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Abstract—With a large number of commercially-available non-
invasive health monitoring sensors today, remote health mon-
itoring of patients in their homes is becoming widespread. In
remote health monitoring, acquired sensory data is transferred
into a private or public cloud for storage and processing. While
simple encryption techniques can assure data privacy in the case
of private clouds, ensuring data privacy becomes a lot more
challenging when a public cloud (e.g., Amazon EC2) is used to
store and process data. We present an approach that eliminates
data privacy concerns in the public cloud scenario, by utilizing
an emerging encryption technique called Fully Homomorphic
Encryption (FHE). The ability of FHE to allow computations
without actually observing the data itself makes it an attractive
option for certain medical applications. In this paper, we use
cardiac health monitoring for our feasibility assessment and
demonstrate the advantages and challenges of our approach by
utilizing a well-established FHE library called HElib.

I. INTRODUCTION

Cloud computing can reduce healthcare costs by outsourc-

ing the storage and computation of medical data to cloud

operators, however, Personal Health Information (PHI) privacy

is strictly mandated by the Health Insurance Portability and

Accountability Act (HIPAA) [1]. Signing a Business Asso-

ciate Agreement (BAA) [2] authorizes cloud storage operators

(e.g., CareCloud [3] and DrChrono [4]) to store PHI data.

These offerings are all based on encrypted data storage,

however, there is currently no service that offers secure long-

term patient monitoring, which would imply computation on

encrypted data. This paper proposes a novel approach to

eliminate privacy concerns. Our proposed Fully Homomorphic

Encryption (FHE) based remote patient monitoring solution

allows the cloud to perform computations on encrypted data,

without actually observing the data (i.e., patient private health

information). While this method holds the promise to com-

pletely eliminate the cloud-based privacy concerns, it comes

at a steep price: FHE-based operations are orders of magnitude

slower than regular operations, rendering FHE impractical for

generic applications [5]–[7].
Contributions of this paper are: 1) implementation of a well-

known ECG algorithm using an open source FHE library [8],

2) detailed description of the steps required for such an

implementation, which are far from trivial, 3) presentation of

a proof-of-concept study on a restricted set of computations

for long-term patient health monitoring, 4) demonstration of

the potential for FHE-based generalized secure medical cloud

computing. Our claims are proven on test data taken from the

University of Rochester THEW ECG database [9], and it is

shown that such operations can be performed homomorphi-

cally, thereby guaranteeing information security. Given that

cardiac diseases are the #1 cause for deaths in the United

States [10], our study is an important step in the development

of generalized secure medical cloud computing.

This paper is organized as follows: Section II provides

background information on FHE, followed by a system- and

application-level introduction to our proposed solution. A

description of the nature of the acquired medical data and the

operations performed on this data are described in Section III.

We detail the FHE scheme used for our application devel-

opment in Section IV and our circuit-based computational

approach for this development in Section V. The details of

our implementation are presented in Section VI and its per-

formance evaluation in Section VII. Conclusions and pointers

to future research are provided in Section VIII.

II. MEDICAL CLOUD COMPUTING ENVIRONMENT

Figure 1 presents the proposed medical application for long-

term patient monitoring. The application is partitioned into

three distinct phases [6]: Acquisition (Phase I), Storage (Phase

II) and Computation (Phase III). In this section, we introduce

the details of each phase and propose methods to protect the

privacy of medical data in each phase.

A. Background on Fully Homomorphic Encryption (FHE)

HIPAA [1] enforces rules to protect the privacy of medical

data. Conventional symmetric-key cryptosystems such as AES

can be used to provide HIPAA-compliant storage [11]. How-

ever, once the data is encrypted with AES, no computation can

be performed on the encrypted data without first decrypting

it. In this paper, we propose to use Fully Homomorphic

Encryption [12], which is a type of encryption that allows

computations on encrypted data without decrypting it, thereby

eliminating privacy concerns.

B. ECG Acquisition Devices

Currently a variety of wearable devices [13], [14] perform

ECG recording of patients remotely, however, they are not ca-

pable of performing long-term trend analysis. In the proposed

scheme, Phase I (on the left of Figure 1) consists of such

devices. We assume these devices will acquire the medical

data and transfer them to the cloud in both AES and FHE

encrypted format. While AES encryption can be performed

without any significant resource usage, FHE encryption is
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Fig. 1: Proposed Cloud-based secure long-term patient monitoring system.

computationally expensive. Therefore FHE encryption can be

done with a nearby devices such as patient’s smartphone or

a cloudlet [15]–[18]. The communication between acquisition

device and nearby device can be secured with conventional

encryption schemes [19].

C. Storage and Computation of the Patient Data

The cloud will provide two essential functionalities: storage

(Phase II) and computation (Phase III) as shown in Figure 1.

The results of the computations will be transmitted to doctor’s

medical device in FHE-encrypted format, where it can be

decrypted only by doctors’ private key [20], [21]. We note that

medical data will be always kept in encrypted format between

acquisition to decryption by the doctor, which enables long-

term health monitoring possibilities that didn’t exist before.

We propose two alternate paths to transmit medical data

to the doctor as shown in Figure 1. In the top path, the

medical data is encrypted with AES, which will also serve as

permanent storage of the medical data. In the bottom path, the

medical data is encrypted with FHE that enables computations

on the encrypted medical data and transmits results to the

doctor. Top and bottom paths are synchronized so that based

on the results of the bottom path, the doctor can request actual

raw data from top path for further analysis. This separation

could also save storage space, since the FHE-encrypted data

is orders of magnitude larger than AES-encrypted data. FHE-

encrypted data can be discarded after computations, while

AES-encrypted data will be stored permanently.

D. Operations in the Target Medical Application

The proposed medical application will provide two sets of

information to the doctor: vital patient health statistics and

long-term trend analysis. Our focus will be on the long-term

cardiac trend analysis that remains one the most challenging

obstacles for developing new drugs and biotechnological prod-

ucts. We choose detecting long QT syndrome (LQTS) as our

long-term cardiac analysis which can cause potential deadly

cardiac hazards, abbreviated as TdP [22]–[24]. For the vital

patient health statistics, we choose average heart rate (HR),

minimum and maximum HR as our set of statistics which

are also frequently used by doctors to monitor patient’s heart

activity. We note that more sophisticated computations can be

performed with FHE, yet we choose a set of fundamental op-

erations that could serve as a base to build more sophisticated

ones [17], [25].

III. COMPUTATIONAL FRAMEWORK

In this section, we will present the computational framework

for the proposed medical application. We model the compu-

tations introduced in Section II-D as two set of functions:

computation and aggregation. We use LQTS detection to

explain the details of our framework.

A. Computational Framework for LQTS Detection
LQTS detection can be done using the widely accepted

Bazett’s formula [26], which is based on the QT and RR

intervals in the ECG waveforms (see Figure 2). QT interval

represents the ventricular recovery phase of the heart, while

RR interval determines the heart rate. Bazett’s formula de-

tects LQTS by first computing corrected value of QT (i.e.,

QTc), and then comparing QTc with a clinical threshold (th).

Equation 1 presents Bazett’s formula with a common clinical

threshold of 500 ms, where QTc > 500 is considered as an

LQTS hazard.

QTc =
QT√
RR

=⇒
{

Normal QTc ≤ 500
LQTS QTc > 500

(1)
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Fig. 2: QT and RR intervals in an ECG
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B. Modeling the Data Stream and Functions

Medical data d[i]: This is the stream of FHE-encrypted

ECG data transmitted from patients’ home to the cloud.

Computation functions fc(.): These are the functions that

perform operations on medical data d[i]. An example of fc(.)
for the LQTS detection is computing the following equation

over λ samples of medical data d[i]:

dc[i] = fc(d[i]) = (d[i] > 500) |i=1···λ (2)

that produces λ Boolean results for each d[i].
Aggregation functions fa(.): These are the functions that

aggregate results computed by fc(.) and produce a summa-

rized result. An example of fa(.) for the LQTS detection is

detecting if LQTS hazard happened during λ samples of d[i]
with Logical OR operation which is presented below:

da[j] = fa(dc[i]) |j=1···ζ =
∧

j=1···ζ

( ∧
i=1···λ

dc[i]

)
(3)

where da[j] are the ζ-aggregated results from the λ-element

data stream d[i]. Intuitively, fa(.) computes “the patient is sick

if sample 0 says so, OR sample 1 says so OR ...”

IV. FHE CIRCUIT-BASED COMPUTATIONAL STRUCTURE

We will now describe the inner workings of the state-of-

the-art FHE scheme called Brakerski-Gentry-Vaikuntanathan

(BGV) scheme [27] and its implementation HElib [8].

A. Leveled FHE scheme

Gentry’s first FHE scheme [12] allowed arbitrary number

of additions and multiplications on the encrypted data. In this

scheme a small noise is introduced to the encrypted message

which affords FHE’s security and with each multiplication the

noise inside ciphertext increases exponentially. To allow an

arbitrary number of operations, a crucial step is the bootstrap-
ping method which resets the noise. This step however, incurs

severe performance penalties and makes FHE impractical.

Recent FHE schemes proposed different noise management

methods such as modulus-switching [28] to mitigate perfor-

mance penalties associated with bootstrapping. A variant of

BGV is called leveled FHE scheme, in which the number

of cascaded multiplication operations (termed multiplicative
depth) can be set beforehand by a variable called level L.

With this leveled version, a ciphertext starts at level L after

encryption and level of the ciphertext decreases by one with

each multiplication. Operations can be performed until the

ciphertext reaches L = 1 and any multiplication after this point

will cause a decryption error. The caveat of the leveled FHE

scheme is the necessity to determine the level L beforehand,

as we will do in our proposed computations.

B. Plaintext Space

To allow computations over encrypted medical data, first

we need to encode data as messages on plaintexts based

on characteristics of BGV. BGV uses polynomial rings in

the form of GF (pd) to represent plaintexts, therefore homo-

morphic addition (+h) and homomorphic multiplication (×h)

correspond to addition and multiplication of plaintexts in the

GF (pd). Polynomial addition and multiplication differs from

the integer arithmetic that will be used in the proposed medical

application. This requires special handling of encoding the

medical data to plaintexts that allows all possible operations in

the proposed medical application. To compute all operations

for the medical application we will use the polynomial ring

GF (2), where +h ↔ XOR and ×h ↔ AND. XOR and AND

operations form a universal set which allows computing any

possible function. Therefore we will convert our functions to

binary circuits to evaluate the computations with FHE.

C. Message Packing

BGV uses the techniques proposed in [29] to partition

plaintext space into multiple slots such that a ciphertext can

encrypt multiple messages at once. These slots are called as

plaintext slots and allows executing homomorphic operation

in parallel similar to Single Instruction Multiple Data (SIMD)

fashion. Figure 3 exemplifies a ciphertext X, encrypting a

plaintext that packs N 4-bit messages into plaintext slots.

1 1 0 0 1 0 1 0( )X = Ench 1 1 1 1

… 

… 

] 

X[N] = 15 12 10 ]

Fig. 3: N 4-bit messages packed into plaintext slots.

For the rest of the paper, we let the lower case x7 · · ·x0

notation to denote the plaintext slots, and the upper case

bold notation X to denote the ciphertext, i.e., the encrypted

version of plaintext X=(x7 · · ·x0). Therefore, X=Enc(X)=
Enc(x7 · · ·x0), where Enc() is the homomorphic encryption.

D. Primitive Operations in BGV

Message packing allows homomorphic operations to be

executed in parallel like SIMD fashion. For example, assume

ciphertexts A and B encrypt η plaintext slots. Then A +h B
performs homomorphic addition in parallel to η-slots. Note

that result of the homomorphic operations will depend on the

selection of plaintext space GF (pd). We explain four set of

BGV primitive operations in GF (2) plaintext space, that will

be used extensively during the implementation of the proposed

medical application.

Homomorphic Addition (+h): performs slot-wise XOR of

the corresponding plaintexts. +h does not affect the level L
of the BGV scheme.

Homomorphic Multiplication (×h): performs slot-wise

AND operation of the corresponding plaintexts. ×h operation

reduces the level L of the ciphertext by one, thereby dominat-

ing the level of the BGV scheme.

Rotate (>>>h, <<<h): rotates slots in a barrel shifter

fashion that wraps around based on the rotation direction.

Rotate could cause garbling of the data which can be corrected

using Select operation discussed next.

Select (selmask): is similar to multiplexer circuit and choses

between slots of two ciphertexts. An unencrypted binary vector
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is used as a selection mask. For example, if the selection mask

entry is 1 for slot-index i, then ith slot from first ciphertext will

be selected, otherwise it is selected from second ciphertext.

Select operation will be used during our implementation to

mask out the bits after rotate operation.

E. Performance Analysis

The performance of FHE implementation with BGV scheme

will depend on the level L parameter. Figure 4 shows that

the level L affects both ciphertext size and execution times

of homomorphic operations. Choosing level L too high both

increases the ciphertext size and execution times. However,

if level L is too low then desired operations could not be

computed. Figure 4 (bottom) also highlights the performance

difference between homomorphic operations. For a specific

level L, addition is almost free while multiplication and rotate

operations are computationally expensive.

Therefore, during our implementation we will focus on

optimizations that reduce required level L for the proposed

application and number of multiplications, and rotations.

Fig. 4: Effect of BGV Level on performance.

V. FHE IMPLEMENTATION STEPS

To utilize BGV efficiently, the entire cloud application must

be centered around the computational roadmap shown in Fig-

ure 5. The top of this figure (i.e., the data transformation path)

shows the transformations that the incoming data stream d[i]
must go through to produce a properly-formatted ciphertext.

This top part is assumed to be performed during data acquisi-

tion by a computationally-capable device, such as the patient’s

smartphone or a cloudlet [15], [30], [31] (see Figure 1). The

bottom of Figure 5 (i.e., the functional transformation path)

will be the focus of this section, which details the steps

that must be taken to convert the computation (fc(.)) and

aggregation (fa(.)) functions into BGV primitives. These steps

include Function-to-Circuit mapping (Section V-A), Circuit-

to-SIMD mapping (Section V-B), and Execution using BGV

primitives (Section V-C and Section V-D).

XOR
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XOR

XOR

AND

XOR

AND

AND

AND

AND

XOR

XOR

XOR

XOR

d[i]

Data

Packing
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fc(.)
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Fig. 5: Roadmap for secure cloud computing with FHE

A. Conversion from Function to Circuit
The first step in functional transformation is the conversion

of a function f(.) into a binary circuit. Without loss of

generality, this step can be exemplified on a 4-bit greater-than

(X > Y ) comparator as follows:

X>Y = (x3y3 ⊕ x2y2e3 ⊕ x1y1e3e2 ⊕ x0y0e3e2e1) (4)

where xi is the value of bit i of X , yi is the inverse of bit i
of Y , and ei is their bitwise equality (xi==yi).

B. Circuit to SIMD Mapping
This step is necessary to execute homomorphic operations in

a SIMD fashion. To gain insight into this concept, remember

from Section IV-C how each ciphertext encrypts a plaintext

that maps the bits of a message into plaintext slots in GF (2).
Let X and Y be such ciphertexts that encrypt plaintexts packing

k-bit messages X and Y . Further, assume that bit i of message

X is mapped to plaintext slot index i (e.g., x0 is mapped to slot

0) and the plaintext is represented as (xk−1 xk−2 · · · x1 x0).
The homomorphic addition operation X+hY adds (i.e., XORs)

each plaintext bit having the same slot index, i.e., a single +h

operation on the ciphertext performs bitwise-XOR operations

on all plaintext slots in parallel. This has a drawback: No

operation can be performed on messages with a different
slot index, unless proper rotation and selection operations are

performed, as detailed in Section IV-D.
To exemplify these trade-offs, let us focus on slot index

assignments in Equation 4. Computing terms like x0y0, x1y1,

x2y2, x3y3 is equal to performing a single ×h operation

X×h Y ⇐⇒ (x3 x2 x1 x0)∧ (y3 y2 y1 y0) on ciphertexts,

where⇐⇒ denotes the relationship between the ciphertext and

plaintext, and ∧ is slotwise AND. Alternatively, computing

terms like x2y2e3 poses a problem since e3 is in a different

slot index than x2 and y2. So, we need to rotate E right to

align it with X×hY, followed by a selection operation to mask

out the bits diffusing from neighboring plaintext slots.

C. Conversion from SIMD to FHE Primitives
To evaluate the circuit in Equation 4 using BGV primitives,

we decouple the computation into two separate homomorphic

multiplications (×h) as follows:

(X >h Y) = (X ×h Y)×h M ⇐⇒ (5)(
(x3 x2 x1 x0) ∧ (y3 y2 y1 y0)

)
∧ (1 e3 e3e2 e3e2e1)
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ei = XNOR(xi, yi) = xi ⊕ yi = xi ⊕ yi ⊕ 1 (6)

where M and E are the ciphertexts that are the encrypted

versions of (1 e3 e3e2 e3e2e1) and (e3 e2 e1 e0). Calculating

M from E requires storing rotated versions of E in tempo-

rary ciphertexts that store encrypted values of (1 e3 e2 e1),
(1 1 e3 e2) and (1 1 1 e3). Rotation diffuses unwanted bits

of E into temporary ciphertexts, which must be replaced with

“1”s via a proper selection mask. M is then computed by

multiplying these temporary ciphertexts, which reduces the

level of M by two. Once M is computed, the final result of

>h is determined by first computing Y, and then calculating

(X ×h Y ×h M). Note that the resulting ciphertext is at level

L − 3 indicating the cost of >h as 3 levels. In general,

comparison of k-bit messages requires log2 k+1 levels (log2 k
levels for computing M and 1 level for ×h at the end).

D. Aggregation of Results

Section V-C detailed the implementation of homomorphic

comparison (>h) which detects LQTS based on Equation 2.

The result of this comparison is TRUE or FALSE (i.e.,

LQTS Detected / Not Detected). To detect LQTS in any
sample within a given interval, a Logical OR aggregation must

be performed over multiple comparison results as shown in

Equation 3. Logical OR function can be expressed as a depth-

1 circuit using XOR, AND gates as OR(xi, yi)=xi⊕yi⊕xiyi.
The aggregated result will be checked for even a single “1”

in any slot which means LQTS Detected, otherwise it will be

interpreted as Normal. Aggregation can be performed in binary

tree fashion which results in O(	log2 N
)-depth.

VI. IMPLEMENTING MEDICAL APPLICATIONS

In this section, we provide details on the FHE-based im-

plementation of medical applications using the computational

structure described in Section IV, and the implementation

steps described in Section V. Performance of FHE-based

applications depend on two factors: 1) the level L of the FHE

scheme, and 2) the number of compute-intensive multiplica-

tion and rotation operations. We propose several optimizations

to reduce both the level L and the number of expensive

FHE operations. We calculate the required level L for each

application that operates on N ciphertexts encrypting a vector

of k-bit ECG data. Without loss of generality, we specifically

focus on three fundamental operations : 1) average heart rate,

2) LQTS detection (Section III-A), and 3) minimum and

maximum heart rate calculation.

A. Average Heart Rate

Finding the average heart rate involves accumulating en-

crypted values in N ciphertexts. For an efficient implementa-

tion of FHE-based accumulation, we use conventional VLSI

design techniques similar to Wallace [32] and Dadda [33]

multipliers that perform high-speed multi-operand additions by

reducing both the depth and the number of carry operations.

This design approach benefits our FHE-based accumulation in

two ways: 1) reducing the number of carry operations avoids

compute-intensive ×h operations, and 2) reducing the depth

of computations translates to a reduced L in FHE.

We implement multi-operand additions by using a tree of

Carry Save Adders (CSA), which reduces N operands down

to 2. Remaining operands are added using a fast parallel-

prefix adder with a low-depth carry calculation/propagation

to compute the final sum. Both CSA and parallel-prefix

adders are amenable to SIMD, which perfectly fits the FHE

implementation described in Section V.

Carry Save Adder (CSA): compresses 3 k-bit inputs (X,

Y, Z) to 2 outputs (S: sum, C: carry) as follows:

S = X ⊕ Y ⊕ Z

C = (XY ∨XZ ∨ Y Z) << 1 (7)

where ⊕ and ∨ are SIMD operations performed on all k bits of

the input in parallel. Multiplication depth of the CSA adder is

determined by the computation of C which requires a depth-3

circuit (1 for multiplications and 2 for combining the results

of multiplications via ∨). To reduce depth of computing C, we

replace OR operation with XOR which yields an equivalent

result in this specific case. This reduces the depth of CSA from

3 to 1. To reduce N k-bit operands, multiple stages of CSAs

can be arranged as a tree by connecting S and C as inputs to

other CSAs. The number of CSA stages (nCSAStages) for

reducing N operands is lower-bounded by Equation 8 [34] as

shown below. The overall multiplication depth required by the

CSA compression is therefore equal to nCSAStages.⌈
log2(N/2)

log2(3/2)

⌉
+ 1 ≤ nCSAStages (8)

Parallel-Prefix Adder: We use the Kogge-Stone adder [35]

as our parallel-prefix adder, which has a minimum possible

multiplication depth. To add two k-bit numbers, Kogge-Stone

adder first computes the initial Generate (G) and Propagate

(P ), which require a single multiplication depth to compute

G=XY . Then G and P are updated in log2 k stages, where

each stage requires a depth-2 multiplication for updating G
as G = G′′ ∨ G′P ′. The final sum (S) is computed as S =
P ⊕ (G<<1). Therefore, overall multiplication depth of the

Kogge-Stone adder is equal to 2 log2 k + 1.

The required level for computing average heart rate of N
ciphertexts encrypting k-bit messages is therefore equal to:

L >
(⌈ log2(N/2)

log2(3/2)

⌉
+ 1
)
+ (2 log2 k + 1)

B. LQTS Detection

LQTS detection requires evaluating Equation 1 which can

be re-written without the square root operation as

QT√
RR

> 500 ms =⇒ QTH > RRH (9)

where QTH = QT 2 and RRH = RR× 250,000 are pre-

computed using front-end devices (Figure 1 left), which trans-

mit the FHE-encrypted versions of QTH and RRH into the

cloud. The cloud can perform LQTS detection as outlined
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in Section V, by aggregating the result of the individual

comparisons using OR operations, as detailed in Section III-B.

To check if an LQTS occurred within a given interval, the

doctor’s device requests the result from the cloud and decrypts

it (Figure 1 right). The doctor’s device only needs to check

presence of a “1” in the decrypted plaintext. If even a single

“1” is present, this indicates that during that interval, QTH was

greater than RRH at least once, i.e., LQTS condition detected.

The required depth for LQTS detection is the comparison

depth ((log2 k + 1)) plus the OR-reduction depth (log2 N ),

(individual depths are provided in Section V-C). Therefore, the

initial FHE level L > (log2 k + 1 + log2 N) must be chosen.

C. Minimum & Maximum Heart Rate

Minimum and Maximum Heart Rate computations are based

on selecting between the same indexed messages packed inside

two ciphertexts. We compute maximum operation as a fc(.)
function applied to two ciphertexts packing a vector of k-bit

messages, which is a multiplexer (MUX) circuit as follows:

R = (X ×h S) +h (Y ×h S) (10)

where S is the selector of MUX, computed from the >h result.

In Section V-C, we showed that comparing two k-bit

numbers will produce a k-bit result. If the first number is

greater, result will have a single “1” and (k−1) “0”s. Otherwise

the result will contain k “0”s. Generating S requires diffusing

the single “1” of the greater than case to all plaintext slots for

the corresponding message. We use a combination of rotate

and select operations to route the “1” and add the rotated

result to generate k “1”s. Generating S does not involve

multiplication. Therefore, the required level is log2 k+1 (same

as >h). Once S is computed, Minimum, Maximum operations

require multiplications in Equation 10 which adds one more

level, totaling log2 k + 2. The Minimum operation requires

an additional step: inverting S, which can be formulated as

S = S +h 1. Using S (i.e., inverted S) as the selector in

Equation 10 will yield the intended Minimum result.

To find the min/max of N ciphertexts encrypting a vector of

k-bit messages, we keep applying min and max fc(.) using a

log2 N stage binary tree, which has a multiplication depth of

(log2 k+2)×(	log2 N
). Therefore, the initial level L for the

min/max operation should be L > (log2 k + 2)×(	log2 N
).
VII. PERFORMANCE EVALUATION

We provide the implementation results for 1) average heart

rate, 2) LQTS detection, and 3) min/max heart rate.

A. Experimental Setup

In Section VI, we showed that the level L depends on the

bit-length of each message inside the plaintext (k) and the total

number of ciphertexts (N ). Table I summarizes the minimum

required BGV level L for each operation for a given pair of k
and N values. While 16-bit messages (k=16) were used for

the LQTS detection and the min/max heart rate computations,

32-bit messages (k = 32) were used for the average heart

TABLE I: BGV Level required for each operation.

Operation Type Required BGV Level L

Average HR
(⌈

log2(N/2)
log2(3/2)

⌉
+ 1
)
+ (2 log2 k + 1)

LQTS log2 k + 1 + �log2 N�
Min, Max HR (log2 k + 2)× (�log2 N�)

rate computation to provide sufficient space for up to 216

accumulations of 16-bit individual values.

To simulate the acquired ECG samples (Phase I in Figure 1),

we used THEW ECG database [9], which contains raw ECG

data. A 24-hour time period is processed to extract the heart

beat information and can be readily used to simulate our Phase

I, where our acquisition devices capture raw ECG data and

then pre-process them to extract RR and QT intervals before

sending them to cloud in FHE-encrypted format. We encrypted

the 87,896 values, each of which is the temporal distance

between two heart beats in number-of-samples acquired from

Holter monitor during the RR interval (termed toc). Each toc
value is encoded as a k-bit message (i.e., k=16). We perform

operations over encrypted toc values, so our results will be in

terms of toc, which can be trivially converted to “time” values

by multiplying them with the sampling rate (1000 Hz) at the

doctor’s phone/tablet after decrypting the final result.

B. Implementation

We use the HElib library [8] for the implementation and

run our simulations on a workstation with dual Xeon E5-2695

Processors and 252GB RAM. We report only single-threaded

run-time results since HElib is not thread-safe. We set the

parameters of the BGV scheme based on the analysis provided

in [36] and the optimum level L based on the previously

described noise threshold criteria. Table II lists the number

of messages that one plaintext can pack at different BGV

levels (L). From this table, we can calculate L for performing

the three fundamental operations on our 24-hour ECG data,

containing 87,896 toc entries, where we encode each toc entry

as a “message” (nMsgs=87, 896), using two different message

sizes, 16-bit (k=16) and 32-bit (k=32), depending on the

operation. For example, for LQTS detection, we use k=16 on

nMsgs=87, 896 messages.

TABLE II: Number of packed messages in a plaintext at various BGV
levels for different message bit lengths.

BGV Level nSlots 16-bit messages 32-bit messages

(L) (k=16) (k=32)

1 ≤ L < 12 630 39 19

12 ≤ L < 22 682 42 21

22 ≤ L < 68 1285 80 40

68 ≤ L < 77 1650 103 51

77 ≤ L < 100 2048 128 64
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C. Evaluation Criteria

We evaluate the performance of the proposed system based

on three relevant billable cloud cost metrics [37]:

Computation Rate (Γ): We define Γ as:

Γ =
Γout

Γin
(11)

where Γin is the time interval for the data being transmitted

from the patient’s house into the cloud, and Γout is the

computation time in the cloud for this data. This “relative”

definition allows us to determine whether FHE computations

in the cloud can catch up with the rate of the incoming data

(Γ ≤ 1), or lag behind (Γ > 1). The significance of the Γ
metric is its ability to signal the necessity of additional storage

space, and the added computational latency in providing the

final result to the doctor. For example, Γ = 2 implies that,

1 hour patient data takes 2 hours to compute, causing a one

hour delay in providing the results to the doctor, and additional

storage space to buffer the incoming encrypted data.

Storage Expansion (Λ): FHE significantly expands the

storage space required for the encrypted incoming patient

data and the FHE public keys. This storage expansion be-

comes worse for increased BGV levels, L. In our definition,

Λ = 10, 000 implies that, to store one byte of plain data in

encrypted format, 10,000 bytes of cloud storage is required.

Network Throughput (Υ): FHE-based computations strain

the network bandwidth, since large amount of encrypted data

must be transmitted over WAN connections. We define a third

metric, Υ, that determines how much data is being transmitted

across the WAN during computations [38], [39]. Some cloud

operators (e.g., AWS [37]) only charge for outgoing traffic,

not for the incoming traffic. Therefore, we break Υ into two

separate parts: Υpatient is the amount of data transferred from

front-end devices used by the patient, and Υdoctor is the data

transferred from cloud to back-end device used by the doctor.

D. Experimental Results

We present our results in Table III for the aforementioned

three fundamental operations over a 24 hours of ECG data,

containing 87,896 toc values. Although every row in Table III

relates to the same 24-hour ECG data described in detail

in Section VII-A, the partitioning of the data differs among

different rows. From Table III, we see that, Γ=0.36, translating

to a computation time of 24 × 0.36= 8.64 hours, or, 31,485

seconds, as indicated in the “Run-time” column. Since Γ<1,

we deduce that, the FHE computations can be performed faster

than their arrival rate, thereby eliminating the necessity to

buffer data in the cloud. However, the 24-hour ECG data still

takes up 52, 700× more space than the original raw data, as

indicated in the Λ column. Computing LQTS requires shuttling

8.28GB of encrypted data from the patient’s house to the

cloud (the Υpatient column) and requires transferring 4.1MB

of resulting ciphertexts (the Υdoctor column). The significant

disparity is due to the substantial amount of aggregation

performed during LQTS detection, leaving only the highly-

summarized results that need to be transferred to the doctor’s

smartphone. This will reduce the application cost since most

cloud operators only charge for outgoing data.

The specific row we just described was based on 24 hours of

accumulated patient data, acquired, transmitted, and computed

as a whole (indicated as “24 hr” in the “ECG Data Interval”

column). This row assumes that, the LQTS detection does

not start until the entire 24-hour dataset arrives. Alternatively,

the very first row of the LQTS detection (“1 min”) displays

N = 2, L= 7 and Γ= 0.07, where the entire 24-hour data

is transmitted 1 minute at a time, and the amount of each

chunk is significantly smaller: 1 minute chunks require only

2 ciphertexts (N=2), each of which is encoded at an FHE

level of L=7. The computation time for each chunk is only

3.9 seconds, corresponding to Γ = 3.9
60

s
s = 0.07. This row

is computationally-advantageous based on the computation

metric (Γ), but it hurts the Υdoctor metric, since the total

amount of data to transfer 24 hours of data in 1 minute chunks

ends up being 1296.1 MB. The smaller the granularity of the

results, the worse the Υdoctor becomes, and the better the

Γ is. Required storage for these results improves when the

chunk size is smaller due to the reduced level, L, to encrypt

these chunks. As a summary, different rows in Table III

TABLE III: Operational cost of medical applications based-on: Computation Rate (Γ), Storage Expansion (Λ) and Network Throughput (Υ).

Operation ECG Data N L Enc. Dec. Ctxt Pkey Run-time Γ Λ Υpatient Υdoctor

Interval (sec) (sec) (MB) (MB) (sec) (GB) (MB)

Average 1 min 3 14 0.30 0.24 3.17 274.95 31.2 0.52 41.2K 6.5 4564.8

Heart Rate 60 min 92 23 1.96 0.80 15.49 1783.98 1317.4 0.37 112.2K 16.6 371.7

(k=32) 12 hr 1099 29 2.46 1.05 19.63 2247.22 18803.9 0.44 142.1K 21.1 39.3

24 hr 2198 31 2.69 1.15 21.03 2414.25 40997.4 0.47 152.3K 22.6 21.1

Long-QT 1 min 2 7 0.08 0.03 0.90 74.32 3.9 0.07 12.6K 1.98 1296.1

Syndrome 60 min 88 13 0.28 0.22 2.96 249.03 1362.4 0.38 38.4K 6.05 71.1

Detection 12 hr 1047 17 0.40 0.28 3.83 323.87 14393.3 0.33 49.7K 7.83 7.7

(k=16) 24 hr 2093 18 0.41 0.31 4.05 352.23 31485.1 0.36 52.7K 8.28 4.1

Min, Max 1 min 2 7 0.08 0.04 0.90 74.32 3.9 0.07 12.5K 1.98 1296.1

Heart Rate 60 min 46 37 3.09 1.27 25.27 2880.37 6946.8 1.93 182.8K 27.12 606.5

(k=16) 12 hr 550 61 4.99 2.05 42.57 4918.28 148189.6 3.43 308.4K 45.69 85.2

24 hr 1099 67 5.04 2.29 46.94 5362.67 325331.9 3.77 339.7K 50.38 46.9
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might provide different cost alternatives for the healthcare

organization based on the specific cloud application.

VIII. CONCLUSIONS AND FUTURE WORK

We proposed a novel method for privacy-preserving med-

ical cloud computing using Fully Homomorphic Encryption

(FHE). Due to the computational complexity of FHE, we pro-

vided a detailed analysis of our approach on three fundamental

computations: 1) the average heart rate, 2) min/max heart rate,

and 3) automated detection of the long-QT Syndrome (LQTS).

We demonstrated our results on an FHE-driven program by

using a 24-hour set of ECG samples from the THEW database.

Our results show that, a healthcare organization can utilize this

program as of today, despite its performance disadvantage. We

defined three performance metrics related to the operation of

FHE: Γ, Λ, and Υ quantify the computational, storage, and

bandwidth requirements of these three fundamental operations.

We demonstrated that, the aforementioned three fundamental

computations can be performed at the same rate of data arrival,

eliminating the need to store excessive amounts of data. Our

results show that, these operations can be performed with

reasonable cloud resources available today.
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