
Handbook of Research on 
Cloud Infrastructures for 
Big Data Analytics

Pethuru Raj
IBM India Pvt Ltd, India

Ganesh Chandra Deka
Ministry of Labour and Employment, India

A volume in the Advances in Data Mining 
and Database Management (ADMDM) 
Book Series 



Published in the United States of America by 
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax:  717-533-8661 
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2014 by IGI Global.  All rights reserved. No part of this publication may be reproduced, stored or distributed in 
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or 
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.
			   Library of Congress Cataloging-in-Publication Data

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the 
authors, but not necessarily of the publisher.

For electronic access to this publication, please contact: eresources@igi-global.com.�

CIP Data (Pending)
 
978-1-4666-5864-6 (ISBN Hardcover) 
978-1-4666-5865-3 (ISBN eBook) 
978-1-4666-5867-7 (ISBN Print and Perpetual) 

 
This book is published in the IGI Global book series Advances in Data Mining and Database Management (ADMDM) 
(ISSN: 2327-1981; eISSN: 2327-199X)

Managing Director: 
Production Editor: 
Development Editor: 
Acquisitions Editor: 
Typesetter: 
Cover Design: 

Lindsay Johnston 
Jennifer Yoder 
Austin DeMarco 
Kayla Wolfe 
Michael Brehm 
Jason Mull 



471

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  19

DOI: 10.4018/978-1-4666-5864-6.ch019

Medical Data Analytics 
in the Cloud Using 

Homomorphic Encryption

Abstract

Transitioning US healthcare into the digital era is necessary to reduce operational costs at Healthcare 
Organizations (HCO) and provide better diagnostic tools for healthcare professionals by making digital 
patient data available in a timely fashion. Such a transition requires that the Personal Health Information 
(PHI) is protected in three different phases of the manipulation of digital patient data: 1) Acquisition, 
2) Storage, and 3) Computation. While being able to perform analytics or using such PHI for long-term 
health monitoring can have significant positive impacts on the quality of healthcare, securing PHI in each 
one of these phases presents unique challenges in each phase. While established encryption techniques, 
such as Advanced Encryption Standard (AES), can secure PHI in Phases 1 (acquisition) and 2 (storage), 
they can only assure secure storage. Assuring the data privacy in Phase 3 (computation) is much more 
challenging, since there exists no method to perform computations, such as analytics and long-term health 
monitoring, on encrypted data efficiently. In this chapter, the authors study one emerging encryption 
technique, called Fully Homomorphic Encryption (FHE), as a candidate to perform secure analytics and 
monitoring on PHI in Phase 3. While FHE is in its developing stages and a mainstream application of 
it to general healthcare applications may take years to be established, the authors conduct a feasibility 
study of its application to long-term patient monitoring via cloud-based ECG data acquisition through 
existing ECG acquisition devices.

Övünç Kocabaş
University of Rochester, USA

Tolga Soyata
University of Rochester, USA



472

Medical Data Analytics in the Cloud Using Homomorphic Encryption

INTRODUCTION

Utilizing cloud computing resources such as 
Amazon EC2 (Amazon, n.d.), Microsoft Azure 
(Microsoft, n.d.), or Google (Google, n.d.) is 
commonplace for many corporations, due to its 
ability to prevent vast infrastructure investments. 
This concept dates back to the beginning of the 
Internet boom more than a decade ago with the 
emergence of the Application Service Provider 
(ASP) model: Rather than making an investment 
in costly server hardware, software licensing fees, 
and the personnel to manage this infrastructure, 
corporations can rent computation time, storage 
space, and licensing fees by running such applica-
tions as Salesforce.com (Salesforce, n.d.) over the 
Internet. The ASP model prevents upfront costs: a 
monthly subscription fee and a flexible licensing 
scheme allows smaller corporations to immedi-
ately start using such programs and expand with 
virtually no boundaries, since the computational 
and storage resources are provided by the applica-
tion service provider (ASP) and the ASP can pool 
resources for many other clients. Additionally, this 
eliminates the need for corporations to have any 
expertise in setting up such sophisticated server 
infrastructure and the training on the application 
is done through online seminars.

Another dramatic example of such an ASP 
model is Paypal (Paypal, n.d.). The introduction 
of a merchant Application Programming Interface 
(API) by Paypal allowed any size corporation to 
start their business with near-zero investment, ac-
cept payments over the Internet by using Paypal 
as the intermediary, and grow with virtually no 
boundary. These examples show that, it is natural 
to shift the responsibility of computing (and stor-
age) infrastructure investments to operators that 
can deliver their services by using the Internet 
as the delivery channel (i.e., Cloud Operators). 
By virtualizing their computational and storage 
resources, these cloud operators can provide these 
resources to their customers at a fraction of what 
the customers can build them for.

While endless examples exist for such generic 
cloud computing offerings, one area that can 
benefit significantly from it deserves specific at-
tention: Medical cloud computing. When the data 
storage is outsourced to a cloud operator over the 
Internet, an important issue arises: data privacy. 
Although different applications have different 
sensitivity levels to this issue, the highest level of 
sensitivity is clearly in the medical arena (Kocabas 
et al, 2013). Personal Health Information (PHI) 
is one of the most scrutinized concepts, protected 
by laws and regulations of the U.S.A. The Health 
Insurance Portability and Accountability Act 
(HIPAA, n.d.) dictates a strict set of rules and 
regulations to prevent the PHI from being misused. 
Therefore, to expand the cloud computing into 
the medical arena, one must clearly formulate the 
entire concept around these restrictions.

Cloud computing is an active research area for 
medical applications, partly due to the push by 
the US government to modernize the US Health 
system (Lobodzinski & Laks, 2012). The moti-
vations behind this move are: 1) improving the 
quality of healthcare by using additional cloud-
based long-term patient monitoring data that are 
otherwise unavailable to the healthcare profes-
sionals, and 2) reducing the operational costs at 
healthcare organizations (HCO) by eliminating 
the datacenters operated by HCOs. Long-term 
patient monitoring data (e.g., patient vitals such 
as ECG and blood pressure), obtained by sensors 
that transmit their patient information over the 
cloud can be used as an auxiliary diagnostic tool 
to improve diagnostic accuracy. This expands the 
boundaries of an HCO to outside the HCO by al-
lowing the patients to use long-term monitoring 
devices, such as ECG patches.

In this chapter, we study the feasibility of such 
a cloud-based long-term monitoring system while 
preserving PHI. Preserving PHI requires ensur-
ing data privacy at three distinct phases: Phase I. 
Acquisition, is where the medical data is acquired 
from a patient, whether it is within the HCO, or 
outside the HCO via disposable devices such as 



473

Medical Data Analytics in the Cloud Using Homomorphic Encryption

ECG patches (Leaf, n.d.), Phase II. Storage, where 
the data is stored in the cloud for future access, 
and, Phase III. Computation, is where the data is 
processed, whether during a real-time application 
execution by a doctor, or by the long-term patient 
monitoring software.

Existing AES-based encryption techniques 
(NIST, 2001) can ensure data privacy in phases 
I and II. However, ensuring data privacy during 
the application execution (i.e., Phase III) is only 
possible by transferring the data back and forth 
between the cloud and the mobile device. During 
this transfer, data must be in encrypted format while 
in the cloud, and must be decrypted when it reaches 
the mobile device. In contrast to this conventional 
methodology, we investigate an emerging new 
technique called Fully Homomorphic Encryp-
tion (FHE) (Gentry, 2009; Brakerski, Gentry, & 
Vaikuntanathan, 2012) and the possibility of its 
utilization in medical data analytics. We specifi-
cally investigate the application of remote health 
monitoring by using existing commodity ECG 
patches (Leaf, n.d.) and cloud computing. In our 
conceptual system, the entire application runs in 
the cloud, and the data acquisition (Phase I) and the 
visualization of analytics (Phase III) are achieved by 
thin devices (i.e., devices with significantly lower 
computational and storage capability as compared 
to the cloud resources). Therefore, these end nodes 
are disposable and the entire functionality of the 
application execution is outsourced to the cloud.

Our conceptual system, shown in Figure 1, 
depicts phase I (Acquisition) of the long-term 
health monitoring through the use of remote 
sensors, incorporating AES encryption and trans-
mission capability. While we specifically focus 
on the ECG-based applications in this chapter, 
expansion of it to other medical applications is 
straightforward. The System in Figure 1 can be 
applied to any system containing sensors that have 
similar capabilities with a backend application 
that has similar characteristics. Phase II (storage) 
and III (computation) are strictly in the cloud in 
this system.

This system is conceptualized to use the end 
nodes as thin devices, where the loss of a thin 
device does not necessarily imply compromised 
PHI, since the device contains almost no informa-
tion. This is due to the real-time transmission of 
the PHI right after its acquisition. Since no data 
are kept in the acquisition devices in the long 
term, the privacy management responsibility of 
the data is only relevant in the cloud. A similar 
argument is true for the display devices (e.g., 
tablets). Since Phase III is primarily performed 
in the cloud, and no data is stored in the GUI 
device, the loss of a GUI device (see Figure 1) 
presents no privacy issues. The system in Figure 
1 pushes the entire workload into the cloud, mak-
ing the end nodes mere acquisition and display 
devices. The compromise of acquisition and GUI 
devices implying the potential compromise of 
PHI has become an important consideration by 
the FDA recently (FDA, 2013) and shows the 
importance of designing a system that doesn’t 
depend on strict security standards on the end 
nodes to ensure overall system security.

In this chapter, we investigate the feasibility 
of running medical applications in the cloud 
by formulating Full Homomorphic Encryption 
(FHE) as the core of this idea. We identify the 
challenges in making this possible for the specific 
remote-ECG monitoring applications, without 
loss of generality. We provide pointers to the 
potential of FHE acceleration while it is being 
widely researched (PROCEED, n.d.) to arrive at 
conclusions for its practical use in more widespread 
medical applications. This chapter is organized 
as follows: We provide background information 
on Fully Homomorphic Encryption (FHE) and 
Electrocardiogram (ECG), followed by the in-
troduction of a cloud-based medical application 
in detail. The challenges related to different parts 
of this application are determined and the results 
based on existing ECG-based patient data derived 
from the THEW database (Couderc, 2010) are 
presented. We conclude our chapter with discus-
sions on future research challenges.



474

Medical Data Analytics in the Cloud Using Homomorphic Encryption

BACKGROUND INFORMATION

We will use Electrocardiogram (ECG) data to 
gain an insight into the challenges in applying 
FHE into medical applications. In this section, 
first we will provide background information 
on Fully Homomorphic Encryption (FHE) and 
focus on two important FHE schemes. Next, we 
will provide background information on ECG 
by using sample data acquired from the THEW 
worldwide ECG database (Courderc, 2010) and 
identify operations that are necessary to provide 
insight for a doctor during the diagnosis of car-
diovascular diseases.

Emergence of Fully Homomorphic 
Encryption (FHE)

Conventional symmetric-key and public-key 
cryptosystems encrypt the data such that only 
authorized parties can access the data. In order 
to perform operations on the data, one needs to 
decrypt the encrypted data first and then perform 
the operations. On the other hand, FHE schemes 
enable computing meaningful operations on the 
encrypted data without observing the actual data. 
In other words, an example computation, c = a + 
b, becomes possible using FHE without actually 
knowing a and b.

Figure 1. Proposed cloud-based long term health monitoring system



475

Medical Data Analytics in the Cloud Using Homomorphic Encryption

To compute arbitrary functions on encrypted 
data, an FHE scheme should be capable of perform-
ing homomorphic additions and homomorphic 
multiplications over the encrypted text (termed 
ciphertext), which corresponds to addition and 
multiplication operations on the unencrypted 
message (termed plaintext) respectively when 
the resulting ciphertext is decrypted. Since any 
function can be represented as a combination of 
additions and multiplications, FHE scheme can 
compute arbitrary functions.

The FHE scheme is very useful in scenarios, 
where computation is outsourced to a third party 
and privacy of the data must be preserved at all 
times. With this scheme one can encrypt the data 
and store it in a database/cloud, and later ask a third 
party to perform some operations on the encrypted 
data. The third party never sees the original data 
but performs operations on the ciphertexts only, 
returning the result in encrypted form, which can 
only be decrypted by the secret key owner.

The idea of the homomorphic encryption was 
first proposed by Rivest et al. in 1978 (Rivest, 
Adleman, & Dertouzos, 1978). Since then, many 
schemes have been proposed (Goldwasser & 
Micali, 1982; El Gamal, 1985; Cohen & Fischer, 
1985; Paillier, 1999; Damgård & Jurik, 2001), but 
these schemes support the only homomorphic 
addition or homomorphic multiplication, not 
both simultaneously within a single scheme. The 
closest cryptosystem to achieve the FHE scheme 
was proposed in (Boneh, Goh, & Nissim, 2005), 
which could perform many additions but only 
one multiplication. With his breakthrough work 
in 2009, Gentry (2009) proposed the first mecha-
nism for an FHE scheme which could perform an 
arbitrary number of additions and multiplications 
homomorphically.

Gentry’s FHE Scheme

Gentry’s (2009) proposal for the first FHE scheme 
is based on ideal lattices. An ideal lattice is a 
discrete additive and a multiplicative subgroup 

in n-dimensional space which can be represented 
by its basis vector. The fact that a lattice can have 
an infinite number of bases plays a key role for 
creating a public-key cryptosystem. Similar to 
other public key cryptosytems (Diffie & Hellman, 
1976; Rivest, Shamir, & Adleman, 1978), security 
of the lattice based cryptosystems is based on an 
intractable problem which is very hard to solve 
unless a secret key is known. The hard problem in 
Gentry (2009) is the Closest Vector Problem (CVP) 
which states that given a point in n-dimensional 
space, it is hard to find the closest lattice point. If 
a good basis is known for the lattice, one can use 
Babai’s nearest-vector approximation algorithm 
(Babai, L., 1985) to solve the CVP problem ef-
ficiently. The good basis of a lattice consists of 
almost orthogonal base vectors having a large 
decryption radius and it is used as the secret key. 
Figure 2 demonstrates the difference of decrypt-
ing a ciphertext with a good (on the left) and a 
bad (on the right) basis vector, where the result is 
mapped to an incorrect point on the lattice when 
a bad basis vector is used.

In Gentry’s FHE scheme, encryption is per-
formed by first mapping a message to a lattice point 
and then adding a small random noise to create 
the final ciphertext. The decryption can be done 
only by using a good basis which is only known 
by the secret-key holder. Homomorphic addition 
and homomorphic multiplication operations are 
performed by adding and multiplying lattice 
points respectively. During the homomorphic 
operations the noise inside the ciphertext grows 
with each operation. Specifically, homomorphic 
addition roughly doubles the noise, while homo-
morphic multiplication squares the noise. After 
several operations, the magnitude of the noise in 
the ciphertext exceeds the threshold at which a 
successful decryption is no longer possible even 
with the knowledge of a good basis. This limits the 
number of operations that can be performed with 
this scheme and is also referred to as SomeWhat 
Homomorphic Encryption (SWHE) scheme. Gen-
try proposed a remarkable bootstrapping method 



476

Medical Data Analytics in the Cloud Using Homomorphic Encryption

(i.e., recryption) to transform SWHE scheme into 
FHE scheme by evaluating the decryption func-
tion homomorphically. The recryption operation 
resets the noise inside the ciphertext and enables 
computation of arbitrary functions indefinitely.

Although Gentry’s scheme is the first plausible 
mechanism for an FHE scheme, it has several 
inefficiencies both in terms of storage and com-
putation. Messages are encrypted bitwise and in 
order to increase the noise threshold the ciphertext 
size must be large, which results expansion in stor-
age space: For example, the size of a ciphertext 
encrypting 1-bit message could be multi-million 
bits, which presents an unacceptable data expan-
sion ratio for most practical implementations. 
The homomorphic operations over very large 
ciphertexts are also compute-intensive and cost 
of the recryption operation is very high making 
Gentry’s FHE scheme impractical.

Several FHE schemes and implementations 
have been proposed after Gentry’s FHE scheme 
(Dijk, Gentry, Halevi, & Vaikuntanathan, 2010; 
Brakerski & Vaikuntanathan, 2011b, 2011a; 
Coron, Mandal, Naccache, & Tibouchi, 2011; 
Gentry & Halevi, 2011a; Naehrig, Lauter, & Vai-

kuntanathan, 2011; Smart & Vercauteren, 2010; 
Stehle & Steinfeld, 2010; Brakerski et al., 2012; 
Halevi & Shoup, n.d.; Gentry, Halevi, & Smart, 
2012) to address the inefficiencies and make FHE 
more practical. (see Figure 2)

BGV Scheme

At present the BGV scheme (Brakerski et al, 
2012) and its implementation (Halevi & Shoup, 
n.d.) are one of the most promising works for 
a practical FHE. The BGV scheme is based on 
Ring Learning with Errors (RLWE) primitives 
(Lyubashevsky, Peikert, & Regev, 2010). In the 
BGV scheme both messages and ciphertexts are 
defined over polynomial rings.

Several methods are introduced by the BGV 
scheme to improve the performance of earlier FHE 
schemes. A ciphertext is partitioned into slots by 
using the techniques in (Smart & Vercauteren, 
2011), where each slot can pack a multi-bit mes-
sage. Packing multiple messages into one cipher-
text also enables computing homomorphic opera-
tions in Single Instruction Multiple Data (SIMD) 
fashion. The expensive recrypt operation can be 

Figure 2. Homomorphic encryption with good (left) and bad (right) basis vectors mapping to a correct 
and incorrect result, respectively



477

Medical Data Analytics in the Cloud Using Homomorphic Encryption

avoided by using the leveled version of the BGV 
scheme. In the leveled version of the BGV scheme, 
homomorphic operations are performed up to L 
levels. Since each homomorphic addition and 
multiplication increases the noise in the ciphertext, 
only a limited number of homomorphic operations 
can be performed. While homomorphic addition 
does not increase the noise level significantly, 
homomorphic multiplication roughly squares 
the noise amount. Thus the level L is determined 
by the depth of multiplication operations for the 
function to be evaluated. The level of the function 
to be computed can be defined beforehand and 
then the parameters of the scheme can be adjusted 
during the key generation.

Medical Data Analytics on ECG Data

An exhaustive list of medical data such as echo/
MRI imaging data, subject drug treatment, and 
physiological monitoring signals are routinely 
acquired and used for assessing a patients’ health 
state by healthcare organizations (HCO). Among 
the list of medical data, we have opted to limit 
our feasibility assessment to a simple, yet real, 
set of data acquired from a subject coming to the 
Emergency Department (ED) of the University 
of California San Francisco Hospital for chest 
pain (Shusterman et al, 2007) and shared by the 
THEW initiative (Courderc, 2010). This data 
contain recordings of a patient’s heart rhythms 
for 24-hours, acquired by a 12-lead Holter system. 
The device was hooked up to the patients when 
they arrived at the ED. In order to demonstrate 
the feasibility of our concept, we used informa-
tion about the patient’s heart rate (HR). There are 
standard ECG measurements that a cardiologist 
needs to access from this information that require 
computational tasks. Among these, we selected 
five measurements to be extracted from ECG trac-
ing as examples, these are: 1) the minimum HR, 
2) the maximum HR, 3) the average heart rate, 
4) the presence of abnormal cardiac beats, and 
5) the frequency of the ectopic beats. These five 

quantifiers can be extracted from the annotation 
file of the ECG, i.e., the file containing the vital 
information about each cardiac beat type and 
duration as shown on Figure 3. These five ECG 
measurements provide essential analytic informa-
tion to the cardiologist about the patient’s heart 
state. First, the cardiologist will evaluate if the 
average heart rate is in normal ranges, and then the 
cardiologist will check if the heart rate variation 
during the recordings are appropriate based on 
the patient physical activity, finally the frequency 
of abnormal cardiac beats will be checked. These 
abnormal beats can be discriminated based on their 
morphology. They are often present in healthy 
individuals but they may be associated with some 
risk if their frequency of occurrence is too high.

Structure of the Captured ECG Data

In general, the electrocardiogram (ECG) annota-
tion file provides information which includes what 
type of cardiac contraction for each beat and the 
temporal distance between consecutive beats. The 
temporal distance is usually measured between two 
consecutive R peaks which is the peak of positive 
deflection in the QRS complex. Figure 3 shows 
the information extracted from a real ECG signal.

In this work, we have planned to assess the 
feasibility of implementing secure cloud-based 
monitoring using the ECG annotation file. The 
annotation file is a binary file containing two 
parts: 1) the header information and 2) the beat 
annotation. The header provides the information 
related to the original ECG, such as the number 
of leads, sampling frequency, recording time, 
and other technical specifications of the digital 
ECG signal. The header information is followed 
by the beat annotations, where each beat annota-
tion segment consists of 4 bytes of binary data 
organized as three fields. First two fields are label 
information for classifying the recorded ECG beat 
type. The last field contains 2 bytes of information 
related to the temporal distance (i.e., toc) of the 
current beat from the last recorded beat. The size 



478

Medical Data Analytics in the Cloud Using Homomorphic Encryption

of the annotation file depends on the length of the 
acquired ECG tracings. In our experiments, we 
will use a sample ECG annotation file from the 
THEW ECG database (Courderc, 2010), which 
has a 24-hour ECG tracing record of a patient and 
contains 87,896 beat annotations.

THE DESIGN OF A CLOUD-
BASED MEDICAL APPLICATION

Our proposed cloud-based application is based on 
offloading almost entire computation to the cloud. 
Our application is based on mainly three distinct 
parts: 1) Real-time medical data acquisition de-
vices, 2) Cloud-based storage and computation, 
3) GUI (end) node. In the following subsections, 
we will analyze each part individually.

Data Acquisition through 
Thin Devices

Acquisition devices are front-end of our cloud 
based medical application. These devices are 
capable of acquiring real-time medical data. 
Examples of such devices are disposable ECG 
patches attached to a patient or mobile ECG carts 
used in hospitals. Furthermore, with decades of 

research and development, current ECG record-
ing technologies have matured enough to allow 
a patient to self-monitor at home. Figure 4 (left) 
shows a sample device from Alivecor (2013), 
which can be attached to a Smartphone and the 
software that is included with the device is ca-
pable of recording ECG samples. A sample ECG 
recording obtained from the device is shown in 
Figure 4 (right), which has sufficient accuracy 
to be useful in clinical diagnostics. To protect 
the patient’s privacy, we assume the acquisition 
devices are capable of performing AES encryp-
tion of patient data and transmitting the encrypted 
data wirelessly (Fahad et al, 2012; Soyata et al, 
2012b; Soyata et al, 2012c; Soyata et al, 2013).

Considering the significant computational 
difference of encrypting data between AES (Na-
tional Institute of Standards and Technology, 2001) 
and FHE, it is unrealistic for an acquisition node 
to execute real-time FHE encryption, while AES 
encryption has trivial computational demands and 
available even in the least expensive devices. 
Therefore, we formulate the acquisition node is 
oblivious to FHE encryption and only responsible 
for encrypting the patient data with AES encryp-
tion, while the conversion of AES encrypted data 
to FHE encrypted data is performed in the cloud.

Figure 3. One-lead tracing in which the number on top of each cardiac beat signal represents the time 
distance in millisecond between the current displayed beats, while the other characters, such as V and 
S, denote irregular beats corresponding to potential heart conditions.



479

Medical Data Analytics in the Cloud Using Homomorphic Encryption

AES to FHE Conversion Agent

Since homomorphic encryption cannot be per-
formed during the acquisition phase, the data has 
to be transmitted into the cloud in AES-encrypted 
format. We propose to store all of the patient data 
in AES-encrypted format, since AES is a storage-
neutral conversion (i.e., the AES-encrypted ver-
sion of a 128-bit raw data occupies 128-bits also). 
While this completely solves the privacy of the 
stored data, conversion of AES-encrypted data to 
FHE-encrypted data has to be performed at some 
point, before any computation can be done by us-
ing FHE. We will experiment with a background 
AES to FHE conversion agent, a portion of the 
cloud software to continuously convert the AES-
encrypted data into its FHE counterpart.

Converting AES-encrypted data to FHE-
encrypted data requires evaluating AES decryption 
function homomorphically. To estimate the cost 
of AES to FHE conversion we refer to (Gentry 
et al., 2012). In (Gentry et al., 2012), the authors 
implemented the AES-128 decryption function 
with the BGV scheme (Brakerski et al., 2012) 
and provided latency/throughput analysis with 
different design choices. An AES-128 decryption 
operates on blocks of 128-bit (i.e. 16B) data, where 
granularity of the operations is 1 Byte. In the first 
design, a ciphertext is set to hold 864 plaintext slots 
where each slot holds information for 1B message. 

With this setting 16 slots can be used to contain 
one AES-encrypted data, thus ⌊864 ÷ 16⌋ = 54 
AES decryption operation can be performed in 
parallel. The overall evaluation runs in 36 hours; 
however since 54 AES decryptions have been 
performed in parallel, throughput is around 40 
minutes per one AES decryption. In the second 
design, 16 ciphertexts are used and each ciphertext 
is set to hold 720 plaintext slots. Similar to the 
first design settings each slot holds information 
for 1B message, but this time each slot associated 
with different AES-encrypted data, thus 720 AES 
decryption operation can be performed in paral-
lel. Although with this setting total evaluation 
time is around 5 days, throughput for one AES 
decryption is reduced to 5 minutes. Although the 
second design provided better throughput results 
than the first design, it requires larger memory to 
store all variables. Therefore, we will use the first 
design setting as our reference.

Based on the results were reported in (Gentry et 
al, 2012) to be around 36 hours for the decryption 
of 54 AES blocks (16B each), approximately 150 
Sec is needed to convert 1B. Using these results 
as the basis, we calculate that, the AES to FHE 
conversion agent will need to process 87,896 beat 
annotations (175,792B assuming 2B per annotated 
element) to convert a 24-hour patient annotated 
recording to FHE. Therefore, the computation 
time for this conversion is approximately 7,324 

Figure 4. (Left) Commercial ECG screening device from Alivecor. (Right) Recorded ECG data using 
the Alivecor device



480

Medical Data Analytics in the Cloud Using Homomorphic Encryption

hours. Using the estimated conversion time, the 
required speedup is around 305x to compute the 
results at the rate of arrival (i.e., 24-hours). We 
will show in the following subsection how, it is 
possible to parallelize this process to perform 
AES to FHE conversion at the rate of arrival if 
sufficient hardware parallelism is available.

Storage and Computation 
in the Cloud

As previously mentioned, acquisition nodes are 
assumed to be capable of AES encryption and 
AES-encrypted version of the medical records 
permanently stored in the cloud. In order to op-
erate on medical data with FHE, AES-encrypted 
medical records have to be converted to FHE-
encrypted version. Although we note that AES 
to FHE conversion is compute-intensive, this 
conversion has to be performed only once.

The AES to FHE conversion can be performed 
offline while the conversion time will be exposed 
as a delay in providing the remotely monitored 
patient data to the doctor. This delay might not be 
important, since the doctor typically needs these 
results in a few days after the remote monitoring 
has been completed. This latency tolerance can be 
translated into further cost savings for the HCO, 
by performing AES to FHE conversion when the 
computation resources are less expensive. For 
instance, Amazon Web Services (AWS) offers 
Micro instances which have basic computation 
capabilities yet they can be rented at no cost.

In addition to the delay in providing AES to 
FHE conversion, a certain amount of compute-
caching can also be performed offline. For ex-
ample, assume a set of 10,000 results that need 
to be added to provide the average heart rate to 
the doctor. These results to add are generally in 
very predictable intervals, thereby generating 
predictable patterns in pre-computable results. 
As an example, to reduce the real-time compute 
strain in the cloud when the doctor is running the 
application, every 100 results can be summed, 

and the results can be cached in the storage area. 
Such a process can be accelerated using special-
ized accelerators (Guo et al, 2010; Soyata et al, 
2012a) and computation optimization techniques 
(Soyata et al, 1993; Soyata & Friedman, 1994a; 
Soyata & Friedman, 1994b; Soyata et al, 1995; 
Soyata & Friedman, 1997; Soyata, 1999).

In this specific example, which is also dem-
onstrated in Figure 5, a typical operation is to 
calculate the sum (and, thus, the average) of 10,000 
numbers. It is feasible to pre-compute sums for 
100-number chunks. Observing that, this will ex-
pand the required storage by 100x as compared to 
storing only the initial 10,000 results, this provides 
a trade-off between latency and storage by shift-
ing the application execution time from offline 
to online computation. This idea can be further 
expanded by building a compute-cache that has 
a log-tree structure by calculating every 100, and 
every 10,000, etc., permitting computations to be 
sped up at the expense of higher storage.

Storage Management in the Cloud

Considering the significant amount of storage 
that FHE requires, a natural question to ask is the 
total required amount of storage for each applica-
tion. We conceptualize the cloud storage that an 
FHE-enabled application requires as composed 
of three separate areas: 1) The AES-data area, 
which is where the medical records are perma-
nently stored in AES-encrypted format, 2) The 
FHE data-cache area, which is the FHE-encrypted 
copy of the original AES data, only for certain 
records, 3) The FHE compute-cache area, which 
is the pre-computed results for portions of the 
FHE data-cache.

We assume that, three distinct spaces will be 
allocated to each one of AES data, FHE data-
cache, and FHE-compute cache. This implies a 
hierarchical storage which resembles closely a 
computer’s memory subsystem, where, AES-data 
area is analogous to a computer disk, since the 
conversion from AES to FHE takes a long time, 



481

Medical Data Analytics in the Cloud Using Homomorphic Encryption

FHE data-cache is analogous to computer memory, 
since there is a significant penalty in bringing 
the data in from the memory into the cache, and 
FHE compute-cache is analogous to L3 cache, 
where the results in this cache can be converted 
to useful results significantly faster than the ones 
in the FHE data-cache.

In this proposed tiered storage scheme, the FHE 
data-cache and FHE compute-cache are complete-
ly disposable, i.e., discarding any information in 
these caches only hurts performance, but does not 
cause data loss. This allows the cloud application 
to dynamically adjust the contents of each cache, 
thereby modulating the application response time 
vs. required storage and computation.

Displaying the Application 
Results through GUI Devices

The backend of our application is the GUI device 
which runs the GUI portion of the medical ap-
plication and displays the results to the doctor. 

Since the cloud is responsible for performing 
entire set of computations with FHE, the end result 
will be in the FHE-encrypted format when it is 
transferred to the GUI device. This necessitates 
that the GUI device has to perform decryption of 
FHE-encrypted ciphertexts. Furthermore, to avoid 
exposing the medical data at any point, decryption 
needs to be performed only on the Smartphone 
of the authorized personnel.

Considering that, within the FHE framework, 
the decryption has a fairly low compute-intensity 
as compared to the intermediate computations, 
this is feasible for the GUI device. Since most 
current Smartphones have multiple processor 
cores and are expected to amass an ever increasing 
computational power, it is reasonable to expect 
the decryption process to take close to real-time 
and acceptable to the user. Therefore the GUI 
end-node has to have minimal capability in 1) 
running an OS such as Android or iOS to provide 
a user interface to the doctor, and 2) perform 
homomorphic decryption.

Figure 5. Compute-caching example



482

Medical Data Analytics in the Cloud Using Homomorphic Encryption

PERFORMANCE EVALUATION

In this section, we will evaluate calculating the 
average heart rate of a patient with two FHE 
schemes: Gentry’s FHE scheme (Gentry, 2009) 
and the BGV scheme (Brakerski et al, 2012). We 
will use the library in (Gentry & Halevi, 2011b) 
for the former scheme, while the library in (Halevi 
& Shoup, n.d.) will be used for the latter.

We run our simulations on a computation node 
in UR Bluhive cluster (University of Rochester, 
Center for Integrated Research Computing, n.d.) 
which has two Intel Xeon E5450 processors, 
each with four cores running at 3GHz with 16GB 
RAM in total.

Calculating the Average Heart Rate

In order to demonstrate the feasibility of our con-
cept, we selected finding the average heart rate 
of the patient as our case study. To compute the 
average heart rate of a patient, we will use an ECG 
annotation file from the THEW ECG database 
(Courderc, 2010). The annotation file consists of 
24-hour ECG data of the patient captured with a 
12-lead Holter system sampling at 1,000Hz. The 
file contains 87,896 entries for temporal distance 
(toc) of consecutive heart beats and each toc value 
is represented by 12-bit number.

We calculate average heart rate of a patient 
during N heart beats in two steps: 1) Accumulate 
the toc values for N heart beats, 2) divide the final 
sum by N, and then finally multiply with sample 
acquisition time. The trivial division and multipli-
cation operation for the second step is expensive to 
perform with the FHE, thus we require performing 
this step at the Smartphone. The first step will be 
computed completely in the cloud and the FHE 
encrypted result will be sent to the Smartphone 
along with FHE encrypted information related to 
the second step (i.e. N and acquisition time). The 
Smartphone can decrypt the result from the first 
step, and information related to second step then 
it can perform trivial division and multiplication 
to find the average heart rate.

Results Based on the 
Gentry’s FHE scheme

In Gentry’s FHE scheme (Gentry, 2009), encryp-
tion is performed on individual bits. In other words, 
encrypting a message of m-bits will generate m 
ciphertexts. Homomorphic operations on the 
ciphertexts correspond to bit-wise arithmetic. 
Specifically, homomorphic addition results in 
XOR operation and homomorphic multiplication 
results in AND operation of the message bits. 
Table 1 presents the execution times for each FHE 
primitive on the cluster node.

In order to perform integer additions with bit-
wise operations, we choose to implement Ripple 
Carry Adder. First, we calculate the sum and 
carry homomorphically for each bit and then the 
carry is forwarded to next level computation. The 
noise inside the ciphertext grows during carry 
computation which involves homomorphic mul-
tiplication. To prevent decryption errors, we need 
to perform recryption operations for the carry 
before forwarding to next level computation. Based 
on the results presented in Table 1, recryption 
operation takes longer than the rest of the opera-
tions and thus 99.9% of the execution time for 
adding two m-bit number is spent during recryp-
tion operation.

To analyze computational and storage require-
ments of Gentry’s FHE scheme, we calculate 
the average heart rate of the patient during one-
hour. The patient record for one-hour consists of 
approximately 4,096 toc values where each toc 
value is a 12-bit number. A 24-bit accumulator 
is chosen to prevent overflow for adding 4,096 
12-bit numbers. Computing one-hour average 
heart rate finished in approximately 700 hours 
on the cluster node. Each ciphertext has a size of 
roughly 0.1MB and storing one-hour of patient 
record requires ≈ 4.8GB of storage space . Since 
each ciphertext encrypts one-bit, this is equal to 
storage expansion of 800,000X. Our experiment 
results indicate that using Gentry’s FHE scheme 
is impractical both in terms of computation and 
storage.



483

Medical Data Analytics in the Cloud Using Homomorphic Encryption

Results Based on the BGV scheme

In the BGV scheme (Brakerski et al., 2012), mes-
sages and ciphertexts are defined over polynomial 
rings. Homomorphic addition and multiplication 
of ciphertexts will correspond to ring additions 
and multiplications respectively. Table 2 presents 
the execution times for each FHE primitive on 
the cluster node.

To perform additions of toc values with poly-
nomial rings we use the methods described in 
(Naehrig, M., et al, 2011) to encode each toc 
value. In (Naehrig et al, 2011), each message is 
represented by its binary encoding and each bit 
of the message is set as one of the coefficients of 
the message polynomial. Homomorphic additions 
correspond to polynomial additions and as long 
as the coefficients of the plaintext do not exceed 
plaintext space p, correctness are assured. The 
final result after computation can be recovered 
by first decrypting the ciphertext and then evalu-
ating the resulting polynomial at 2.

To analyze computational and storage require-
ments of the BGV scheme, we calculate the av-
erage heart rate of a patient during 24 hours. To 

represent a 12-bit toc value we choose to work with 
polynomials of degree 12. We set the parameters 
of the BGV scheme which enable us to pack 200 
slots in each ciphertext. Since each ciphertext can 
pack 200 toc values, accumulating the 87,896 toc 
values can be performed by ⌈87,896 ÷ 200⌉ = 
440 additions. Based on our simulations on the 
cluster node, computing 24-hour average heart rate 
takes approximately 70 ms. In terms of storage, 
one ciphertext has a size of roughly 65KB and 
storing entire patient records require 28 MB of 
storage space. Each ciphertext encrypts 200 toc 
values with 12-bit each, which corresponds to a 
data expansion ratio of 65,000×8/200×12 ≈ 217. 
While computing the average is slow compared 
to its no-encryption version, the BGV scheme is 
very close to providing the result in real-time with 
a moderate expansion in storage.

We perform following experiment to investi-
gate maximum achievable speedup by utilizing 
the parallelism in the cloud. We look at the par-
allelism at the process - level, since the library 
in (Halevi & Shoup, n.d.) is not thread-safe. We 
launch multiple concurrent processes and assign 
each process independent portions of the data. 

Table 1. Execution time of the operations for the Gentry’s FHE scheme 

Operation Execution Time

Encryption 1.45 Sec

Decryption 0.2 Sec

Recryption 24.95 Sec

Addition < 1 µs

Multiplication 1.79 ms

Table 2. Execution time of the operations for the BGV scheme 

Operation Execution Time

Encryption 1.65 sec

Decryption 0.65 sec

Addition 0.11 ms

Multiplication 0.8 sec



484

Medical Data Analytics in the Cloud Using Homomorphic Encryption

The results of each process can be combined 
later through OS-level pipes. Table 3 presents the 
speedup due to process-level parallelism on the 
cluster node. The speedup column is normalized to 
the single-thread runtime. The Efficiency column 
indicates the percentage speedup compared to the 
ideal speedup due to parallelism (i.e., N threads 
for N times speedup).

CONCLUSION AND FUTURE WORK

In this chapter, a long-term health monitoring 
system is introduced to achieve the end goal of 
detecting patient health issues by continuously 
monitoring the ECG data acquired outside the 
Healthcare Organization (HCO). This system 
consists of ECG acquisition devices, a cloud-based 
medical application, and back-end devices that 
display the monitoring results. While such a system 
can be trivially implemented by today’s technology 
by using existing ECG devices, cloud computing 
resources and highly capable Smartphones, one 
important issue arises when the intended applica-
tion is a medical application: The protection of 
Personal Healthcare Information (PHI).

Significant liability is associated with mishan-
dling PHI in the U.S.A., whether intentional or 
unintentional. The Health Insurance Portability 
and Accountability Act (HIPAA, n.d.) mandates 
strict regulations on protection PHI. Due to the 
unacceptable risks associated with mishandling 
PHI (due to whatever reason, including hardware 
or software malfunction or an intentional secu-
rity breach), cloud operators, such as Amazon 

(Amazon, n.d.) do not sign a Business Associate 
Agreement (BAA) which shifts a portion of the 
liability to the cloud operator. Without a form of 
a guarantee that the PHI will be safe during cloud 
based operation, HCO’s cannot take the risk and 
host their medical application in the cloud. This 
non-starter renders all of the benefits of cloud 
computing useless to an HCO.

This chapter formulates a system, in which the 
cloud can execute the medical application without 
the concern of PHI protection. This is achieved by 
an encryption system, called, Fully Homomorphic 
Encryption (FHE), which permits operations on 
encrypted data. Since the cloud operator can 
operate on data that it cannot observe, the data is 
secure even if there is a security breach. Only the 
parties with a private key can decrypt the data that 
was initially encrypted with FHE. Therefore, the 
protection of PHI implies protecting the private 
keys, which is the same responsibility as protecting 
passwords when accessing a computer.

We argue that, by providing such a tool for 
cloud operators to operate on encrypted data, and 
making the password protection the responsibility 
of the HCO, cloud operators will be motivated to 
sign a BAA. In fact, we have observed this at the 
University of Rochester Medical Center, where 
a small cloud backup company is willing to sign 
a BAA as long as the key is not stored in their 
system and the responsibility of the protection of 
the private keys lies 100% with the HCO. It is the 
conclusion of this chapter that, the same concept 
will eventually extend to the execution of a medical 
application when small operators sign a BAA to 
run a medical application as long as they are not 

Table 3. Multi-process runtime using a dual-socket Xeon server 

Process Runtime (ms) Speedup Efficiency (%)

1 69.8 1.00 100

2 35.8 1.95 97.4

4 21.5 3.25 81.4

8 11.75 5.96 74.5



485

Medical Data Analytics in the Cloud Using Homomorphic Encryption

storing the private keys. Managing the privacy 
of these keys is a significantly easier task for an 
HCO as compared to managing the privacy of the 
entire datacenter they are operating. This concept, 
therefore, holds the key to revolutionizing the US 
healthcare.

ACKNOWLEDGMENT

This work was supported in part by the National 
Science Foundation grant CNS-1239423 and a 
gift from Nvidia corporation.

REFERENCES

Alivecor. (2013). ECG screening made easy. 
Retrieved from http://www.alivecor.com

Amazon. (n.d.). Amazon web services (AWS). 
Retrieved from http://aws.amazon.com

Babai, L. (1985). On Lovász’ lattice reduction 
and the nearest lattice point problem. STACS, 
85, 13–20.

Boneh, D., Goh, E. J., & Nissim, K. (2005). Evalu-
ating 2-DNF formulas on ciphertexts. In Theory 
of cryptography (pp. 325–341). Berlin: Springer. 
doi:10.1007/978-3-540-30576-7_18

Brakerski, Z., Gentry, C., & Vaikuntanathan, V. 
(2012). (Leveled) fully homomorphic encryption 
without bootstrapping. In Proceedings of the 3rd 
Innovations in Theoretical Computer Science 
Conference (pp. 309-325). ACM.

Brakerski, Z., & Vaikuntanathan, V. (2011). 
Efficient fully homomorphic encryption from 
(standard) LWE. In Proceedings of Foundations 
of Computer Science (FOCS), (pp. 97-106). IEEE.

Brakerski, Z., & Vaikuntanathan, V. (2011). Fully 
homomorphic encryption from ring-LWE and se-
curity for key dependent messages. In Proceedings 
of Advances in Cryptology–CRYPTO 2011 (pp. 
505–524). Berlin: Springer. doi:10.1007/978-3-
642-22792-9_29

Cohen, J. D., & Fischer, M. J. (1985). A robust 
and verifiable cryptographically secure election 
scheme. In Proceedings of Foundations of Com-
puter Science (pp. 372–382). IEEE. doi:10.1109/
SFCS.1985.2

Coron, J. S., Mandal, A., Naccache, D., & Tibouchi, 
M. (2011). Fully homomorphic encryption over the 
integers with shorter public keys. In Proceedings 
of Advances in Cryptology–CRYPTO 2011 (pp. 
487–504). Berlin: Springer. doi:10.1007/978-3-
642-22792-9_28

Couderc, J. P. (2010). The telemetric and holter 
ECG warehouse initiative (THEW): A data reposi-
tory for the design, implementation and validation 
of ECG-related technologies. In Proceedings of 
Engineering in Medicine and Biology Society 
(EMBC), (pp. 6252-6255). IEEE.

Damgård, I., & Jurik, M. (2001). A generalisa-
tion, a simplification and some applications of 
Paillier’s probabilistic public-key system. In 
Proceedings of the 4th International Workshop on 
Practice and Theory in Public Key Cryptography: 
Public Key Cryptography (pp. 119-136). Berlin: 
Springer-Verlag.

Diffie, W., & Hellman, M. (1976). New direc-
tions in cryptography. IEEE Transactions on 
Information Theory, 22(6), 644–654. doi:10.1109/
TIT.1976.1055638

ElGamal, T. (1985). A public key cryptosystem and 
a signature scheme based on discrete logarithms. 
IEEE Transactions on Information Theory, 31(4), 
469–472. doi:10.1109/TIT.1985.1057074



486

Medical Data Analytics in the Cloud Using Homomorphic Encryption

Fahad, A., Soyata, T., Wang, T., Sharma, G., 
Heinzelman, W., & Shen, K. (2012). SOLARCAP: 
Super capacitor buffering of solar energy for self-
sustainable field systems. In Proceedings of SOC 
Conference (SOCC), (pp. 236-241). IEEE.

FDA. (2013). FDA safety communication: Cyber-
security for medical devices and hospital networks. 
Retrieved from http://www.fda.gov/medicalde-
vices/safety/alertsandnotices/ucm356423.htm

Gentry, C. (2009). A fully homomorphic encryp-
tion scheme. (Doctoral Dissertation). Stanford 
University, Palo Alto, CA.

Gentry, C., & Halevi, S. (2011). Fully homo-
morphic encryption without squashing using 
depth-3 arithmetic circuits. In Proceedings of 
Foundations of Computer Science (FOCS), (pp. 
107-109). IEEE.

Gentry, C., & Halevi, S. (2011). Implementing 
Gentry’s fully-homomorphic encryption scheme. 
In Proceedings of Advances in Cryptology–EU-
ROCRYPT 2011 (pp. 129–148). Berlin: Springer. 
doi:10.1007/978-3-642-20465-4_9

Gentry, C., Halevi, S., & Smart, N. P. (2012). 
Homomorphic evaluation of the AES circuit. 
In Proceedings of Advances in Cryptology–
CRYPTO 2012 (pp. 850–867). Berlin: Springer. 
doi:10.1007/978-3-642-32009-5_49

Goldwasser, S., & Micali, S. (1982). Probabilistic 
encryption & how to play mental poker keeping 
secret all partial information. In Proceedings of the 
Fourteenth Annual ACM Symposium on Theory 
of Computing (pp. 365-377). ACM.

Google. (n.d.). Google app. engine. Retrieved 
from http://code.google.com/appengine

Guo, X., Ipek, E., & Soyata, T. (2010). Resistive 
computation: avoiding the power wall with low-
leakage, STT-MRAM based computing. ACM 
SIGARCH Computer Architecture News, 38(3), 
371–382. doi:10.1145/1816038.1816012

Halevi, S., & Shoup, V. (n.d.). HElib. Retrieved 
from https://github.com/shaih/HElib

HIPAA. (n.d.). Wikipedia. Retrieved from http://
en.wikipedia.org/wiki/Hipaa

Hoang, D. B., & Chen, L. (2010). Mobile cloud 
for assistive healthcare (MoCAsH). In Proceed-
ings of Services Computing Conference (APSCC), 
(pp. 325-332). IEEE.

Hoang, D. T., Niyato, D., & Wang, P. (2012). 
Optimal admission control policy for mobile cloud 
computing hotspot with cloudlet. In Proceedings 
of Wireless Communications and Networking 
Conference (WCNC), (pp. 3145-3149). IEEE.

Kocabas, O., Soyata, T., Couderc, J. P., Aktas, 
M., Xia, J., & Huang, M. (2013). Assessment 
of cloud-based health monitoring using homo-
morphic encryption. In Proceedings of the 31st 
IEEE International Conference on Computer 
Design. IEEE. 

Leaf. (n.d). World’s thinnest 3-lead ECG patch. 
Retrieved from http://www.clearbridgevitalsigns.
com/brochures/CardioLeaf_ULTRA_Brochure.
pdf

Lobodzinski, S., & Laks, M. (2012). New de-
vices for every long-term ecg monitoring. Car-
diology Journal, 19(2), 210–214. doi:10.5603/
CJ.2012.0039 PMID:22461060

Lyubashevsky, V., Peikert, C., & Regev, O. (2010). 
On ideal lattices and learning with errors over 
rings. In Proceedings of Advances in Cryptology–
EUROCRYPT 2010 (pp. 1–23). Berlin: Springer. 
doi:10.1007/978-3-642-13190-5_1

Micciancio, D. (2001). Improving lattice based 
cryptosystems using the Hermite normal form. In 
Cryptography and lattices (pp. 126–145). Berlin: 
Springer. doi:10.1007/3-540-44670-2_11

Microsoft. (n.d.). Windows Azure. Retrieved from 
http://www.microsoft.com/windowazure



487

Medical Data Analytics in the Cloud Using Homomorphic Encryption

Naehrig, M., Lauter, K., & Vaikuntanathan, V. 
(2011). Can homomorphic encryption be practi-
cal? In Proceedings of the 3rd ACM Workshop 
on Cloud Computing Security Workshop (pp. 
113-124). ACM.

NIST. (2001). Advanced encryption standard 
(AES) [). Washington, DC: NIST.]. Federal 
Information Processing Standard, FIPS-197, 1.

Paillier, P. (1999). Public-key cryptosystems 
based on composite degree residuosity classes. 
In Proceedings of Advances in Cryptology—EU-
ROCRYPT’99 (pp. 223–238). Berlin: Springer. 
doi:10.1007/3-540-48910-X_16

Paypal. (n.d). Paypal. Retrieved from https://
www.paypal.com

PROCEED. (n.d.). Programming computation 
on encrypted data. Retrieved from http://www.
darpa.mil/Our_Work/I2O/Programs/PROgram-
ming_Computation_on_EncryptEd_Data_(PRO-
CEED).aspx

Rivest, R. L., Adleman, L., & Dertouzos, M. L. 
(1978). On data banks and privacy homomor-
phisms. Foundations of Secure Computation, 
32(4), 169–178.

Rivest, R. L., Shamir, A., & Adleman, L. (1978). A 
method for obtaining digital signatures and public-
key cryptosystems. Communications of the ACM, 
21(2), 120–126. doi:10.1145/359340.359342

Salesforce. (n.d.). Salesforce customer relation-
ship management (CRM). Retrieved from http://
www.salesforce.com

Shusterman, V., Goldberg, A., Schindler, D. M., 
Fleischmann, K. E., Lux, R. L., & Drew, B. J. 
(2007). Dynamic tracking of ischemia in the 
surface electrocardiogram. Journal of Electro-
cardiology, 40(6), S179–S186. doi:10.1016/j.
jelectrocard.2007.06.015 PMID:17993319

Smart, N. P., & Vercauteren, F. (2010). Fully ho-
momorphic encryption with relatively small key 
and ciphertext sizes. In Proceedings of Public Key 
Cryptography–PKC 2010 (pp. 420–443). Berlin: 
Springer. doi:10.1007/978-3-642-13013-7_25

Smart, N. P., & Vercauteren, F. (2011). Fully 
homomorphic SIMD operations. In Proceedings 
of Designs, Codes and Cryptography. Academic 
Press.

Soyata, T. (1999). Incorporating circuit level 
information into the retiming process. (Doctoral 
Dissertation). University of Rochester, Rochester, 
NY.

Soyata, T., Ba, H., Heinzelman, W., Kwon, M., & 
Shi, J. (2013). Accelerating mobile-cloud comput-
ing: A survey. Academic Press.

Soyata, T., & Friedman, E. G. (1994). Retiming 
with non-zero clock skew, variable register, 
and interconnect delay. In Proceedings of the 
1994 IEEE/ACM International Conference on 
Computer-Aided Design (pp. 234-241). IEEE.

Soyata, T., & Friedman, E. G. (1994). Synchronous 
performance and reliability improvement in pipe-
lined ASICs. In Proceedings of ASIC Conference 
and Exhibit, (pp. 383-390). IEEE.

Soyata, T., Friedman, E. G., & Mulligan, J. H. 
Jr. (1993). Integration of clock skew and register 
delays into a retiming algorithm. In Proceedings 
of Circuits and Systems (pp. 1483–1486). IEEE. 
doi:10.1109/ISCAS.1993.394015

Soyata, T., Friedman, E. G., & Mulligan, J. H. Jr. 
(1995). Monotonicity constraints on path delays 
for efficient retiming with localized clock skew 
and variable register delay. [). IEEE.]. Proceedings 
of Circuits and Systems, 3, 1748–1751.



488

Medical Data Analytics in the Cloud Using Homomorphic Encryption

Soyata, T., Friedman, E. G., & Mulligan, J. H. Jr. 
(1997). Incorporating interconnect, register, and 
clock distribution delays into the retiming process. 
IEEE Transactions on Computer-Aided Design of 
Integrated Circuits and Systems, 16(1), 105–120. 
doi:10.1109/43.559335

Soyata, T., & Liobe, J. (2012). pbCAM: Proba-
bilistically-banked content addressable memory. 
In Proceedings of SOC Conference (SOCC), (pp. 
27-32). IEEE.

Soyata, T., Muraleedharan, R., Funai, C., Kwon, 
M., & Heinzelman, W. (2012). Cloud-vision: Real-
time face recognition using a mobile-cloudlet-
cloud acceleration architecture. In Proceedings 
of Computers and Communications (ISCC), (pp. 
59-66). IEEE.

Soyata, T., Muraleedharana, R., Langdonb, J., 
Funaia, C., Amesc, S., Kwond, M., & Heinzel-
mana, W. (2012). COMBAT: Mobile-cloud-based 
compute/communications infrastructure for 
battlefield applications. [). SPIE.]. Proceedings of 
the Society for Photo-Instrumentation Engineers, 
8403, 84030K–1. doi:10.1117/12.919146

Stehlé, D., & Steinfeld, R. (2010). Faster fully 
homomorphic encryption. In Proceedings of 
Advances in Cryptology-ASIACRYPT 2010 (pp. 
377–394). Berlin: Springer. doi:10.1007/978-3-
642-17373-8_22

University of Rochester, Center for Integrated 
Research Computing. (n.d.). Bluehive cluster. 
Retrieved from http://www.circ.rochester.edu/
wiki/index.php/BlueHive_Cluster

Van Dijk, M., Gentry, C., Halevi, S., & Vaikuntana-
than, V. (2010). Fully homomorphic encryption 
over the integers. In Proceedings of Advances in 
Cryptology–EUROCRYPT 2010 (pp. 24–43). Ber-
lin: Springer. doi:10.1007/978-3-642-13190-5_2

KEY TERMS AND DEFINITIONS

Advanced Encryption Standard (AES): 
Widely used symmetric-key cryptography pub-
lished by National Institute of Standards and 
Technology (NIST).

Cloud Computing: A distributed computing 
system that relies on use of shared resources con-
nected by the Internet to manage data and perform 
computations.

Electrocardiogram (ECG): Recording elec-
trical activity of the heart to measure and diagnose 
abnormal rhythms of the heart.

Encryption: Encoding the contents of a mes-
sage such that only authorized parties can access 
the message.

Graphical User Interface (GUI): An inter-
face that allows visualization of information in 
graphical format.

Holter System: Portable monitor used for 
recording electrical activity of a patient continu-
ously during 24-48 hours of daily activity.

Homomorphic Encryption: An encryption 
system capable of performing meaningful opera-
tions on the encrypted messages without accessing 
the original message.

Lattice-Based Cryptography: Cryptographic 
systems in which primitives are based on the 
hardness of lattice problems.

Long Term Health Monitoring: Monitoring 
patients during extended period of time for diag-
nosing and treating health issues at an early stage.

Mobile-Cloud Task Partitioning: Partition-
ing and assigning different subtasks to mobile de-
vices or to cloud based on computational resource 
requirements of each subtask.


