencies like the fixed algorithm, and give the first chunk

to the server that can respond in the minimum amount of

time. The size of the first chunk is the smallest possible that

the data can be divided into. We then give the second chunk

to the server that can complete in the minimum amount of

time. Note that this may be the same server as given the

first data chunk if the time for the first server to complete

both of the first and second data chunks is less than the time

for the second server to complete just data chunk two. We

continue in this way, greedily selecting the server for each

chunk in turn. This latency is indeed the lower bound of

latency. Since finding a set of such data chunks is inherently

a complex optimization problem, we use the approximation

algorithm described in Algorithm 1 for our simulations and

experiments. The main idea is to move a portion of data

(a(i)u in line 8) from server(i) when i = 1, . . . , k− 1 to a

newly added server(k), and iterate the process until finding

the minimum latency.

Algorithm 1 Approximated Greedy Algorithm

1: for k = 2→ n do
2: flag ← true
3: while flag do
4: for all server(i) as i = 1→ k − 1 do
5: temp(i)← data(i)
6: data(i)← data(i)− a(i)u
7: end for
8: data(k) = totalData−∑k−1

i=1 data(i)
9: curLat←∞

10: if max(lat(0), lat(1), . . . , lat(k)) < curLat then
11: flag ← true
12: curLat← max(lat(0), lat(1), . . . , lat(k))
13: else
14: flag ← false
15: for all server(i) as i = 1→ k − 1 do
16: data(i)← temp(i)
17: end for
18: end if
19: end while
20: end for
{data(i): data size sent to server(i)
a(i): rate that latency increases as data(i) increases
lat(i): latency of server(i)
totalData: total data size}

B. Results

We compare latencies estimated for the three algorithms

using Monte-Carlo simulations and real experiments. For the

simulations, we randomly generate latency Li following a

distribution with average latency Ei and standard deviation

σi for a given data chunk size. We find that the latencies

of the linear models (Figure 1) approximate a Gaussian

distribution well with different mean and standard deviation

values, and Ei and σi are estimated based on that. We use

Gaussian distributions with interpolated mean and standard

deviation values for the points for which measurement data

are not available (e.g., when data size is 400 KB in Figure 1).

We then run the random, fixed, and greedy algorithms, and
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compute the total latency, which is max(L1, L2, . . . , Ln)
for n participating servers, if there is no redundancy. This

process repeats a sufficiently large number of times. Note

that in the figures, R1 represents the random algorithm

with the client sending only a single copy of data (no

redundancy), R3 is the random algorithm with the client

sending three copies of the data (redundancy), R5 sends five

copies, and R10 sends ten copies.

In Figure 2(a), we show the latencies estimated from the

simulations when data are partitioned and sent using the

random algorithm. Each random algorithm sends a different

number of duplicate copies as defined above. The number

of servers changes from 1 to 55 and 1 MB data are sent.

For each algorithm, we run 100 simulations with different

random number generator seeds for selecting servers and

average the results. No server is selected for more than one

copy of data chunk, i.e., each copy is sent to a different

server. This algorithm increases reliability in case of server

or network failures–responses return with higher probability

with redundancy. The algorithm, however, reduces the total

number of servers that a client can reach when copies of

data chunks are sent as discussed. For example, the client

in R3 can use only one third of the available servers since

three copies of a data chunk are issued.

In addition, we run real experiments over the wide-

area network to validate our simulation results. For the

experiments, we are able to collect valid data from 41

servers out of 55 randomly chosen PlanetLab nodes (refer

to Section II for details) providing 400 measurements for

latency during weekdays as a node at Yale University sends

1 MB data to the chosen servers. Again, we repeat the

experiments 100 times. As Figure 2(b) shows, the latencies

from the real experiments behave similar to those from the

simulations for all R1, R3, R5, and R10. In comparison

to the simulation results (Figure 2(a)), the latencies are in

general higher (20–30%) because the latencies from the

experiments are measured during weekday daytime while

the simulation latencies are profiled based on the latencies

measured at different days and times including weekdays,

weekends, daytime and night.

The estimated latencies for the fixed and greedy algo-

rithms are shown in Figure 3. The latencies from both

the simulation and the real experiments are presented and

compared. The experimental setup is the same as that of

the random algorithm as discussed above. As shown in the

figure, the number of servers in the experiments are no

more than ten due to the limited number of concurrent TCP

sessions at the sender. The latencies from the experiments

behave nearly identical to the latencies from the simulations

for the fixed algorithm; the trends of the latencies from

the experiments and simulations are similar for the greedy

algorithm. Due to the same reason as discussed above for

the random algorithm (Figure 2(b)), the latencies from the

experiments are higher than those from the simulations.

Figure 4 shows the latencies of all the three algorithms

together computed from the simulations for comparison.
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Figure 4. Comparison of the latencies of the random, fixed and greedy
algorithms.

From these results, we observe several interesting phe-

nomena. First, the latencies obtained from the random

algorithm without redundancy (R1) do not change signif-

icantly as the number of servers changes except an ex-

tremely few servers (1–2), and are approximately five times

higher than those of the greedy algorithm. The server that

responds last determines the latency since the latency is

max(L1, L2, . . . , Ln), and that server is selected at random

regardless of the number of servers. Second, the latencies

with redundancy (R3, R5, and R10) decrease as more servers

are selected, and drop more sharply with higher redundancy

(more copies), e.g., R10 drops faster than R3 and the latency

of R10 is 2.5 times lower than the latency of R3 when

the number of servers is 5. As more servers are involved

for more copies of data chunks, the probability that a

response for a data chunk returns earlier increases. The

decrease of latencies, however, does not continue beyond

a certain number of servers (e.g., seven for R3 in Figure 2)

because there are not enough redundant copies to explore

the increasingly diverse servers.

Third, the latencies in the fixed algorithm decrease and

then increase beyond a certain number of servers–around

five to six in Figure 3(a). Latency initially decreases as more

servers take the burden of data, while latency increases later

as the long latencies of servers that join later overshadow

the benefits of burden sharing. Fourth, the latencies in the

greedy algorithm decrease to the lowest point and stabilize

similar to the random algorithm with high redundancy. The

greedy algorithm seeks optimal server selection in order to

minimize latency. The latencies do not continue to decrease

since the data transfer requires fundamental overheads like

propagation delay.
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Figure 2. Latencies as the number of servers changes when the random algorithm is used.
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Figure 3. Latencies as the number of servers changes when the fixed and greedy algorithms are used.

C. Profiling versus Redundancy
In a distributed computing setting like cloud computing,

a client often relies on profiling based on network measure-

ments to select the optimum group of servers and the way

data are partitioned in order to meet its performance goals,

e.g., minimal latency. A profiler probes the network, gathers

measurements from the probe, analyzes the measurements,

and creates the profiles of the measurements as functions of

different parameters like days (e.g., weekdays or weekends),

time (e.g., morning or night), and geographical locations. Of

course, this probe and analysis needs to repeat periodically.

Using the profiles, the user can run an intelligent algorithm

to compute the best group of servers without much compu-

tational overhead. The results and analysis in the previous

section re-iterate the importance of this intelligent algorithm

in profiling. For example, the profiler can find out which six

servers would provide the minimal latency when data size

is 1 MB using the results in Figure 3.
Our results also imply that redundancy can contribute

considerably to reducing latency in a reasonably simple way.

As illustrated in Figure 4, a large amount of redundancy

(R10) can reduce the latency compared with a random

algorithm with no redundancy (R1) by 50%, approaching the

latency achieved by the fixed and greedy algorithms. While

redundancy injects many more packets into the network, it

does not require the profiling overhead for network probes

and estimation.

Additionally, these properties open the potential of hybrid

dynamic profiling in which both sophisticated profiling and

relatively simplistic redundancy are used together to select

target servers. For frequent and long-lived network flows,

profiling with periodic network probes helps, while short-

lived flows can take advantage of redundancy without much

overhead for network measurement and computing. It is also

feasible that the latencies measured from on-going flows

with redundancy are fed to the profiler and used as network

measurements.
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IV. RELATED WORK

There have been attempts to measure latency accurately

in the literature. IDMaps [12] deploys end hosts at strategic

locations, gathers latencies, and then synthesizes them to

estimate the latency between end hosts. GNP [13] es-

timates latency based on coordinates that are computed

using landmark hosts. King [14] is a tool that estimates

the latency between arbitrary end hosts by using recursive

DNS queries without requiring extra infrastructure. Vivaldi

[15] helps an end host compute its Internet coordinate for

localization using only a few latency measurements in a

fully distributed way. Madhyastha et al. [16] predict latency

based on measurements of the Internet routing topology,

connectivity, and policy. Netvigator [17] is a network prox-

imity and latency estimation tool using landmark hosts and

intermediate routers. Zhang et al. analyze and characterize

Internet delays using these tools [18].

The measured latencies are used for server selection in

routing, content distribution networks, and cloud computing.

DONAR [3] is a distributed system that determines the

best replica server considering both client and server loads,

cost, and locations. Related to DONAR, several studies were

conducted for content retrieval and server selection with the

cloud. Khosla et al. investigate the performance degradation

problem in cloud-based DNS [19]. Xu and Li propose

a practical framework for cloud datacenter selection with

special attention to fairness [20], and study the problem of

joint request mapping and response routing [21]. CloudGPS

[22] presents a server selection algorithm in the cloud that

enables ISPs to configure a global performance function for

low latency or cost in a scalable and ISP-friendly way. Given

the high variability in performance of cloud services, Dealer

[23] seeks to minimize response time for geo-distributed,

interactive and multi-tier applications.

Recent advances in mobile, cloud and networking tech-

nologies enable mobile devices to offload heavy computation

seamlessly, transparently, and cost-effectively to the cloud, in

which rich resources are available [4], [6], [5], [24]. These

mobile-cloud computing architectures have a profiler that

provides estimated duration times of input executables based

on measurements for devices, programs, or networks. Our

results suggest that cloudlets can be used to support mobile-

cloud computing by enabling network latency profiling in

conjunction with intelligent server selection algorithms to

connect to the best-performing server(s) in the cloud. Alter-

natively, the mobile, which cannot easily profile the network

latencies, can achieve good latency performance through the

use of redundancy as discussed in [25].

V. CONCLUSIONS AND FUTURE WORK

We have studied latency profiling for server selection

using network measurements in distributed and cloud com-

puting. The objective of this study is to understand the

behaviors of latencies as a client has options to choose

among different groups of servers, and to design efficient and

practical algorithms that select servers with minimal latency.

Using models based on measured latencies to servers, we

have tested the random, fixed and greedy data partitioning

and server selection algorithms. Our results indicate that

latencies can be reduced using the fixed algorithm compared

to the random strategy, and can be nearly optimized as data

are partitioned and sent to servers greedily. Moreover, the

random algorithm can reduce latency significantly if data

are sent redundantly. This implies the potential of dynamic

profiling in which the greedy strategy is used for long-lived

regular traffic while the random strategy with redundancy is

used for short-lived traffic.

We have developed a mobile-cloud architecture that pro-

vides a face recognition platform on a mobile device. We

will extend this architecture to incorporate our dynamic pro-

filing and redundancy ideas and results. Highly interactive

applications including face recognition in the distributed

setting would benefit significantly from such profiling and

redundancy. We are also considering an intermediate device

called a cloudlet for accelerating the execution of the face

recognition application. The computation for profiling and

redundancy can be performed at the cloudlet for faster

processing.
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