
Assessment of Cloud-based Health Monitoring

using Homomorphic Encryption

Ovunc Kocabas∗, Tolga Soyata∗, Jean-Philippe Couderc∗†, Mehmet Aktas†, Jean Xia∗†, Michael Huang∗

∗Dept. of Electrical and Computer Engineering †URMC Medical Center

University of Rochester Rochester, NY 14627

Rochester, NY 14627 mehmet aktas@urmc.rochester.edu

{ovunc.kocabas,tolga.soyata,micheal.huang}@rochester.edu {jean-philippe.couderc,jean.xia}@heart.rochester.edu

Abstract—Current financial and regulatory pressure has pro-
vided strong incentives to institute better disease prevention,
improved patient monitoring, and push U.S. healthcare into the
digital era. This transition requires that data privacy be ensured
for digital health data in three distinct phases: I. acquisition, II.
storage, and III. computation. Each phase comes with unique
challenges in terms of proper implementation and privacy.

While the privacy of the data can be ensured with existing AES
encryption techniques in phases I (acquisition) and II (storage),
to enable healthcare organizations to take advantage of cloud
computing using resources such as Amazon Web Services, phase
III (computation) must also enable the privacy of the data.
Currently, there exists no system to enable direct computation
in the cloud while assuring data privacy.

Fully Homomorphic Encryption (FHE) is an emerging cryp-
tographic technique to permit computation on encrypted data
directly in the cloud without the need to bring the data back to the
computational node. However, this promising technique comes
with significant performance- and storage-related challenges.
While it will take more years before true FHE is mainstream, we
provide a feasibility study for its application to a simple long-
term patient ECG-data monitoring system.

I. INTRODUCTION

Accelerated by the US government to modernize the US

health system, cloud computing based medical applications

are an active research area [1]. While one motivation for this

is to reduce operational costs at the healthcare organization

(HCO) by eliminating the datacenters managed by the HCO,

an equally important motivation is to improve healthcare

by providing the doctors with long-term patient data as an

auxiliary diagnosis tool. We define long term data as digitized

measurements of a patient’s vitals over the course of his/her

treatment (e.g., blood pressure, ECG) that is longer than

what can be obtained within the HCO (e.g., multiple days

or weeks). In this paper, we study the possibility of a system

to provide long-term health monitoring strictly by utilizing

cloud computing resources (e.g., Amazon EC2 [2], Microsoft

Azure [3], or Google [4]), accessed by thin devices such as

tablets or mobile phones, while assuring complete patient data

privacy.

To turn this vision into reality, the privacy of the medical

data acquired outside the HCO must be ensured at three dis-

tinct phases of its transition: Phase I. Acquisition, where the

medical data are acquired outside the HCO via thin disposable

devices such as ECG patches [5], Phase II. Storage, where

Disk CPU

--Cloud App--

Internet Internet
CLOUD

Storage

Phase II

Computation

Phase III

ECG

Path Sensor

Sensor

Acquisition

Phase I

Execution

Phase III

Smartphone Tablet

Laptop/

Desktop

Cloud

 App

Cloud

 App

Cloud

 App

Fig. 1. Proposed system for long term health monitoring through a cloud-
based application.

the data is stored permanently in the cloud for future use, and,

Phase III. Computation, where the data is processed. While

existing AES-based encryption techniques [6] can ensure data

privacy in phases I and II, achieving computation in the cloud

(i.e., during Phase III) requires operating on encrypted data.

In this paper, we conduct a feasibility study of achieving

Phase III strictly in the cloud by using the emerging Fully

Homomorphic Encryption (FHE) techniques [7], [8] on a

restricted set of remote cardiac health monitoring applications

by using existing commodity ECG patches [5]. We focus on

the case, where the HCO has no resources allocated to the

storage or computation (i.e., no datacenter to host the medical

application), except the thin mobile devices (i.e., devices with

limited computational and storage capability), which strictly

act as the graphical user interface (GUI) devices.

Our proposed system is shown in Figure 1, where phase I

(Acquisition) of the long-term health monitoring is achieved

via the use of remote sensors that are capable of regular AES

encryption and transmission to the cloud via existing wireless

access points. Without loss of generality, we specifically focus

on the ECG-based applications and the resulting improved

diagnosis possibilities for heart diseases. Our system can be

applied to any sensor that has similar capabilities with a

backend application that has similar characteristics. In this

system, phase II (storage) and III (computation) are strictly

978-1-4799-2987-0/13/$31.00 ©2013 IEEE

443

in the cloud, which leaves only the GUI responsibility to the

mobile end-device during the access to the monitoring results.

The goal of our system is to push the entire workload into

the cloud, and allow thin devices to be used as acquisition

sensors and GUI. This will enable true cloud computing by

turning the end nodes of this system (i.e., acquisition and GUI)

into simple (disposable) devices, while leaving the core of the

system in the cloud. Furthermore, since nearly no information

is stored on the end-devices, data privacy concerns due to the

loss of the ECG patches and/or mobile devices by the patient

or the doctors (or nurses) are minimized, if not eliminated.

To the our best knowledge, this is the first paper that focuses

on the application of FHE to long-term patient monitoring. Our

contributions in this paper are summarized as follows:

1) we propose a cloud-based medical application where

the end nodes are simple and potentially disposable.

The core of the application resides strictly in the cloud,

permitting flexibility to the HCO in its data center

strategies;

2) we formulate Full Homomorphic Encryption (FHE) as

the core of this idea;

3) we identify the challenges in making this possible for a

specific application based on remote-ECG monitoring;

4) we determine what is possible within the following

few years while FHE acceleration is being widely re-

searched [9].

The rest of the paper is organized as follows. In Section

II, we provide background information on Electrocardiogram

(ECG) and Fully Homomorphic Encryption (FHE). In Sec-

tion III, we introduce our proposed system in detail and

identify the challenges of different parts of it. Section IV is

where we present our results on existing ECG based patient

data derived from the THEW database [10], followed by our

conclusions and propositions for future work in Section V.

II. BACKGROUND

To gain an insight into the challenges in applying FHE

into a broader scope of medical applications, we will provide

background information on our pilot medical application based

on Electrocardiogram (ECG) and FHE.

A. Case Study: Computing The Average Heart Rate

The proposed cloud-based technology for health informa-

tion will be designed to support an exhaustive list of data

that are routinely acquired by healthcare organizations (HCO)

from their patients such as: echo/MRI imaging data, subject

drug treatment, and physiological monitoring signals. In this

work, we have opted to limit our feasibility assessment to

a simple, yet real, set of data acquired from the THEW

worldwide ECG database [10]. This data contain information

about the electrical activity of the heart of the patient recorded

for 24-hours. In order to demonstrate the feasibility of our

concept, we selected average heart rate calculation as our case

study. To compute the average heart rate we use information

extracted from the annotation file of the ECG. The annotation

file provides information related to cardiac contraction for

each beat and the temporal distance (toc) between consecutive

beats. The toc values between consecutive beats will be used

to calculate the average heart rate.

B. Fully Homomorphic Encryption (FHE)

An FHE scheme enables computation of arbitrary functions

on encrypted data without compromising the privacy of the

original data. In 2009, Gentry [7] proposed the first plausible

mechanism for an FHE scheme which could perform an ar-

bitrary number of additions and multiplications homomorphi-

cally. In his proposal, random noise is introduced to ciphertext

for obstructing the message. The noise inside the ciphertext

grows with each addition and multiplication. After a number

of operations, the magnitude of the noise exceeds the threshold

that can be tolerated during the decryption. Gentry proposed

recryption method to overcome the increasing noise, in which

the noise in the ciphertext is reduced by evaluating decryption

homomorphically. However the cost of performing recryption

is prohibitively high which makes proposed FHE scheme

impractical, as we will also demonstrate with experimental

results. Following Gentry’s scheme, number of FHE schemes

and implementations have been proposed to date [8], [11]–

[20] to make FHE more practical. At present, the BGV

scheme [8] and its implementation [19] is the one of the most

promising candidates for a practical FHE scheme. We will also

demonstrate the results of BGV later.

III. COMPONENTS OF THE MEDICAL APPLICATION

The core of the proposed system is based on delegating

almost the entire computational workload to the cloud. The

system is composed of three distinct parts: 1) Real-time med-

ical data acquisition devices, 2) Cloud-based computation and

storage, and 3) GUI end nodes. In the following subsections,

these parts will be analysed separately.

A. Real-time medical data acquisition devices

Acquisition devices are the initiating nodes of real-time

medical data. These nodes can be either the disposable ECG

patches attached to a patient [5], mobile ECG carts used

in hospitals. These devices are assumed to be capable of

transmitting the acquired data wirelessly in an AES encrypted

format to protect the patient’s privacy. While AES [6] is

available even in the least expensive embedded devices [21],

FHE can only be handled in the cloud due to its computational

requirements.

B. Cloud-based computation and storage

The conceptualization that the acquisition node is only

capable of AES encryption implies that an AES encrypted

version of the medical records will be permanently stored in

the cloud. However, any portion of this data that needs to

be operated on in real-time has to be converted to the FHE

encrypted version. While AES to FHE conversion can be done

securely by using the methods in [20] which is very compute-

intensive, this conversion has to be performed only once.

The AES to FHE conversion can be performed offline, by

using the least expensive resources, since the conversion time

444

will be exposed as a delay in providing the remote-monitored

patient data to the doctor. This delay might not be important,

since the doctor will typically need these results after the

monitoring has been completed, e.g., in a few days [22]–[24].

C. GUI (Thin) end nodes

The other end-node of the application is the GUI device

which displays the results to the doctor. The entire set of

computations will be executed in the cloud, thus the end

result will be in FHE encrypted format when it is transferred

to the GUI device. This translates to a necessary capability

of the GUI device to perform FHE decryption. As we will

demonstrate in Section IV, today’s GUI devices are more than

capable of performing FHE decryiption efficiently.

IV. PERFORMANCE EVALUATION

In this section, we will provide actual measured results of

calculating the average heart rate of a patient using two FHE

schemes: a) Gentry’s first FHE scheme [7] and b) the BGV

scheme [8]. We use the library in [25] for the former scheme,

and the library in [19] for the latter.

A. Experimental Setup

To calculate the average heart rate of a patient, we use

a sample ECG annotation file record from the THEW ECG

database [10]. The annotation file is generated from ECG

samples of the patient captured via a 12-lead Holter system at

a 1000 Hz sampling rate over a 24 hour period and contains

87,896 entries for temporal distance (toc) of consecutive heart

beats. Each toc value is represented as a 12b number. Based on

the information in the annotation file, average heart rate during

N heart beats can be calculated in two steps: 1) Accumulating

the toc values for N heart beats, 2) dividing the final sum by

N , followed by a multiplication with sample acquisition time.

The most logical task partitioning is to perform the accu-

mulation in the cloud and leave the final division and multi-

plication steps to the GUI end-node, based on the observation

that, while these final division and multiplications are trivial

for the GUI end-node, which can be done after decryption,

they are, in fact, computationally expensive in FHE-encrypted

format. We ran our simulations on a dual-Xeon E5450 node,

16GB RAM, quad-cores @3GHz.

B. Results Based on Gentry’s Original FHE scheme [7]

In [7] each bit of the message is encrypted individually,

generating m ciphertexts for an m-bit message. Homomorphic

addition and multiplication of ciphertexts will translate into

bitwise XOR and AND of the message bits respectively. Ta-

ble I demonstrates the execution times of each FHE operation.

Operation Execution Time

Encrypt 1.45 sec

Decrypt 0.2 sec

Recrypt 24.95 sec

Addition ≤ 1 µs

Multiplication 1.79 ms

TABLE I
EXECUTION TIMES FOR THE GENTRY’S ORIGINAL FHE SCHEME [7]

To perform additions with the bitwise arithmetic, we choose

to implement a Ripple Carry Adder. For each bit, first sum

and carry is calculated, then the carry is propagated to the next

level. During the carry computation, homomorphic multiplica-

tion is performed, which increases the noise in the ciphertext.

Therefore, we recrypt the carry before forwarding to the next

level to prevent decryption errors. Since recrypt operation

takes longer than homomorphic addition and multiplication,

99.9% of the execution time is spent during recryption.

To investigate computational and storage requirements of

using the FHE scheme in [7], we choose our case study

as calculating average heart rate of the patient during one

hour time period. One hour of patient record contains ≈4,096

toc values. To accumulate 4,096 12b numbers, we pick our

accumulator size as 24b to prevent an overflow. Based on our

simulations on the cluster node, computing a one-hour average

heart rate takes ≈700 hours. Each ciphertext encrypts one bit

information and has a size of ≈0.1MB. This is equal to an

≈ 800, 000× storage expansion ratio and a one hour patient

record requires ≈4.8 GB of storage space. Our results indicate

that Gentry’s original FHE scheme [7] is clearly impractical

even for the long-term patient monitoring both in terms of

computation and storage.

C. Results Based on BGV scheme [8]

The BGV scheme [8] and its implementation [19] is one

of the most recent and promising works for making FHE

more practical. The scheme is based on Ring-LWE [26] where

messages and ciphertexts are defined over polynomial rings.

Homomorphic addition and multiplication of ciphertexts will

correspond to ring additions and multiplications of messages,

respectively. Table II shows the execution times for each FHE

operation on the cluster node.

Operation Execution Time

Encrypt 1.65 sec

Decrypt 0.65 sec

Addition 0.11 ms

Multiplication 0.8 sec

TABLE II
EXECUTION TIMES FOR THE BGV SCHEME [8]

The BGV scheme introduces several methods to address

inefficiencies of the previous FHE schemes. Multiple messages

can be packed into one ciphertext by using the techniques

in [27], where each message can carry multi-bit information.

The expensive recrypt operation is avoided by defining the

level of the function (i.e., multiplicative depth) beforehand and

adjusting the parameters during the key generation [8].

To investigate the performance of the BGV scheme, we

choose to calculate average heart rate of the patient during a

24-hour time period. For encoding each toc value, we use the

methods in [16]. By setting parameters correctly, accumulation

can be performed by using only homomorphic additions. We

pack each ciphertext with 200 toc values and accumulating the

87,896 toc values can be performed by ⌈87,896/200⌉ = 440

additions. Our simulations show that the 24-hour average heart

can be calculated in ≈70 ms. Each ciphertext, containing 200

445

toc values (12b each), occupies ≈65KB storage space which

corresponds to a data expansion ratio of 65,000×8

200×12
≈ 217×.

Storing a 24-hour patient record requires ≈28MB. While

computing the average is slow compared to its unencrypted

version, the BGV scheme is very close to providing the result

in real-time with acceptable storage expansion.

To explore the maximum attainable acceleration due to

parallelism in the cloud, we performed the following experi-

ment: Since the library in [19] is not thread-safe, we explored

parallelism at the process level: we run multiple concurrent

processes and let the operating system (OS) distribute each

thread to available processor threads. The results from each

core/thread can be combined later through OS-level pipes.

Table III demonstrates our experimental results: The Speed-

up and Efficiency columns indicate the maximum acceleration

attainable due to hardware parallelism.

Processes Runtime (ms) Speed-up Efficiency (%)

1 69.8 1.00 100

2 35.8 1.95 97.4

4 21.5 3.25 81.4

8 11.75 5.96 74.5

TABLE III
MULTI-PROCESS RUNTIME USING A DUAL-SOCKET XEON SERVER.

V. CONCLUSIONS AND FUTURE WORK

We have described a cloud-based system using FHE to

review ECG data which presents a novel method of accessing,

analysing and displaying of private health information (PHI).

We chose to use ECG data for our study due to its ubiquitous

use in healthcare, however the system we described maybe

generalized to many other medical applications. We identified

the two major challenges in turning an FHE-based medical

application into reality: storage and computation.

We determined the storage-expansion due to FHE-based

data to be 217× in our test study. To cope with this, we

proposed a tiered cloud storage mechanism which stores the

raw medical data in AES-encrypted format, and a second-tier

FHE-data cache is used to store the FHE version of this data.

We demonstrated that, this tiered storage is sufficient to allow

the ECG-based medical application to store sufficient patient

information to allow long-term health monitoring.

We determined that, simple operations, such as, computing

the average heart rate over a 24-hour period can be done in

real time with a 70 ms latency using the newly introduced

FHE library based on the Ring LWE algorithm. We also

demonstrated the applicability of hardware parallelism to FHE

computations. This simple, yet real, operation, combined with

the ability of parallelizing using clustered hardware, shows

the possibility of turning FHE into reality for a restricted set

of medical cloud applications in the near future. Although

far from a complete feasibility study, we argue that, our

preliminary work sets the stage for tackling significantly more

sophisticated medical applications in the near future.

ACKNOWLEDGMENT

This work was supported in part by the National Science

Foundation grant CNS-1239423 and a gift from Nvidia Corp.

REFERENCES

[1] Suave Lobodzinski and Michael Laks, “New devices for every long-
term ecg monitoring,” Cardiology Journal, vol. 19, no. 2, pp. 210–214,
2012.

[2] Amazon, “Amazon Web Services (AWS),” http://aws.amazon.com.
[3] Microsoft, “Windows Azure,” http://www.microsoft.com/windowazure.
[4] Google, “Google App Engine,” http://code.google.com/appengine.
[5] Cardio Leaf, “World’s Thinnest 3-Lead ECG Patch,”

http://http://www.clearbridgevitalsigns.com/brochures/CardioLeaf
ULTRA Brochure.pdf.

[6] National Institute of Standards and Technology, “Advanced encryption
standard (AES),” Nov. 2001, FIPS-197.

[7] Craig Gentry, “Fully homomorphic encryption using ideal lattices,”
2009, STOC, pp. 169–178.

[8] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan, “(leveled)
fully homomorphic encryption without bootstrapping,” in ITCS, 2012,
pp. 309–325.

[9] “PROgramming Computation on EncryptEd Data (PROCEED),”
http://www.darpa.mil/Our Work/I2O/Programs/ PROgram-
ming Computation on EncryptEd Data (PROCEED).aspx.

[10] J.P. Courderc, “The telemetric and holter ecg warehouse initiative
(thew): A data repository for the design, implementation and validation
of ecg-related technologies,” IEEE Publishing, vol. 6252, no. 5, pp.
6252–6255, 2010.

[11] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan,
“Fully homomorphic encryption over the integers,” in EUROCRYPT,
2010, pp. 24–43.

[12] Zvika Brakerski and Vinod Vaikuntanathan, “Fully homomorphic
encryption from ring-lwe and security for key dependent messages,”
in CRYPTO, 2011, vol. 6841, p. 501.

[13] Zvika Brakerski and Vinod Vaikuntanathan, “Efficient fully homomor-
phic encryption from (standard) lwe,” in FOCS, 2011, pp. 97–106.

[14] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi
Tibouchi, “Fully homomorphic encryption over the integers with shorter
public keys,” in CRYPTO, 2011, pp. 487–504.

[15] Craig Gentry and Shai Halevi, “Fully homomorphic encryption without
squashing using depth-3 arithmetic circuits,” in FOCS, 2011, pp. 107–
109.

[16] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan, “Can
homomorphic encryption be practical?,” in CCSW, 2011, pp. 113–124.

[17] Nigel P. Smart and Frederik Vercauteren, “Fully homomorphic encryp-
tion with relatively small key and ciphertext sizes,” in PKC, 2010, pp.
420–443.

[18] Damien Stehlé and Ron Steinfeld, “Faster fully homomorphic encryp-
tion,” in ASIACRYPT, 2010, pp. 377–394.

[19] Shai Halevi and Victor Shoup, ,” https://github.com/shaih/HElib.
[20] Craig Gentry, Shai Halevi, and Nigel P. Smart, “Homomorphic evalua-

tion of the AES circuit,” in CRYPTO, 2012, pp. 850–867.
[21] “Microchip Embedded Security,” http://www.microchip.com/

pagehandler/en us/technology/embeddedsecurity.
[22] Tolga Soyata, Rajani Muraleedharan, Colin Funai, Minseok Kwon, and

Wendi Heinzelman, “Cloud-Vision: Real-Time face recognition using a
Mobile-Cloudlet-Cloud acceleration architecture,” in Proceedings of the

17th IEEE Symposium on Computers and Communications (IEEE ISCC

2012), Cappadocia, Turkey, Jul 2012, pp. 59–66.
[23] Tolga Soyata, R. Muraleedharan, S. Ames, J. H. Langdon, C. Funai,

M. Kwon, and W. B. Heinzelman, “Combat: mobile cloud-based
compute/communications infrastructure for battlefield applications,” in
Proceedings of SPIE, May 2012, vol. 8403, pp. 84030K–84030K.

[24] Tolga Soyata, He Ba, Wendi Heinzelman, Minseok Kwon, and Jiye Shi,
“Accelerating mobile cloud computing: A survey,” in Communication

Infrastructures for Cloud Computing, H. T. Mouftah and B. Kantarci,
Eds. IGI Global, Hershey, PA, USA, 2013.

[25] Craig Gentry and Shai Halevi, “Implementing gentry’s fully-
homomorphic encryption scheme,” 2011, EUROCRYPT, pp. 129–148.

[26] Vadim Lyubashevsky, Chris Peikert, and Oded Regev, “On ideal lattices
and learning with errors over rings,” in EUROCRYPT, 2010, pp. 1–23.

[27] Nigel P. Smart and Frederik Vercauteren, “Fully homomorphic SIMD
operations,” Manuscript at http://eprint.iacr.org/2011/133, 2011.

446

