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Abstract—The following decade will witness a surge in remote health-monitoring systems that are based on body-worn monitoring

devices. These Medical Cyber Physical Systems (MCPS) will be capable of transmitting the acquired data to a private or public cloud

for storage and processing. Machine learning algorithms running in the cloud and processing this data can provide decision support to

healthcare professionals. There is no doubt that the security and privacy of the medical data is one of the most important concerns in

designing an MCPS. In this paper, we depict the general architecture of an MCPS consisting of four layers: data acquisition, data

aggregation, cloud processing, and action. Due to the differences in hardware and communication capabilities of each layer, different

encryption schemes must be used to guarantee data privacy within that layer. We survey conventional and emerging encryption

schemes based on their ability to provide secure storage, data sharing, and secure computation. Our detailed experimental evaluation

of each scheme shows that while the emerging encryption schemes enable exciting new features such as secure sharing and secure

computation, they introduce several orders-of-magnitude computational and storage overhead. We conclude our paper by outlining

future research directions to improve the usability of the emerging encryption schemes in an MCPS.

Index Terms—Medical cyber physical systems, medical data privacy, homomorphic encryption, attribute-based encryption

Ç

1 INTRODUCTION

THE coming decade will witness an explosive growth in
systems that monitor a patient through body-worn

inexpensive personal monitoring devices that record multi-
ple physiological signals, such as ECG and heart rate [1],
[2], or more sophisticated devices that measure physiologi-
cal markers such as body temperature, skin resistance, gait,
posture, and EMG [3], [4]. The emergence of these devices
combined with user awareness for their importance in per-
sonal health monitoring even emerged trends to make such
devices fashionable [5].

The unstoppable momentum in the development of such
devices enabled the construction of complete patient health
monitoring systems that can be clinically used [6], [7], [8].
The medical data that is acquired from patients by a distrib-
uted sensor network can be transmitted to private [9], [10]
or public [11], [12], [13] cloud services. A set of statistical
inference algorithms running in the cloud can determine
the correlation of the patient data to known disease states.
These correlations could be fed back to healthcare professio-
nals as a means to provide decision support. Such systems,
termed Medical Cyber-Physical Systems (MCPS), signal the
beginning of a new Digital-Health (D-Health) era and a dis-
ruptive technology in human history.

EstablishingMCPSswill require overcoming technological
hurdles in building the architectural components of theMCPS
such as sensors, cloud computing architectures, and fast

Internet and cellular phone connections. Additionally, assur-
ing the privacy of the personal health information during the
transmission from the sensory networks to the cloud and
from the cloud to doctors’ mobile devices will necessitate the
design of a sophisticated cryptographic architecture for an
MCPS.While this design implies only secure storage using con-
ventional encryption schemes, emerging encryption schemes
provide options for secure data sharing and secure computation.

The contribution of this paper is two-fold: First, we sur-
vey conventional and emerging encryption schemes that
can be used in designing an MCPS. Second, we provide an
extensive evaluation of these schemes and compare them
based on their ability to provide secure storage, secure data
sharing, and secure computation.

The remainder of this paper is organized as follows:
Section 2 provides a description of the architecture of an
MCPS. Section 3 introduces the adversary models for
designing a secure MCPS, followed by Section 4, which
details the privacy requirements of each MCPS architectural
component. Cryptographic methodologies, used in MCPSs,
are detailed in the following three sections: Section 5 pro-
vides details for the conventional AES and ECC encryption.
Sections 6 and 7 detail the emerging attribute-based and
homomorphic encryption (HE) mechanisms, respectively.
Section 8 presents an implementation case study of a medi-
cal application using homomorphic encryption. Section 9
details the setup for experiments and a quantitative and
qualitative evaluation of all of these cryptosystems are pro-
vided in Section 10. Conclusions are drawn pertaining to
the suitability of each cryptosystem for different MCPS
architectural components in Section 11.

2 MEDICAL CYBER PHYSICAL SYSTEMS

A typical MCPS architecture consists of four different
layers: i) data acquisition layer, ii) data pre-processing layer,
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iii) cloud processing layer, and iv) action layer. An architec-
tural map of an MCPS is shown in Fig. 1. In this section, the
details of operation and security requirements for each layer
will be introduced.

2.1 Data Acquisition Layer

Data acquisition layer is typically a Body Area Network
(BAN) consisting of wireless wearable sensors [6], [14] for
specific medical applications such as blood pressure and
body temperature monitoring [15], or data storage for on-
demand access by doctors [16]. A BAN facilitates the collec-
tion of patient medical information and forwards this infor-
mation to a nearby computationally-capable device such as
a cloudlet [17]. Battery-operated active sensors in the BAN
use Bluetooth or ZigBee protocols while battery-less passive
sensors use RFID.

2.2 Data Concentration/Aggregation Layer

Due to the low computational power of the sensors that
make up a BAN, an intermediate device, either a cloudlet or
a concentrator is necessary. In [15], sensors transmit the
gathered information to a gateway server (acting as a con-
centrator) through a Bluetooth connection. A concentrator is
the most important building block of an IoT-based architec-
ture [18], since it enables individually-weak devices to have
strong overall functionality by concentrating the data from
each device and sending the aggregated information to the
cloud. A cloudlet is similar in purpose, but is designed to
aggregate data from more powerful devices too, e.g., a
smartphone. Typically a cloudlet is built from a dedicated
computer and has a dedicated Internet connection [19], [20].

2.3 Cloud Processing and Storage Layer

Since accurate diagnosis requires long-term patient health
monitoring information, secure storage is the most important
function of the cloud [21], [22]. Additionally, government
health regulations require the storage of medical records for
an extended amount of time. Many cloud operators store
medical data by signing a Business Associate Agreement
(BAA). Medical institutions run their applications in their
private cloud (i.e., datacenter), therefore using the cloud for
the second important purpose: processing. However, as we
will detail in Section 7, privacy-preserving processing in a
public cloud is only feasible using advanced homomorphic
encryption schemes. Third function of the cloud is data ana-
lytics to facilitate decision support for healthcare professio-
nals [23], [24] by applying statistical inference algorithms to
the acquired data and predicting patient health condition.

These methods have recently received attention in remote
health monitoring systems [25].

2.4 Action Layer

The action layer can provide either “active” or “passive”
action. In active action, an actuator is used to turn the results
of the algorithms that run in the cloud into the activation of
an actuator such as a robotic arm. Examples of this type of
action are robot-assisted surgery [26]. In passive action, no
physical action is actually taken. The outcome of the analyt-
ics or medical application results are given to the requesting
authority to provide decision support. An example of pas-
sive action is the visualization of a patient’s long-term
(� 24-hr) Holter ECG monitoring, allowing the visualization
of 20-30 patients’ monitoring results by a doctor within 10-
20 seconds [27].

3 MCPS ADVERSARY MODELS

An essential part of designing a secure MCPS is determin-
ing system security requirements based on the capabilities
of potential attackers. In this section, we study adversary
models and side channel attacks related to the security vul-
nerabilities of an MCPS.

3.1 Adversary Models

An MCPS must be resilient to attacks on all four of its
layers. An adversary model captures the capabilities of an
attacker. We consider two adversary models [28]: active
(i.e., malicious) and passive (i.e., honest but curious). An active
adversary takes control of the host and can arbitrarily deviate
from a specified protocol in order to steal secret infor-
mation. Alternatively, a passive adversary follows the proto-
cols correctly (honest), but can look at the encrypted data
during the execution of protocols (but curious) to obtain
information.

Data privacy is one of the features that an MCPS must
provide at every level. All of the encryption schemes that
are considered in this paper protect data privacy against an
active adversary. The only exceptions are the case where
there is an attack directly at the crypto-level that “breaks”
the encryption through a brute-force attack. This could
happen if the security parameters of an encryption scheme
are chosen to be weak. Alternatively, a side channel attack
could attempt to steal the secret/private key, as will be
detailed in Section 3.2.

Correctness of the computed results (verification) is
another feature that must be provided for an MCPS that
aims to perform secure (encrypted) computations. As will

Fig. 1. Four layers of a typical Medical Cyber Physical System. Each layer is characterized by different constraints. The communication among the
layers must be protected using different cryptographic standards.
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be detailed in Section 7, secure computation over medical
data in a public cloud can only be achieved using homomor-
phic encryption schemes. However, homomorphic encryp-
tion schemes are malleable by design; an active adversary
can modify the computation result without knowing the
private key. Therefore the correctness of the computations
cannot be guaranteed when an active adversary model is
considered.

To summarize, an MCPS provides only data privacy
against an active adversary, while it can guarantee both
data privacy and correctness against a passive adversary.
The passive adversary model has been widely used for
determining the security requirements of many cloud-
based secure computation systems [29], [30], [31]. We also
assume that an adversary cannot collude with the parties
that hold the secret/private key of the symmetric/public
key encryption schemes, since this type of an attack can-
not be protected against by using any encryption scheme.
We further note that the correctness of the secure compu-
tation can be achieved by using techniques from verifiable
computing [32] or homomorphic signatures [33]. How-
ever, these techniques introduce additional performance
penalties to encryption schemes that are already too slow
to be practical.

3.2 Side Channel Attacks

Although encryption schemes go through rigorous mathe-
matical and theoretical cryptanalysis to provide security and
privacy, the system can still leak information due to the vul-
nerabilities in its software and hardware implementations.
Attacks based on such leaked information are called side chan-
nel attacks. These attacks can be prevented by using leakage
resistant cryptography [34], albeit at the expense of severe
performance penalties thatmake anMCPS impractical.

Side channel attacks concentrate on obtaining the secret/
private key by using every layer of the system, rather than
just the data that is being processed by the system. While
many types of side channel attacks exist for nearly every
encryption scheme [35], we restrict our focus on attacks on
AES and Elliptic Curve Cryptography (ECC), which are the
most common encryption schemes for building an MCPS.
We will detail AES and ECC in Section 5.

Timing attacks are based on observing the execution time
of the operations performed during encryption/decryption
to reveal the secret key. Depending on the implementation,
execution time of the operations can vary based on the bits
of the secret key [36]. Timing attacks on AES usually
observe cache memory access patterns during the execution
of AES operations. Timing attacks on ECC target the scalar
multiplication operation, and they can be prevented by
using Montgomery’s multiplication method [37], which per-
forms the multiplication independent from the bits of the
private key [38].

Power analysis attacks are based on observing the power
consumption during the execution of cryptographic opera-
tions [39]. Power consumption can vary based on the bit val-
ues of the secret/private key, allowing an attack by either
observing the power usage of devices (simple power analy-
sis) or using statistical methods to capture information in
the presence of measurement errors and noise (differential
power analysis). Differential power analysis attacks are

more powerful due to their noise tolerance in power meas-
urements. Power analysis attacks on AES can be prevented
by using randomized masks for AES operations [40] that
scramble the relationship between the AES secret key and
the intermediate values generated during each AES round.
Power analysis based attacks on ECC-based encryption
schemes can be mitigated by methods proposed in [41]
that randomize intermediate computations to avoid infor-
mation leakage about the private key from power consump-
tion patterns.

Fault-based attacks are based on introducing faults to bits
during the execution of cryptographic operations [42], [43],
by applying a power glitch, magnetic field, light source, etc.
This would cause errors in operations that can reveal the
secret/private key to the attacker. In [44], the authors pro-
pose a method to thwart fault based attacks against AES by
verifying the correctness of the encryption. The message is
first encrypted and compared against the decrypted cipher-
text to determine whether a fault was introduced during the
encryption. Correctness of the decryption can be verified in
a similar fashion by reversing the operations. Their method
introduces significant hardware overhead. In [45], the
authors propose a novel technique to detect faults based on
Error Detecting Codes (EDC), which reduce the hardware
overhead and latency. For ECC-based encryption schemes,
fault-based attacks are focused on introducing error during
the decryption to produce a point that is not on the elliptic
curve [46]. These attacks can be mitigated by checking if the
calculated point is on the elliptic curve and discarding
incorrect computations. Implementations of various crypto-
graphic architectures against fault-based attacks are pro-
posed in [47], [48].

Cache attacks are based on measuring the cache access
latency of the cryptographic instructions to recover the
cache lines that store the secret key [49], [50]. The informa-
tion about memory access patterns can be measured by run-
ning a malicious program in parallel with other processes.
Cache attacks on AES implementations generally target the
lookup tables that store S-Boxes [51]. Intel AES-NI instruc-
tions [52] can thwart cache attacks by making the cache
access latency independent of the data and performing
operations on the hardware without using lookup tables.
Cache attacks on ECC exploit the precomputed values that
are used during point addition in OpenSSL implementa-
tions [53]. ECC-based cache attacks can be prevented by
i) using blinding scalar for point multiplication, ii) random-
izing addition and multiplication chains, and iii) balancing
number of additions and multiplications [53].

4 DATA PRIVACY IN AN MCPS

According to the Health Insurance Portability and Account-
ability Act (HIPAA) [54], data privacy must be protected
within every layer of an MCPS. Individual encryption
schemes ensure that medical data is accessed by only the
authorized parties, thereby providing data privacy on iso-
lated data blocks. However, ensuring system-level security
requires designing a crypto-architecture for the MCPS as a
whole. In this section, system-level view of data privacy is
studied the the details of individual encryption schemes are
provided in Sections 5, 6 and 7.
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4.1 Key Management Techniques

Regardless of the type of encryption scheme, communicating
partiesmust agree on key(s) to encrypt/decryptmessages. In
the public-key cryptography, sender uses the public key of
the receiver to encrypt messages and the receiver uses his/her
private key to decrypt encryptedmessages. Every user in the
systemhas a dedicated public and private key pair generated
by a Public-Key Infrastructure (PKI). PKI is a trusted third
party such as a certificate authority that authenticates the
key pairs by binding them to the identity of users. For sym-
metric-key cryptography, both sender and receivermust share
the same secret key to encrypt/decrypt messages. Both par-
ties perform a key-exchange protocol, such as Diffie-Hell-
man key exchange, to generate the secret key. Once both
parties share the same key, they can use symmetric-key cryp-
tography to securely transfer the data.

4.2 Data Acquisition Privacy

The acquisition layer in Fig. 1 is composed of BAN sensor
devices with limited computational capability and battery
life [55]. Therefore, encryption schemes used to protect
the communication within BAN sensors and BAN-to-
cloudlet communications must not be computationally
intensive. One possible option is to use the Zigbee proto-
col that is based on the AES encryption scheme and can
easily be implemented using low cost microcontroller-
based devices. Communicating devices have to agree on a
secret-key before using AES encryption by using generic
key exchange algorithm such as Diffie-Hellman (DH) [56]
or its elliptic curve counterpart Elliptic Curve Diffie-Hell-
man (ECDH).

Communication of devices can be also secured by using
biomedical signals. In [57], authors propose a low-power
bio-identification mechanism using the interpulse interval
(IPI) to secure the communication between BAN sensors.
IPI is the distance between two R peaks and is available
to all sensors. In [58], authors use physiological signals to
agree on a secret key of the symmetric key cryptosystem
for pairwise BAN sensor communication. Compared to
ECDH, [58] features authentication capability, requires
fewer clock cycles to execute, but has a larger memory
footprint. Therefore, [58] offers a viable option for key
agreement in BANs.

4.3 Data Sharing Privacy

In many real-world healthcare scenarios more than one
party may need to access the data such as i) the patient
being monitored, ii) his/her doctor, and iii) in an emer-
gency, other health care personnel. In these cases, conven-
tional encryption schemes cannot handle the sharing of the
secret key among multiple parties. Encrypting the data
using each party’s public key is not a solution either since it
creates duplicates of the data, which must be managed sep-
arately. Attribute based encryption (ABE) [59], [60], [61]
allows secure sharing of data among multiple parties. ABE
is a public-key crypto-system that provides fine-grained
access control similar to Role Based Access Control [62].
Only the users whose credentials/attributes satisfy the rules
determined by the access policy can retrieve the data.
In [63], authors propose methods to secure data storage in
BANs and distribute data access control. They use the ABE

scheme [60] to control who accesses the patient data. ABE
encryption is applied to data on a nearby local server and
the communication between the BAN and the local server is
secured using symmetric key encryption.

4.4 Data Computation Privacy

Conventional encryption schemes do not allow computa-
tions on encrypted data without first decrypting it. Decryp-
tion necessitates a trusted storage such as health-care
organizations’ datacenter or a private cloud. This eliminates
the option to run analytics, monitoring algorithms (e.g.,
ECG monitoring [64]) or other algorithms in a public cloud
to reduce health care costs. Fully Homomorphic Encryption
(FHE) [65] allows computation on encrypted data. By using
FHE, the data can be stored in untrusted storage environ-
ments, such as public clouds [66], and computations on the
encrypted data can be performed without violating the pri-
vacy of the data. In [67], a privacy-preserving medical cloud
computing system is proposed based on FHE. Authors
show that simple operations, such as the computation of
average, minimum and maximum heart rate can be imple-
mented at a reasonable cost despite the complexity of FHE.

5 DATA PRIVACY USING CONVENTIONAL

ENCRYPTION SCHEMES

In this section, we study the conventional AES and ECC
encryption schemes, which can only guarantee data pri-
vacy. However, they are widely used due to their substan-
tially lower resource requirements as compared to
emerging schemes.

5.1 Advanced Encryption Standard (AES)

AES [51] is one of the most widely used symmetric key
encryption algorithms and is accepted as an industry and a
government applications standard. AES is optimized for
speed, low memory footprint and energy efficiency. Its low
resource intensity allows AES to run on a wide range of
hardware platforms ranging from 8-bit microcontrollers to
high-end desktops and servers.

5.1.1 AES Encryption and Decryption

AES is a block-cipher and operates on 128-bit blocks of
data in multiple rounds (nr). AES is specified for three
different key sizes: AES-128 (128-bit key and nr ¼ 10),
AES-192 (192-bit key and nr ¼ 12) and AES-256 (256-bit
key and nr ¼ 14). AES represents both the plaintext (i.e.,
original data) and the ciphertext (encrypted data) using
128-bit blocks that are arranged as 4�4 matrices, defined
as AES states. Each matrix entry is 1B = 8-bits and repre-
sents an element in the finite field F28 using the reduc-

tion polynomial GðxÞ ¼ x8 þ x4 þ x3 þ xþ 1.
AES Encryption (Fig. 2) involves XOR, data shuffling, or

replacement-by-lookup operations, making encryption very
fast and power-efficient. AES Decryption uses the same
operations in reverse order. AES encryption/decryption
involves these four operations:

KeyExpansion generates a total of nrþ1 round keys from
the AES secret key iteratively for nr rounds of AES imple-
mentation. Each round key is 1 word = 32 b.
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AddKey applies XOR operation to AES state with the
roundkeys that are computed during KeyExpansion step.
The secret key is used only during this step.

SubBytes applies a non-linear transform of AES states and
transform each byte of the state using S-boxes.

ShiftRows cyclic left shifts the state matrix rows.
MixColumns applies transformation on the columns of

the AES state based on operations in F28 and can be repre-
sented as a matrix multiplication.

When a plaintext is longer than the AES block size, AES
encryption/decryption can be used by choosing one of
these modes of operation: Electronic Code Book (ECB),
Ciphertext Chain Blocking (CBC), and Counter (CTR). A
recent proposal is Galois Counter Mode (GCM) [68], which
provides authentication as well as confidentiality. GCM
combines the speed of CTR mode with hashing to provide
an authenticated encryption mechanism. Confidentiality of
the messages is protected using AES and integrity of the
communication is provided using a universal hash function.

5.1.2 AES Implementations

CPU instruction set implementations of AES, such as the Intel
AES-NI [52] and ARM v8 Cryptography extensions [69],
accelerate AES encryption/decryption and generally pro-
vide countermeasures against side channel attacks such as
timing and cache-based attacks.

Embedded hardware implementations of AES encryption/
decryption utilize restricted resources available in hardware
platforms such as ASIC and FPGA. Efficient hardware
implementations focus on the SubBytes step, which is the
only non-linear step in AES. This step involves computing
inverse of an element in F28 , which is the most compute-
intensive operation, followed by an affine transformation.
Usually SubBytes can be computed by storing all possible
combinations in an Substitution Box (S-Box) and use the S-
Box as a lookup table. However, this requires additional
hardware resources.

Several proposed optimizations [70], [71], [72] improve S-
Box computation functionality by representing the AES
finite field F28 as a composite field such as Fð24Þ2 or Fðð22Þ2Þ2
(i.e., tower field). While representing operations in the com-
posite field requires additional back-and-forth conversions
to F28 , overall computation time is reduced due to the sim-
plified intermediate operations.

Choosing a basis for the tower field is also crucial for the
implementation, and three different choices exist for selecting
a basis: polynomial [70], normal [71], and mixed [72]. While

normal basis provides efficient inversion operation, polyno-
mial basis provides better multiplication performance.
In [72], the authors propose using both normals basis as a
mixture, and show that the critical path delay can be
improved compared to using polynomial-only or normal-
only basis. Finite fields can have many irreducible polyno-
mials; 432 possible options are considered in [71] up to 20 per-
cent reduction in terms of gates is reported by picking the
optimum choice. Efficiency of AES implementation in the
tower field also depends on choosing the coefficients of irre-
ducible polynomials. In [73], 16 possible choices are studied
for choosing these coefficients and a reduction in gate size
and critical path delay has been reported.

Implementations of AES-GCM are provided using dedi-
cated hardware [74] or by using the instruction set support
within Intel CPUs [75].

5.2 Elliptic Curve Cryptography

Elliptic Curve Cryptography emerged as a public key
cryptosystem that achieves the same security level of RSA
using a shorter key size [76], [77]. Fig. 3 depicts an exam-
ple elliptic curve. Security of ECC is based on hardness of
the elliptic curve discrete logarithm problem (ECDLP).
ECDLP is defined as finding an integer k for given two
points on the elliptic curve G and k�G. The fastest algo-
rithm to solve the ECDLP [78] requires approximately

ffiffiffi
p

p
steps for an elliptic curve on prime field Fp. Choosing a
160-bit prime p in ECC achieves the same security level as
a 1;024-bit RSA.

Reduced storage and bandwidth requirements combined
with efficient arithmetic operations make ECC suitable for
resource-limited devices in an MCPS acquisition layer (see
Fig. 1). ECC allows more sophisticated crypto-operations
such as key sharing and encryption with data integrity,
however, does not provide a mechanism for encrypted com-
putation. Elliptic Curve Arithmetic is based on generalized
discrete logarithm over elliptic curves. Elliptic curves over
real numbers are defined as the set of points (x; y) that satis-
fying

y2 ¼ x3 þ a � xþ b;

where a and b are chosen such that 4 � a3 þ 27 � b2 6¼ 0. Points
on the elliptic curve together with a special point O (called

Fig. 2. AES encryption algorithm. Decryption is achieved by reversing
operations.

Fig. 3. An Elliptic Curve and the point addition and point doubling opera-
tions on this curve.
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point at infinity, which is not on the curve), form a group.
Arithmetic operations over the elliptic curves (graphically
described in Fig. 3) are:

Point addition adds two points P ðxp; ypÞ and Qðxq; yqÞ of
the group on the elliptic curve to find point Rðxr; yrÞ, which
is also on the elliptic curve.

Point doubling computes the double of point P ðxp; ypÞ
as 2P .

Point inversion calculates the inverse of point P ðxp; ypÞ as
�P ðxp;�ypÞ such that P þ ð�P Þ ¼ O.

Scalar multiplication of a point P by a scalar k is
k�G¼GþGþGþ � � � þG|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k

, which is computed by repeated

point additions, similar to the repeated multiplications to
compute modular exponentiation in RSA.

5.3 EC Diffie-Hellman Key Exchange

ECC is widely used for key exchange, similar to the Diffie-
Hellman (DH) key-exchange protocol [56]. Regular DH can
be converted to its ECC counterpart by replacing modular
multiplications with point additions and modular exponen-
tiations with repeated point additions. A shared session key
between two parties (A and B) is established using ECCDH
as follows: First, both parties agree on an elliptic curve on
prime field Fp and a point P on the curve. Then, A and B
select an integer kA and kB as their private key. Based on
their private keys, they compute a point QA;QB on the
curve by performing repeated additions. They exchange
their computations without being able to discover each oth-
ers’ private key due to the hardness of the ECDLP problem.
Finally, each party performs another point multiplication
with his/her private key to find a common point QAB on
the elliptic curve, which can be used as the shared secret
key for a symmetric cipher.

5.4 EC Integrated Encryption Scheme (ECIES)

One of the standard ways to use ECC for public-key cryp-
tography is the ECIES method [79], as shown in Fig. 4.
ECIES provides data confidentiality by using a symmetric-
key encryption such as AES. Integrity of the data is pro-
tected by message authentication code (MAC). Elliptic
curves are employed to generate an encryption key (kENC)
and a MAC key (kMAC).

In ECIES, the sender generates a session key pair that
will be used only for the current encryption. Session key is
generated by choosing an element u 2 Z�

p and computing
elliptic curve point U ¼ u �G. Based on the session key, a
shared secret value is generated by using the receiver’s pub-
lic key as S ¼ u �QB ¼ u � kb �G. A standard Key Derivation
Function (KDF) [80] inputs the shared secret value to gener-
ate two keys: kENC and kMAC . Finally, message m is

encrypted as C ¼ ENCðm; kENCÞ using a symmetric key
encryption and the key kENC . The tag of the ciphertext C is
tag ¼ HMACðC; kMACÞ, which is calculated using a keyed-
hash message authentication code (HMAC). Finally the
sender transfers C, tag and U (session key) to the receiver.

In ECIES decryption (Fig. 5), the receiver generates a
shared secret S ¼ U � kb ¼ u � kb �G and kENC and kMAC keys
from S using KDF. Authenticity of C is verified by compar-
ing the sender tag to tagB ¼ HMACðC; kMACÞ. If both of the
tags match, the message is retrieved as m ¼ DECðC; kENCÞ,
otherwise C is discarded.

6 SECURE DATA SHARING USING ATTRIBUTE

BASED ENCRYPTION (ABE)

In conventional public-key cryptography [76], [81], a user
has two keys: The public key is shared with anyone that
wants to send encrypted data to the user, while the private
key is used to decrypt the received messages and is not
shared with anyone. In many real-world healthcare sce-
narios more than one party may need to access the data,
requiring duplicates of data by encrypting it using each
party’s public key. Attribute-based encryption [59], [60] is
a public-key encryption that enables secure data sharing
by multiple users. The data is encrypted using an access
policy based on credentials (i.e., attributes). Only the users
whose credentials satisfy the access policy can access
data. The attributes can be the profession (e.g., Doctor,
Nurse) or the department (e.g., Cardiology, Emergency)
of a user. An access policy P can be defined as conjunc-
tions, disjunctions and (k, n)-threshold gates of attributes
such as

ðDoctor ^ CardiologyÞ _ ðNurse _ EmergencyÞ

which grants access to a Doctor from Cardiology OR a nurse
OR an Emergency personnel. We provide details for two
existing types of ABE: Ciphertext-Policy ABE (CP-ABE) and
Key-Policy ABE (KP-ABE).

6.1 Ciphertext-Policy ABE (CP-ABE)

CP-ABE scheme provides a fine-grained access control to
encrypted data similar to Role-Based Access control
schemes [62]. Private key of a user is associated with
user credentials. Ciphertexts specify an access policy and
only users whose credentials satisfy the policy require-
ments can decrypt them. The data can be encrypted
without the knowledge of users beforehand and the pol-
icy can be specified afterwards, enabling the future re-
assignment of keys. CP-ABE scheme consists of four
algorithms [61]:

Fig. 4. ECIES encryption pseudo-code.
Fig. 5. ECIES decryption pseudo-code.
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Setup. Generates a master key (kM ) and public parame-
ters (Params). A bilinear group G0 of order prime p and a
generator g is chosen. Two random exponents a;b 2 Zp are
selected to compute the parameters:

h ¼ gb; f ¼ g1=b; eðg; gÞa;
where eðg; gÞa is the bilinear mapping G0 ! GT .

Public parameters are then published as Params

¼ ðG0; g; h; f; eðg; gÞaÞ and kM is selected as kM ¼ ðb; gaÞ.
Key generation. Takes kM as input and a set of attributes S

specific to a user and generates a private key (kPRIV ) by

choosing a random r 2 Zp and computing D ¼ gðaþrÞ=b. For
each attribute sj 2 S, a random rj 2 Zp is selected to com-
pute following:

Dj ¼ gr �HðsjÞrj ; ~Dj ¼ grj ;

where HðsjÞ is the hash of sj that maps string sj to a group
element in G0. Private key kPRIV is published as

kPRIV ¼ ðD ¼ gðaþrÞ; 8sj 2 S : Dj; ~DjÞ:

Encryption. Takes Params, an access policy represented
as a tree T defined over all possible attributes and message
M to generate ciphertext C.

Decryption. Inputs Params, kPRIV , and ciphertext C to
generateM. Decryption will be successful if user’s kPRIV sat-
isfies the access structure embedded in C.

6.2 Key-Policy ABE (KP-ABE)

In KP-ABE [59], [60] the access policy is encoded into the
users’ private key and a ciphertext is labeled with a set of
attributes. KP-ABE schemes place the access policy on the
private key of the users and the attributes are associatedwith
the ciphertexts. A recently proposedABE scheme [82], which
is based on KP-ABE, is proposed as a lightweight ABE solu-
tion to provide security for resource constrained devices
such as Internet-of-Things (IoTs). This scheme is based on
ECC instead of bilinear pairings. Bilinear pairings are very
expensive for resource constrained devices and lightweight
ABE scheme improves both communication and computa-
tion overhead byusing ECC. Specifically, [82] uses ECIES [79]
to provide both data confidentiality and data integrity. This
scheme is composed of the following four steps:

Setup. In this step, a central attribute authority who is
responsible for key generation, generates public parameters
(Params) and master key (kM ). The setup is based on the
the universal set of attributes U . For each attribute i in U , a
point on elliptic curve Pi is generated by choosing a random

ri 2 Z�
q and then computing Pi ¼ ri �G. Then a random

r 2 Z�
q is chosen as kM and master public key is set to

PK ¼ r �G. Finally Params is published as the set
Params ¼ fPK;P1; P2; . . . ; PjU jg.

Key generation. Takes kM and access policy P and gener-
ates decryption key (kDEC).

Encryption. Takes input attribute set S, message M and
public key parameters Params to generate the correspond-
ing ciphertext. For each attribute i in S, Ci ¼ ri � Pi is com-
puted by choosing random ri 2 Z�

q . Encryption of the M is

done by using secret key for the symmetric-key cryptogra-
phy generated by ECIES to compute C. Finally the MAC of
the message is computed as MACM ¼ HMACðM; kMACÞ,
where kMAC is the y-coordinate of the elliptic curve
Q ¼ r � PK. Ciphertext is published as the set fS;C;MACM;
C1; C2; . . .CjSjg

Decryption. Takes ciphertext set fS;C;MACM;C1;
C2; . . .CjSjg encrypted using the attribute set S and uses

decryption key kDEC for the policy P to decrypt messageM.

7 SECURE COMPUTATION USING HOMOMORPHIC

ENCRYPTION

Conventional encryption schemes are extremely light-
weight, but do not allow computations on encrypted data.
Homomorphic encryption schemes enable computation of
meaningful operations on encrypted data without obse-
rving the actual data. By using HE, both storage and com-
putation can be outsourced to public cloud operators,
eliminating data privacy concerns in case of medical cloud
computing. An HE scheme transforms into a Fully Homo-
morphic Encryption scheme if it can evaluate arbitrary func-
tions. To evaluate arbitrary functions over ciphertexts,
FHE schemes need to perform both homomorphic addit-
ion and homomorphic multiplication, which translates to
addition and multiplication of the plaintext messages,
respectively [83].

First plausible FHE scheme was proposed by Gentry in
2009. Schemes proposed before [84], [85], [86], [87] were par-
tially homomorphic and they could perform only homomor-
phic addition or homomorphic multiplication. Fig. 6 shows
the difference between the partially homomorphic Paillier
scheme [86] and an FHE scheme. The Paillier scheme (left) is
only additively-homomorphic, thereby allowing only addi-
tion operations on ciphertexts. FHE (right) allows both homo-
morphic additions and multiplications, thus permitting
arbitrarily complex computations. Currently, FHE schemes
are not practical since they require heavy computational and
storage resources [88]. Improving the performance of FHE

Fig. 6. Paillier and FHE homomorphic encryption schemes enable encrypted (secure) computation.
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remains an active research area. In this section, we will
provide the details of Paillier and a recent FHE impleme-
ntation called the Brakerski-Gentry-Vaikuntanathan (BGV)
scheme [89].

7.1 Paillier Encryption Scheme

Paillier Encryption scheme [86] is a public-key cryptosytem
that is additively-homomorphic. Operations on ciphertexts
encrypted with Paillier scheme result in additions of mes-
sages without observing them. Due to its additive homo-
morphism, Paillier scheme is widely used in many practical
applications [90]. Security of the Paillier scheme is based on
difficulty of finding the nth residue of composite numbers:

Given z and n2, where n ¼ p � q is a composite number, it is
hard to find y that observes the following relationship

z ¼ yn modn2:

Paillier encryption scheme consists of five algorithms:
Setup. Selects two large primes p and q randomly and

independently to generate composite number n ¼ p � q.
Key generation. Calculates � ¼ lcmðp� 1; q � 1Þ which is

least common multiplier of p� 1 and q � 1. Random
g 2 Z�

n2
, which is a generator for the Z�

n2
, is selected and its

multiplicative inversemodn is calculated as

m ¼ ðLðg� modn2ÞÞ�1 modn;

where L is the function that computes LðkÞ ¼ ðk� 1Þ=n.
Finally, public key is selected as kPUB ¼ ðn; gÞ and private is
selected as kPRIV ¼ ð�;mÞ.

Encryption. Encrypts the message m with random r 2 Z�
n2

to ciphertext c using kPUB as follows:

c ¼ gm � rn modn2:

Decryption. Decrypts the ciphertext c to the message m
using kPRIV as follows

m ¼ Lðc� modn2Þ � m modn:

Homomorphic addition. Addition of the plaintexts m1 and
m2 (m1 þm2 modn) corresponds to the multiplication of
their ciphertexts (c1 and c2) as detailed below:

c1 ¼ gm1 � rn1 modn2

c2 ¼ gm2 � rn2 modn2

c3 ¼ c1 � c2 ¼ gðm1þm2 modnÞ � ðr1 � r2Þn modn2:

7.2 BGV Scheme

Several FHE implementations have been proposed to
date [89], [91], [92], [93], [94] to improve performance of Gen-
try’s initial FHE scheme [65]. Currently, the BGV scheme [89]
is one of the most promising candidates for a practical FHE
scheme, incorporating many optimizations. The expensive
bootstrapping operation [65] is avoided by a variant of FHE
called leveled FHE that employs a better noise management
technique called modulus-switching. Ciphertexts encrypt mul-
tiple messages to reduce storage overhead and execute homo-
morphic operations in parallel similar to SIMD-fashion.

7.2.1 Leveled FHE

Leveled FHE scheme allows performing cascaded homo-
morphic multiplications (�h) without causing decryption
errors. Right after encryption, each ciphertext is set to a level
L and L is reduced by one after each �h until it reaches
L ¼ 1, at which point further �h operations can cause
decryption errors. While leveled FHE provides better per-
formance, it requires the computation of L beforehand [95].

7.2.2 Message Space

In the BGV scheme, plaintexts are represented as an element
in polynomial ring GF ðpdÞ, where p is a prime number that
defines the range of polynomial coefficients and d is the
degree of the polynomials. Homomorphic addition and
multiplication of ciphertexts correspond to addition and

multiplication of plaintexts in the GF ðpdÞ, respectively.
When GF ð2Þ is selected as the polynomial ring (i.e.,
p ¼ 2; d ¼ 1), the messages are represented as bits; in
GF ð2Þ, homomorphic addition and multiplication of cipher-
texts translate to XOR, AND operations on the plaintexts,
respectively, enabling the computation of arbitrary func-
tions by representing them as a binary circuit using a combi-
nation of XOR, AND gates.

7.2.3 Message Packing

Representing plaintexts as polynomial rings in GF ðpdÞ
allows using Chinese Remainder Theorem to partition
plaintexts into ‘ independent “slots” [96]. Multiple mes-
sages can be packed into the plaintext by assigning a mes-
sage to each plaintext slot. For GF ð2Þ, each slot represents
single bit and messages can be packed by concatenating
their bitwise representation.

7.2.4 SIMD Operations

Packing enables the SIMD execution of the same operation
in parallel for ‘-slots. BGV offers SIMD execution of homo-
morphic operations for performance improvement. We use
four orthogonal operations available in BGV:

Homomorphic addition (þh). Corresponds to a slot-wise
XOR of plaintexts in GF ð2Þ. þh does not affect the level L of
the BGV scheme.

Homomorphic multiplication (�h). Corresponds to a slot-
wise AND operation of plaintexts in GF ð2Þ. �h operation
reduces the level L of the ciphertext by one. Therefore, the
depth of multiplications will determine the required level of
the BGV scheme.

Rotate (> > >h, < < <h). Provides rotation of slots sim-
ilar to a barrel shifter and slots will wrap around based on
the rotation direction, thereby potentially garbling the data
contained in the neighboring slots. This will be corrected
using Select operations.

Select (selmask). Chooses between the slots of two plain-
texts based on an unencrypted selection mask vector. Select
operation can be used to mask out the bits that are diffused
from other messages after a Rotate.

8 SECURE COMPUTATION CASE STUDY

In this section, we provide a secure computation implemen-
tation case study for a simple medical application. Compu-
tations in this application are performed on encrypted
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medical data in a public cloud using the Paillier and BGV
homomorphic encryption schemes.

8.1 Medical Application

Our target MCPS is a remote patient health monitoring sys-
tem [67] that transmits patient ECG signals from the patient’s
house (Layer 1 in Fig. 1) into the cloud (Layer 3). Patientmed-
ical data is assumed to be encrypted using one of the homo-
morphic encryption schemes to provide data privacy during
transmission. Since both of these HE schemes are very
resource-intensive, as discussed in Section 7, the intermedi-
ate pre-processing layer (Layer 2) is assumed to aid the HE
computationally. From the encrypted ECG recordings, we
will provide certain statistics and detection results to the doc-
tor (Layer 4) as our case study application.

The statistics we will provide are the average heart rate
of a patient. The detection results we will provide are for
the “detection of the long-QT syndrome,” which is a cardiac
condition that can cause fatalities [7], [67]. Quantitatively,
the goal of this application is to continuously monitor the
“QTc” metric of a patient’s heartbeats and alert the doctor
when QTc exceeds a clinical threshold. Typically, QTc is
between 300-600 ms and QTc > 500 ms is considered to be
too long (i.e., long QT syndrome). The QTc metric is defined
as the corrected QT, which is calculated from the QT and RR
intervals in an ECG recording. One of the most common
methods in computing QTc from QT and RR is to use

Bazett’s formula [97] : QTc ¼ QTffiffiffiffiffiffi
RR

p .

8.2 Computations Using Paillier

Paillier scheme is an additive homomorphic encryption,
therefore we will use Paillier for only the average heart rate
computation. Calculating the average heart rate using Pail-
lier involves accumulating the encrypted messages by using
its additive homomorphic property. We note that to com-
pute the average, the accumulated value needs to be
divided by number of ECG samples. However, this division
will be difficult to implement using Paillier. Therefore, we
will return two ciphertexts: 1) accumulated sum and
2) number of ECG samples; the receiver can decrypt both
ciphertexts and compute the actual average. Accumulating
N ciphertexts (ci) using Paillier is performed as follows:

csum ¼
Yi¼N

i¼0

ci ¼
Yi¼N

i¼0

gmi � rni csum

¼ ðg
Pi¼N

i¼0
mi modnÞ �

Yi¼N

i¼0

ri

 !n

modn2;

where decryption of csum will yield the sum of N messages

(i.e.,
Pi¼N

i¼0 mi modn).

8.3 Computations Using BGV

We use the leveled BGV scheme to implement LQTS detec-
tion and average heart rate calculation. We determine the
required BGV level L by determining the multiplication-
depth of each computation. As we will show later, the mul-
tiplication depth (the chain of cascaded multiplications)
depends on two variables: bit-length of messages (k) and
number of ciphertexts (N). BGV ciphertexts pack multiple

k-bit messages based on number of plaintext slots, which
varies based on level L.

8.3.1 Long QT Syndrome (LQTS) Detection

LQTS detection requires the following comparison that
we discussed in Section 8.1: QTffiffiffiffiffiffi

RR
p > th, where th is the

500 ms clinical threshold. We rewrite the formula as
QTh > RRh, which avoids the square-root, therefore mak-
ing it more suitable for a BGV implementation. In this re-

arrangement, QTh ¼ QT 2 and RRh ¼ RR � th2, which
reduces the original computation to a single comparison
operation. In other words, the acquisition layer of the

MCPS (Layer 1 in Fig. 1) transmits RRh ¼ RR � th2 and

QTh ¼ QT 2 rather than RR and QT .
To implement homomorphic comparison, we start out by

designing a 4-bit comparator that computes:

X > Y ¼ ðx3y3 � x2y2e3 � x1y1e3e2 � x0y0e3e2e1Þ;
where X and Y are the two 4-bit plaintext values that are
being compared, xi is the value of bit i ofX, yi is the inverse
of bit i of Y , and ei denotes the bitwise equality ðxi ¼¼ yiÞ.
To perform this comparison homomorphically, we will use
the notation XX and YY to denote the ciphertexts that corre-
spond to the plaintexts X and Y , respectively. Homomor-
phic comparison can be performed by evaluating

XX > YY ¼ ðXX �h YY
0 �h MMÞ;

where Y 0Y 0,MM encrypt yi, ð1 e3 e3e2 e3e2e1Þ, respectively.
Fig. 7 presents the generalized k-bit BGV implementation

of this homomorphic comparison. Ciphertexts X and Y

encryptQT 2 andRR � th2, respectively. Comparison requires
log2 kþ 1 depth for ciphertexts packing k-bit messages. Spe-
cifically, log2 k depth is needed to compute maskMM from EE,
followed by single multiplication at the end. Once the com-
parison is finished, results of the comparisons needs to be
aggregated to extend the detection results over multiple
ECG samples. Aggregation can be performed using the OR
operation as

XX _h YY ¼ XX þh YY þh ðXX �h YY Þ;
which has a multiplication depth of 1. To aggregate N com-
parison results, the OR operation can be applied in a binary
tree fashion, requiring dlog2Ne depth. Therefore, the mini-
mum required level for LQTS detection is L > ðlog2k þ
1þ dlog2NeÞ. We note that after each rotation operation
(> > >h), a selection operation is applied to mask bits that
are diffused from neighboring messages.

Fig. 7. BGV implementation of comparison.
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8.3.2 Average Heart Rate (HR)

Average HR is computed by accumulating N ciphertexts
that encrypt multiple k-bit RR interval values. We use a
combination of Carry Save Adder (CSA) and Kogge-Stone
Adder (KSA) to achieve low multiplication-depth. Specifi-
cally, we use CSA adders to compress N ciphertexts down
to two ciphertexts and add remaining ciphertexts using a
KSA adder to compute final sum.

CSA adders operate on three variablesX;Y; Z to generate
carry C ¼ ðXY _XZ _ YZÞ < < 1 and sum S ¼ ðX �
Y � ZÞ. The multiplication depth is determined by the carry
computation and is equal to 3 due to the multiplications and
theORoperation. This depth can be reduced to one by replac-
ing OR with XOR within a CSA adder [67]. CSA adders can
be combined in a tree fashion, to compress N ciphertexts to
two. The depth d of the CSA compression tree is equal to [98]:

log2ðN=2Þ
log2ð3=2Þ
� �

þ 1 	 d:

After compressing N ciphertexts down to two, we use
KSA to add the final two ciphertexts. KSA is a parallel-pre-
fix adder that performs operations in logarithmic-depth.
Fig. 8 shows the implementation of KSA [99] using BGV.
KSA starts by computing Generate (G) and Propagate (P)
values from inputs X and Y , which has a depth of 1. G and
P are updated in log2k stages, where each stage has a depth
of 2 for computing G (1 for �h, 1 for _h). Therefore, KSA
requires depth of 2 log2 kþ 1. Therefore, minimum required
level L for accumulating N ciphertext that packs k-bit mes-

sages is L >
��log2ðN=2Þ

log2ð3=2Þ
�þ 1

	þ ð2 log2 kþ 1Þ.

9 EXPERIMENTAL SETUP

We run our experiments on an Intel Xeon W3565 worksta-
tion (4 cores, 8 threads) with 24 GB RAM, running 64-bit
Ubuntu 15.04. Our results are based on single-threaded exe-
cution times, since most of the existing libraries do not have
an efficient multi-threaded implementations. We use two
open-source libraries:

Charm library [100] provides a high-level framework for
designing cryptosystems. Charm is based on Python, but
compute intensive operations are implemented in C and
has comparable performance to native C implementations.
We use Charm for benchmarking the performance of con-
ventional and ABE encryption schemes.

HElib library [101] is a state-of-the-art FHE library that
implements the BGV scheme [89]. Medical applications pre-
sented in Section 8.3 are implemented by using the primi-
tives in HElib that were listed in Section 7.2.4.

9.1 Data Set

To simulate the acquired patient data in the acquisition
layer of the MCPS (Layer 1 in Fig. 1), we use the THEW
database [102], [103]. THEW is a large corpus of 24-hour
anonymized Holter ECG recordings of real patients, sam-
pled at the rate of 1,000 Hz. The ECG data represents sum-
mary of the each heart beat and provides information of QT
and RR intervals in terms of number of samples acquired
(toc). 24-hour ECG data contains 87,896 samples and each
toc value is represented as 16-bit unsigned integer.

9.2 Security Level of Encryption Schemes

We use 128-bit security for encrypting medical data, which
is the recommended security level for federal government
data by NIST [104]. Table 1 presents the parameter selection
of encryption schemes based on a 128-bit security level. For
BGV, we use the analysis provided in [105] for setting the
security parameters.

9.3 BGV Setup

Runtime and storage requirements of BGV are tightly
related to the BGV level L, which depends on the bit-length
of the messages (k) packed in plaintexts and the number of
ciphertexts required for computation (N) as described in
Section 8.3. We set the level L to the lowest value that allows
the execution of application without causing decryption
errors. We use different k values for LQTS detection and
Average HR. Since LQTS detection performs comparison
operation, we choose k ¼ 16, which is the bit-length of the
toc values in the dataset. For the Average HR, we choose
k ¼ 32 by padding toc values with 0’s to prevent overflow
during accumulation. The number of ciphertexts, required
to encrypt the dataset (N) depends on the number of plain-
text slots (‘). Table 2 presents the ‘ options for different
BGV levels. Each ciphertext can pack b‘=kc messages that
enables SIMD-like parallel homomorphic operations.

10 EVALUATION

In this section, we compare the performance of different
encryption schemes based on their encryption/decryption

Fig. 8. BGV implementation of KSA.

TABLE 1
Parameter Selection for 128-bit Security

ECIES [80] Elliptic curve: Fp with p ¼ 256-bit prime
Symmetric-key encryption: AES-128
MAC: HMAC-SHA1 (160-bit)

CP-ABE [61] Bilinear Pairing: Supersingular curve over Fp,
p ¼ 1; 536-bit prime
Access Policy: 10 attributes

KP-ABE [82] Elliptic curve: Fp with p ¼ 256-bit number p
Symmetric-Key encryption: AES-128
MAC: HMAC-SHA1 (160-bit)
Access Policy: 10 attributes

Paillier [86] p; q ¼ 3;072-bit prime
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times, evaluation times (only for homomorphic schemes)
and ciphertext sizes.

10.1 Comparison of the Encryption Schemes

Table 3 summarizes the secure storage, secure computation
and secure data sharing capabilities of the encryption
schemes presented in Sections 5, 6 and 7. Conventional
encryption schemes cannot provide secure computation,
unless medical data is stored in a trusted private cloud (e.g.,
the data center of the hospital), where decryption is possible
without violating the privacy.

Secure data sharing is limited to the users who have the
secret key of AES and the private key of ECIES. ABE cannot
perform computations on encrypted data, but provides
fine-grained secure data sharing capability in a public cloud
setting.

Homomorphic encryption schemes provide secure com-
putation in a public cloud: Paillier only performs homomor-
phic addition, thereby allowing a limited set of operations,
while BGV enables arbitrary computations, but requires
more resources than Paillier. Both schemes limit data shar-
ing to the users who have the private key.

10.2 Data Privacy in Acquisition, Preprocessing

Acquisition devices, such as the sensors in BANs, have strict
resource requirements. Therefore the communication
between BAN sensors (Layer 1 in Fig. 1) and BAN-to-
Cloudlets (Layer 1 to Layer 2) must be secured using light-
weight encryption schemes. We will use AES-128 for
encrypting medical data captured by the sensors in a BAN.
Symmetric-key of AES-128 is shared using the Elliptic
Curve Diffie-Hellman key-exchange.

ECDH is used once to generate the same secret key
between communicating parties. During the key exchange,
two parties exchange a single ciphertext that represents a
point in the elliptic curve. This ciphertext contains the ðx; yÞ
coordinates, each represented as a p-bit integer in Fp. A
256-bit Fp is selected for the elliptic curve to achieve 128-bit
security. Therefore, the exchanged ciphertext has a size of
2 � ð256=8Þ ¼ 64 B. Both parties need to perform elliptic
curve point multiplications to a generate secret key for AES.

Our Charm library simulation for this shows a total run-
time of 0:23ms.

Once the secret key is generated, medical data can be
securely transferred by using AES-128. Our Charm library
simulation for AES-128 encryption and decryption times
are 0.2 and 0.23 ms, respectively. These are the performance
results for the AES-CBC mode of operation that is used in
the OpenSSL library implementation.

The AES-GCM mode can be used to provide both confi-
dentiality and integrity. AES-GCM mode can be imple-
mented efficiently by using the techniques introduced in
Section 5.1.2. By using the Intel AES-NI instruction set
extensions, the optimized code that is published on Intel’s
website [75] resulted in AES-GCM encryption and decryp-
tion run times of 0.06 ms per 128-bit block.

The performance of AES-GCM mode can be further
improved by using ASIC/FPGA implementations. A fully
pipelined ASIC implementation of AES-GCM is presented
in [74], which can run at 429.2 MHz and perform encryp-
tion/decryption in 
 2:3 ns per block.

10.3 Secure Storage

Once the medical data is captured, it is transferred to a more
computationally capable device such as a smartphone or a
cloudlet. This data can be encrypted using different encryp-
tion schemes based on the desired capability (i.e., sharing,
computation). For example, before transferring the data to a
public cloud, AES-128 can be used at the acquisition layer,
which can be converted to FHE in the cloud using AES-to-
FHE conversion schemes [105]. Table 4 lists execution times
and storage requirements for ciphertexts for different
encryption schemes. Encryption (Enc.) and Decryption
(Dec.) columns list the required time to encrypt/decrypt 24-
hr ECG data, consisting of 87,896 samples as described in
Section 9.1. Ctxt column shows the space required for stor-
ing encrypted data.

10.3.1 ECIES

For ECIES, we select AES-128 for symmetric-key cryptogra-
phy and HMAC-SHA1 for HMAC. The ciphertext gener-
ated by the ECIES encryption has three components: a
point on the elliptic curve, an AES-128 encrypted message
and a tag generated by HMAC-SHA1. A point on the ellip-
tic curve has two 256-bit coordinates, the AES-128
encrypted message is 128-bits and the tag from HMAC-
SHA1 is 160-bits. Therefore total ciphertext size is equal to
ð2 � 256þ 128þ 160Þ=8 ¼ 100 B. Encryption and decryption
operations using ECIES require 0:46 and 0:44 ms, respec-
tively based on Charm results.

TABLE 2
# of Plaintext Slots at
Different BGV Levels

BGV Level L # of slots (‘)

1 	 L < 12 630
12 	 L < 22 682
22 	 L < 68 1;285

TABLE 3
Comparison of Different Encryption Schemes

Scheme Encryption Computation Data Sharing

Conventional AES NA Limited
ECIES NA Limited

Attribute-based KP-ABE NA Fine-Grained
CP-ABE NA Fine-Grained

Homomorphic Paillier Partial Limited
BGV Full Limited

TABLE 4
Requirements of Encrypting 24-hr ECG Data Using

Different Encryption Schemes

Encryption Enc. (sec) Dec. (sec) Ctxt (MB)

ECIES 40:3 38:7 8:4
KP-ABE 439:5 615:3 56:7
CP-ABE 58 K 32:5 K 708:1
Paillier 49:2 K 48:3 K 128:8
BGV 3;956 1;868 44:4 K
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10.3.2 Attribute-Based Encryption (ABE)

For ABE, we consider two candidates: CP-ABE scheme
from [61] and the recent KP-ABE scheme from [82]. We
evaluate both schemes based on an access policy P , consist-
ing of 10 attributes.

A ciphertext in the CP-ABE scheme consists of the set
C0; C; Cy; C

0
y, where Cy and C0

y are generated for each attri-

bute in the policy P . Each element in the ciphertext is a
point on the elliptic curve, which is represented as two coor-
dinates in the 1,536-bit prime field Fp. Therefore, the total
size of a ciphertext in the CP-ABE scheme is ð2 � ð1þ 1 þ
10þ 10Þ � 1;536Þ=8 ¼ 8;448 B. Encryption and decryption
operations are performed in 660 and 700 ms, respectively
based on Charm results.

In the KP-ABE scheme, a ciphertext consists of the set
C, tag, and Ci, where a different Ci is generated for each
attribute in the policy P . C is the 128-bit ciphertext,
encrypted using AES-128. The tag is generated using
HMAC-SHA1 and 160-bits. Each Ci is a point on the ellip-
tic curve, which is represented as two coordinates in the
256-bit prime field Fp. The total size of a ciphertext in the
KP-ABE scheme is ð128þ 160þ ð2 � 10 � 256ÞÞ=8 ¼ 676 B.
Encryption and decryption operations are performed in 5
and 7 ms, respectively based on Charm results.

The KP-ABE scheme is more efficient and requires less
storage, compared to CP-ABE. This is a result of using ellip-
tic curves to generate keys for efficient AES and HMAC
operations instead of bilinear pairings found in CP-ABE.
CP-ABE can provide an easy implementation if the hospital
is already using a Role-Based Access System.

10.3.3 Paillier

Ciphertexts in Paillier are represented as 12,288-bits integers
in the prime field Fp. This is due to the fact that ciphertexts
are integers inmodn2 where n ¼ p � q. We choose the secu-
rity parameter as 128-bits, which requires 3;072-bit primes
for p and q to be selected. Encryption and decryption opera-
tions are performed in 560 and 550 ms, respectively accord-
ing to Charm results.

10.3.4 BGV

In the BGV scheme, ciphertext sizes depend on the BGV
level L. The resource requirements reported in Table 4 are

based on L ¼ 31 for computing the 24-hour average heart
rate. A 20.2 MB ciphertext can encrypt 1,285 plaintext slots

or 40 32-bit messages (b1;28532 c ¼ 40). Encryption and decryp-

tion operations are performed in 1.8 and 0.85 sec, respec-
tively based on HElib results.

10.4 Secure Computation

We evaluate the secure computation options for an MCPS
using the Paillier and BGV schemes.

10.4.1 Computation Using the Paillier Scheme

Average heart rate computation using the Paillier scheme
requires performing homomorphic addition of multiple
ciphertexts. Single homomorphic addition requires 0.11 ms
based on Charm results. Therefore, computing the average
heart rate for the 24-hour ECG data takes 9:7 seconds, which
involves the homomorphic addition of 87,896 ciphertexts.

10.4.2 Computations Using the BGV Scheme

Table 5 presents the HElib results of LQTS detection and
Average heart rate for the 24-hour ECG data, containing
87,896 toc values. Rows of the table represent the partition-
ing of the data used in computations. For example, LQTS
detection using 1-min ECG interval checks for the LQTS
event every minute, while 24-hour ECG interval operates
on all 24-hour data and returns a single result. ECG inter-
vals can be adjusted to reflect the condition of a patient; a
patient in critical condition might require monitoring
results every minute, while a healthy patient just needs one
result per day.

For each application, we determined L using the guide-
lines in Section 8.3. Both the LQTS detection and average
heart rate computation require higher L for longer ECG
intervals, since longer intervals require an increased num-
ber of ciphertexts (N), thereby increasing both the execution
time and the required storage space. However, longer ECG
intervals require less network traffic by producing aggre-
gated results over many ciphertexts.

10.5 Summary of Results

Table 6 summarizes our results. Encryption/Decryption
times and ciphertext sizes are normalized to AES for every
scheme. Evaluation times are normalized to Paillier for the
homomorphic schemes. Using the Charm library [100], we

TABLE 5
BGV Results for Computing the Average Heart Rate
and LQTS Detection L is the BGV Level and N is the

Number of Ciphertexts Required to Store the Encrypted
ECG Samples for a Given Monitoring Interval

Monitor.
Interval

N L Enc.
(sec)

Dec.
(sec)

Ctxt
(MB)

Exec.
(min)

1 min 3 14 0.20 0.19 3.4 0.4
Avg 15 min 44 21 0.29 0.29 4.8 2.8
HR 1 hr 92 23 1.36 0.63 15.0 16.5
(k = 32) 3 hr 275 26 1.59 0.73 17.6 56.1

24 hr 2,198 31 1.80 0.85 20.2 502

1 min 2 7 0.05 0.01 0.9 0.1
15 min 24 11 0.08 0.03 1.3 2.5

LQTS 1 hr 88 13 0.18 0.15 2.9 32.7
(k = 16) 3 hr 262 15 0.21 0.19 3.4 117

24 hr 2,093 18 0.26 0.25 4.3 1,165

TABLE 6
Execution Time and Ciphertext Size Comparison of Different

Encryption Schemes, Normalized to AES. The Evaluation Time
of the Homomorphic Schemes are Normalized to Paillier

Scheme Implement.
Source

Enc.
time

Dec.
time

Ctxt
size

Eval.
time

AES ASIC [74] 0.01 0.01 1
AES Intel [75] 0.3 0.3 1

AES Charm [100] 1 1 1
ECIES Charm 2:3 K 1:9 K 6:3

KP-ABE Charm 25 K 30:4 K 42
CP-ABE Charm 3:3M 1:6M 528

Paillier Charm 2:8M 2:4M 96 1
BGV HElib [101] 9M 3:6M 1:3M 3:1 K
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show that multiple orders-of-magnitude computational time
and storage space penalty must be incurred to enable secure
data sharing and secure computation. Using the Charm [100]
and the HElib [101] libraries, we demonstrate the perfor-
mance of the homomorphic schemes in the last two lines of
Table 6; Paillier requires four orders-of-magnitude lower
storage for ciphertexts, but only allows restricted set of
secure computations and performs evaluations 3,100� faster
than BGV. ASIC [74] and Intel AES-NI optimized [75] ver-
sions of the AES run 1–2 orders-of-magnitude faster than the
generic C software implementation [100].

11 CONCLUSIONS

In this paper, we define a Medical Cyber Physical System as
a four-layer system consisting of data acquisition, data
aggregation, cloud, and action layers. We survey conven-
tional and emerging encryption schemes based on their abil-
ity to provide secure storage, secure data sharing, and
secure computation. Conventional encryptions such as AES
and ECIES do not allow any operation other than secure
storage, while the emerging Attribute-Based Encryption
allows secure data sharing based on the credentials of the
sharing parties. Alternatively, secure computation on
encrypted data is only feasible using the emerging Fully
Homomorphic Encryption schemes.

Through our experimental analysis, we show that due to
the substantial differences among these algorithms in terms
of storage and computational requirements, it is not possi-
ble to provide a single encryption/decryption scheme that
is superior to all of the others. Therefore, we analyze six
different encryption schemes based on four metrics:
i) encryption time, ii) decryption time, iii) ciphertext size,
and iv) evaluation time. While the first two metrics provide
information about the computational intensity of the
encryption scheme, the third metric shows the expansion of
the amount of data in its encrypted form, determining its
storage and transmission characteristics. Clearly, the fourth
metric is only relevant to the techniques that provide com-
putation in encrypted format, such as FHE and Paillier.

Our first experimental analysis shows that the encryption
and decryption times under a given encryption scheme are
comparable (e.g., within �20% for ECIECS encryption ver-
sus decryption), although the variation among different
schemes is significant. For example, normalizing to AES,
attribute-based encryption schemes (KP-ABE and CP-ABE)
are 25;000� and 3:3M� slower, respectively, while homo-
morphic encryption schemes (Paillier and FHE) are 2:8M�
and 9M� slower. These results underline the vast computa-
tional penalty that must be paid to enable secure sharing
and secure computation.

Our second analysis focuses on determining the amount of
storage required for the encrypted version (i.e., ciphertext) of
a given plaintext. Normalizing to AES, ECIES requires 6:3�
more space, while attribute-based encryption schemes (KP-
ABE and CP-ABE) still show a significant disadvantage,
requiring 42� and 528� more storage for the encrypted data.
On the other hand, homomorphic encryption schemes (Pail-
lier and FHE) exhibit a 96� and 1:3M� storage expansion.
Consequently, these storage disadvantages translate to vast
communication overheadswhen transmitting encrypteddata.

Our final analysis compares the two homomorphic
encryption schemes that can perform secure computation
on ciphertexts. We conclude that while the encryption and
decryption of the Paillier scheme are almost as slow as
BGV, evaluation of a ciphertext using Paillier is 3; 100�
faster, however the evaluation operations that are permitted
by Paillier are substantially more restrictive (only additions
can be performed on ciphertext).

Based on these analyses, we conclude that a one-size-
fits-all encryption scheme simply does not exist for design-
ing an MCPS. Among the six different schemes studied in
this paper, AES is the clear winner in terms of computation
and storage requirements, while the other five suffer sub-
stantial storage and computation overheads. Therefore,
to construct exciting new MCPSs that can take advantage
of these emerging encryption schemes, their significant
speed-up is necessary either through theoretical advance-
ments or by utilizing GPUs, ASICs, or FPGA-based hard-
ware accelerators.
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