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Abstract—The past few decades have witnessed incredible
advances in human health care, owing to the invention of
devices such as MRI scanners, which allow physicians to monitor
personal health in more detail than was ever previously possible.
Such advances have drastically improved diagnostic quality and
patient health care. Central to this incredible progress was the
uncanny ability of technologists and academics to invent ever
more useful tools to help physicians, be it the X-ray machine,
CT, or MRI scanner. Whereas the aforementioned past-decades’
tools aimed at acquiring personal data, the advent of the Internet-
of-Things, vast computational power available in the cloud,
and new data analytics algorithms will completely change the
way we acquire and process medical data to improve health
care going forward. In this paper, we conduct a quantitative
feasibility study of a Digital Health (D-Health) system that is
aimed at acquiring and processing health data using the emerging
Internet-of-Everything paradigm. We specifically investigate the
technological feasibility of communication, software, and data
privacy aspects.

Index Terms—decision support; Internet of Everything (IoE);
visualization; analytics; remote health monitoring.

I. INTRODUCTION

It is hard to believe that in 2016, cardiac diagnoses are
mostly based on physical examinations and visual inspection
of electrocardiograms [1], [2]; such methods could almost
be considered ‘“vintage” when compared to the non-medical
world’s technology. Real-time means to assess and predict
the risk of cardiac diseases that can lead to chronic heart
failures, and methods to permit therapeutic intervention are no
more than research topics [3]. The pathological progression of
many diseases requires long term observations of a patient to
gather sufficient data to make accurate statistical inferences
related to the onset of the disease at hand [4]. A D-Health
system that provides automated remote health monitoring
of clinically-relevant bio-markers could provide invaluable
diagnostic information [S]-[7] and translate to health care cost
savings of up to $300B [8].

Adoption of D-Health systems and their use in improving
health care will advance simultaneously with trends that are
in motion already; commercially available personal health and
fitness monitoring devices such as Applewatch [9], Fitbit [10],
and Jawbone [11] are becoming the “next iPhone,” and
are even considered fashionable [12]. Off-the-shelf advanced
personal health monitoring devices also exist for Glucose
monitoring [13] or ECG monitoring [14], [15]. Significantly
more sophisticated bio-patches are also becoming commercial-
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ized [16]-[18] that provide clinical grade remote health mon-
itoring of advanced bio-markers such as gait, posture, body
temperature, and surface EMG. Acquisition of the data that can
be used to improve health care is not limited to personal data;
the crowdsensing phenomenon promises to acquire data from
the environment that can be used to determine environmental
factors that are affecting our health [19], such as air or water
quality.

The final destination of this acquired data is the cloud,
where machine learning algorithms [20] make statistical infer-
ences on the data to provide decision support to the health care
professionals [21]-[24]. Using an expanding set of medical
databases will open the door to discoveries of new treatments
for diseases [25] and a better understanding the way the
human body works [26]. In this paper, we investigate how
these individual trends can be incorporated into a holistic
system designed to develop effective, commercially-accepted
D-Health systems that can improve our health care.

Our contributions in this paper are: In Section II-A, we draw
a conceptual diagram of a D-Health system that can be applied
to a generalized set of applications aimed at improving our
health care. We highlight technical challenges in realizing a D-
Health system in Section II-B and provide technical feasibility
studies for each technical challenge: Issues related to providing
a reliable communication infrastructure are elaborated on in
Section III. In Section IV, issues related to data privacy,
system-level security and the correctness of acquired data
are studied quantitatively. In Section V, quantitative case
studies are provided for visualization and analytics algorithms.
Our concluding remarks in Section VI outline our position
regarding the future of D-Health systems.

II. D-HEALTH SYSTEM STRUCTURE AND CHALLENGES

A conceptualized D-Health system is depicted in Fig. 1,
which consists of two sections: Front End section is respon-
sible for acquiring, aggregating, and pre-processing the data.
Back End section is responsible for processing the data to
extract useful information for use in health care. We will now
detail the components and challenges of a D-Health system.

A. Conceptualized Structure of a D-Health System

Data Acquisition: Personal health monitoring is achieved
using Wireless Body Area Networks (WBANs). WBANs con-
sist of lightweight wearable sensors [5], [27] or more ad-



2016 IEEE Symposium on Computers and Communication (ISCC)

FRONT END
DATA AGGREGATION E
ACQUISITION PRE-PROCESSING

WBAN

i

Bio
Patches

. J |

BACK END

AR RRRRLLRRLERNERERERRENRERNRRERRRRRRRENNLN S

CLOUD
STORAGE/PROCESSING

< O

* INFRASTRUCTURE

SERVICES
DECISION SUPPORT

(30

* VISUALIZATION

* PROCESSING
* STORAGE * ANALYTICS
* DATABASE * OTHER SOFTWARE

Fig. 1. A conceptual structure of a D-Health system, consisting of two parts: Front End is where the data is acquired, aggregated and pre-processed. Back
End is where the data is stored/processed to provide services to health care organizations.

vanced clinical grade sensors (bio-patches) that are capable of
measuring bio-markers such as EMG, gait, and blood pressure
[17], [28]. BAN sensors utilize low-power Bluetooth or ZigBee
protocols, based on standards such as the IEEE 802.15.6 [29],
which prescribes radio frequency (RF)-based ultrawideband
(UWB) and narrowband communication standards and RF-
based human body communication standards [30].

Data Aggregation/Pre-processing: A WBAN consists of
severely battery-power-restricted sensor devices and passive
RF devices. Aggregation and pre-processing of the acquired
data is necessary to reduce the data volume being handled
and transmitted. This is achieved by concentrators [31], [32],
and cloudlets [33]-[35], or smartphones acting as cloudlets,
because sensors aren’t computationally capable enough for D-
health data processing and have more limited battery life.

Crowdsensed Data Acquisition is an emerging phe-
nomenon [36], [37] that promises to enable the concurrent
acquisition and aggregation of data — such as temperature,
air quality, or humidity — from a wealth of capable, sensor-
rich “crowd” resources [38], such as smartphones and tablets.

Cloud Infrastructure functions provided by a cloud
service include multiple servers on one or more racks, storage
space, virtualization, and other components to enable the back
end functionality of a D-Health system. This infrastructure
must be compliant with government health data regulations.

Database-Oriented Storage structures medical data in
a standardized format to be rapidly queried for analytics
purposes. Structuring the data in a standard database format
also enables the fusion of similar data from multiple sources
to enrich the data quality.

Services such as decision support for health-care profes-
sionals can be provided once the data is stored in a structured
way and potentially fused with the crowdsensed data and
applied as input to statistical inference algorithms.

B. Technical Challenges in Building D-Health Systems

Wireless Standards and Interoperability are discussed
in Section III-A. Multiple wireless services can operate on the
Industrial Scientific and Medical (ISM) 2.4 GHz band leading
to co-channel interference for on-body networks.

Protocol Design Challenges and solutions are addressed
in Section III-B. Physical layer challenges aim at address-
ing path loss and low power gain in on-body sensor net-
works whereas MAC layer challenges deal with urgency-
based resource allocation for message frames. Network layer
challenges include thermal-aware routing algorithms to avoid
tissue damage.

Data Privacy Challenges involve protecting data from
adversaries attempting to obtain it without authorization and
are primarily crypto-level challenges. We detail the encryption
schemes that are used to ensure data privacy in Section I'V-B.

System Level Security is examined in IV-C in terms of
side channel attacks because they attempt to obtain the secret
keys by using system-level operational run-time information,
such as server power consumption during crypto operations.

Data Trustworthiness Challenges include distinguishing
between sensor malfunction and intentional sensor tampering.
These challenges are exacerbated in crowdsensing settings. A
detailed quantitative study is provided in Section I'V-D.

Database Challenges: Health records in many different
formats must be parsed and aggregated into a database system
that is well-suited for tasks such as statistical analysis and
machine learning.

Visualization of medical data reduces the data burden for
the doctor and allows fast data handling for multiple patients.
A quantitative case study is provided in Section V-A.

Decision Support by using machine learning algorithms
reduce the statistical inference burden by taking advantage
of the vast processing capability of computers. A quantitative
case study is provided in Section V-B.

III. COMMUNICATION CHALLENGES

We break communication challenges in D-Health systems
into two main categories, namely i) the wireless standards
for D-Health systems and ii) the protocol design challenges.
Wireless communications are widely used for sensor readings
and actuation signals in D-Health systems [39], [40].

A. Wireless Standards and Interoperability

The scope of IEEE 802.15.6 includes radio frequency (RF)-
based ultrawideband (UWB) and narrowband communication
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standards, as well as RF-based human body communication
standards. RF-based human body communications utilize the
21 MHz centered frequency band with data rates of 164-
1312.5 Kbps. UWB and narrowband-based human body com-
munications utilize frequency bands between 402 MHz and
10Ghz. UWB operates at data rates between 395 Kbps and
12.636 Mbps, and narrowband-based communications operate
at 100 Kbps and 1000 Kbps [29].

RF-based communications have been reported to commu-
nicate through the air with high attenuation due to body
shadowing at data rates up to 13 Mbps, whereas on-body
communications solutions communicate through the body with
low signal attenuation at data rates below 2 Mbps [40]. The
protocols should be built on the communication standards
for on-body networks, and address energy efficiency, security,
privacy and low electromagnetic interference.

Cognitive and opportunistic solutions have become popular
to address the interoperability challenges. Several system
architectures have been developed on IEEE 802.22, which
specifies the standard for Wireless Cognitive Radio Network
Medium Access Control [41].

B. Protocol Design Challenges

PHY layer Challenges: The study in [42] uses a biofeed-
back control loop through sensor and actuator nodes. The
proposed on-body network operates in the low bit rate med-
ical implant communication service (MICS) 402-405MHz
frequency band with maximum bandwidth of 300 KHz [43].
The sensor nodes perform continuous health monitoring while
the actuator nodes are responsible for medical drug delivery
for patients who are in critical condition.

As an alternative to the MICS-based wearable and im-
plantable systems such as [42], UWB-based implantable body
area networks are also popular [44], [45]. A grand challenge
in an RF-based body area network is the path loss and
signal attenuation due to the physical characteristics of the
medium such as blood circulation, respiration, and temperature
variation throughout the body. Floor et al. derived a path loss
model for UWB-based in-vivo communication systems [46]
and showed that low frequencies such as 1-3 GHz reduced
the transmission power in implanted networks as the path loss
was remarkably low at these frequency levels. Furthermore, the
study shows that the higher the number of on-body receiver
antennas, the better the power gains (i.e., > 3dB) as long as
they are placed close enough to each other. Propagation paths
are highly correlated; therefore, this phenomenon has to be
taken into account in designing communication protocols and
algorithms.

MAC layer Challenges: In [47], MAC layer protocols
have been surveyed within the context of Machine-To-Machine
(M2M) communications; hybrid protocols have also been
studied as a solution to cope with the performance issues
experienced under either contention-based or scheduling-based
MAC protocols. As an example hybrid protocol, Hybrid MAC
(HyMAC) consolidates the advantages of CDMA with TDMA
and FDMA; each node is assigned a time slot and a frequency

in response to its bandwidth request by using contention-
based access [48]. Applicability of hybrid MAC protocols to
D-Health systems has been extensively discussed in [47] in
the context of M2M communications, and the authors have
concluded that hybrid MAC protocols would have scalability
issues due to the dense deployment of M2M networks. Ran-
dom access-based reservation of slots, codes, and frequencies
lead to bottlenecks under hybrid MAC protocols. Furthermore,
overheads due to system reconfiguration lead to a large number
of wasted time slots when compared to conventional wireless
sensor networks. Hence, the authors advocate that TDMA-
based MAC protocols are more suitable to M2M communica-
tion systems.

Network-layer Challenges: Thermal-aware routing algo-
rithm (TARA) has been proposed to avoid hotspots in a body
area network [49]. TARA defines a temperature threshold to
identify a region in the network as a hot-spot (i.e., above the
threshold); the packets are routed around the hotspot regions.
If a region is identified as a hotspot in the network by a
node, the protocol withdraws all the packets destined to that
region, and sends them back to the source node. In [50],
the hotspot preventing routing algorithm (HPR) selects the
shortest path to the destination node if the destination is
not in a hotspot region. While selecting the next hop, if the
temperature of the next hop is not above the threshold, the
packet is sent to that node, otherwise, the packet is sent to the
coolest neighbor unless the next hop which is a hot spot is
not the destination. Scalability and longer network lifetime is
guaranteed by HPR (compared to TARA) at the expense of an
overhead due to carrying the temperature information forward
as a packet propagates towards its destination [51]. As another
alternative to TARA, Adaptive Least Temperature Routing
(ALTR) sends the packets to the coolest neighbor [52]; as
soon as the number of hops exceeds a pre-defined threshold,
the algorithm switches to shortest hop routing.

IV. SECURITY CHALLENGES

In this section, we study the security mechanisms that allow
a D-Health system to guarantee privacy, prevent side channel
attacks, and ensure the correctness of crowdsensed data.

A. Cryptographic Challenges

We study medical data privacy from three different aspects:

Data Storage Privacy refers to the assurance that en-
crypted data cannot be accessed unless an adversary obtains
access to the private key, which is necessary for decryption.
Conventional encryption schemes such as Advanced Encryp-
tion Standard (AES) and Elliptic Curve Cryptography (ECC)
can provide data privacy and their details are given below.

Data Sharing Privacy refers to the guarantee that when
multiple users must share data — within a list of authorized
users — no additional user can access the data. This is feasible
by Attribute Based Encryption (ABE) schemes that allow
access to data based on user credentials, i.e., attributes. Two
existing ABE family encryption schemes, namely KP-ABE
and CP-ABE are detailed below.
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Data Computation Privacy refers to the protection of
data privacy during computation. Homomorphic encryption
schemes (e.g. Paillier and Fully Homomorphic Encryption)
can achieve data computation privacy and allow computations
on medical data to be performed on encrypted data [53], [54].
These schemes are detailed below.

B. Encryption Schemes to Protect Data Privacy

Encryption schemes can be categorized as conventional
and emerging. Conventional encryption schemes — AES and
ECC — find widespread acceptance due to their resource-
friendliness; however, they only provide data storage privacy.
Emerging schemes — ABE and homomorphic — provide data
sharing and data computation privacy but they are significantly
more resource-intensive. We detail these schemes below.

Advanced Encryption Standard (AES): AES [55] is
one of the most commonly-used symmetric key conventional
encryption schemes for industry and government security
needs. AES uses lightweight functions including XOR, data
shuffling, and replacement-by-lookup, so the algorithm is both
fast and power efficient.

Elliptic Curve Cryptography (ECC): ECC is a public
key conventional encryption scheme that can achieve the
level of security provided by 1024-bit RSA using only a
160-bit prime p. This vast improvement on RSA’s key sizes
allows significant savings in bandwidth and storage when
using public key cryptosystems. One of ECC’s most common
implementations is the Elliptic Curve Integrated Encryption
Scheme (ECIES) [56], which makes use of Diffie-Hellman
key exchange to generate a shared secret. ECIES is much more
computationally expensive than plain AES; in a generic C im-
plementation [57], ECIES takes 3 orders-of-magnitude longer
for encryption and decryption than plain AES. Additionally,
ciphertext in ECIES requires approximately 6x more space
than a generic C implementation of AES.

Attribute-based Encryption (ABE): ABE improves
on the data sharing capabilities of conventional encryption
schemes (e.g., AES and ECIES) through the use of access
policies. ABE exists in two variants, based on the placement
of the access policy: Ciphertext-Policy ABE (CP-ABE) and
Key-Policy ABE (KP-ABE).

In CP-ABE, users’ private keys are associated with their
credentials [58]. The ciphertext specifies an access policy, and
only the users whose credentials satisfy the requirements of
the access policy can decrypt it. Encryption and decryption
in CP-ABE take 6 orders-of-magnitude longer than plain AES
and ciphertexts require two orders-of-magnitude more storage.

In KP-ABE, access policies are placed on users’ private keys
and attributes are associated with the ciphertexts. Encryption
and decryption in KP-ABE take four orders-of-magnitude
longer than plain AES, and ciphertexts occupy approximately
40x more space than plain AES.

Homomorphic Encryption: Absent from the encryption
schemes we’ve examined thus far is the ability to operate on
encrypted data; homomorphic encryption (HE) enables com-
putation without observing decrypted data. At the least, an HE

scheme implements either homomorphic addition or homo-
morphic multiplication, which translate to addition and multi-
plication on plaintext, respectively. A homomorphic scheme
is defined as Fully Homomorphic Encryption (FHE) when
it implements both homomorphic addition and homomorphic
multiplication, and is thus able to evaluate arbitrary functions.

Paillier HE [59] is a lightweight, additively-homomorphic
encryption scheme used for many practical applications. Its
performance is similar to CP-ABE; encryption and decryption
take 6 orders-of-magnitude longer than plain AES and cipher-
texts require 2 orders-of-magnitude more storage.

FHE schemes are fairly resource-intensive for current gener-
ation D-Health systems [60]-[62], even when using the state-
of-art Brakerski-Gentry-Vaikuntanathan (BGV) scheme [63].
Using the HElib implementation as a benchmark [64], BGV
takes nearly 6 orders-of-magnitude longer for encryption and
6 orders-of-magnitude longer for decryption when compared
to a generic C implementation of AES. Additionally, BGV
ciphertexts require 6 orders-of-magnitude more storage than
AES, and BGV homomorphic computation is 3100x slower
than Paillier computation [65].

C. System-Level Security Challenges

Chief among the security concerns associated with D-Health
system design are various side channel attacks that exploit
systemic information leaks. Vulnerabilities in the system’s
software and hardware implementations can enable these at-
tacks as we detail below.

Cache Attacks: Cache attacks work by observing the
cache access latency of the cryptographic instructions to re-
cover the cache lines that store the secret key [66], [67]. Some
hardware offers built-in defenses against this attack. The Intel
AES-NI CPU instruction set [68], for example, makes cache
access latency independent of data and calculates substitution
results in hardware, rather than using a lookup table.

Timing Attacks: Timing attacks attempt to discover the
secret key of a cryptosystem by observing the execution time
of operations performed during encryption or decryption. If
the execution time of operations varies based on the bits
of the secret key [69], a timing attack will be effective. In
ECC timing attacks, the execution time of scalar multiplication
operations can leak information. This leak can be prevented
by using a multiplication method that performs the operation
independent of the bits in the secret key, such as the Mont-
gomery multiplication method [70].

Power Analysis Attacks: If power consumption of a
cryptosystem varies based on the bit values of a secret key,
adversaries can discover the key by observing the power usage
of the device (simple power analysis) or by using statistical
methods of differential power analysis for more noise-tolerant
measurements. When using AES, such attacks can be pre-
vented by using randomized masks on AES operations [71]
to remove the correlation between power consumption, the
AES secret key, and the data being acted upon. In ECC power
analysis attacks, randomizing the intermediate computations
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has been shown to remove the correlation between power
consumption and sensitive key information.

Fault-Based Attacks: Through the application of a power
glitch, magnetic field, or other stimulus to a cryptosystem,
errors may be generated that reveal the secret key to an adver-
sary. To prevent such attacks from being effective against AES-
based cryptosystems, [72] proposes checking the correctness
of results at various stages. An alternative presented in [73]
is based on error detecting codes (EDC). Fault-based attacks
for ECC-based schemes attempt to produce a point that is not
on the elliptic curve during decryption [74]; these attacks can
be thwarted by checking if the result is a point on the elliptic
curve, and if not, discarding the result.

Data Rate Attacks: If the amount of data being transferred
from a remote medical sensor depends on any physiological
parameters, then an attacker may be able to learn some health
information simply from the data transfer rate. For example,
if a packet is sent after every heart beat, the heart rate can
be easily inferred from the number of packets being sent per
minute. Defense against this type of attack involves using
techniques such as padding to maintain the same data rate
independent of physiological events.

D. Data Correctness (Trustworthiness) Challenges

In crowdsensing-assisted data acquisition via social com-
munities, trustworthiness of crowdsensed data should focus on
reputation of sensing devices and their corresponding sensing
accuracy [75], [76]. In trustworthy crowdsensing, instruments
(nodes) are recommended to be recruited based on their
reputation [77]. Percentage of “positive” readings — excluding
outliers via an outlier detection algorithm [78] — denotes the
reputation of a node [19]. Although tracking positive/negative
readings may improve trustworthiness of crowdsensed data,
the system is still prone to Sybil-like attacks [79]; a newly
joining mobile device (i.e., sensing node) builds its reputation
based on the votes of other devices.

Vote-based trustworthiness of node 4 is defined as %;(¢) and
is calculated as the total vote from the neighbors averaged
by their total voting capacities. However, this may still lead
to biased calculation of trustworthiness of crowdsensed data.
Two solutions can be considered against this challenge. First,
some trustworthy nodes, called anchor nodes, can be initially
recruited with 100% trustworthiness and 100% vote capacity
no matter what they report as sensing data [37]. Alterna-
tively, collaborative trustworthiness can also be considered
as a hybrid of the vote-based and statistical trustworthiness
assessment [80]. Assessing trustworthiness of crowdsensed
data requires assessing sensing node reputations according to
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Fig. 2. A case study of crowdsensing utility under various trustworthiness
assessment approaches.
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where #;(t) is the reputation of node ¢ and is a compound
function of the statistical reputation (R§'“!(¢) i.e., ratio of
positive readings (p;(t)) to the total readings (p;(t) + n;(t)))
and social reputation (R¥°**4(t)). o and § are weight factors
that are used to quantify the transition speeds of node reputa-
tions [37]. (1) can be expanded as (2), where T'(;; denotes the
set of data sensed by node 4 such that T;; N Ty;y represents
the intersection of the sets of data sensed by node ¢ and node
7. In the vote-based component of the reputation assessment,
w; denotes the current vote capacity of user 7, and X;- denotes
the vote of node j for node 1.

When health data is acquired through crowdsensing, the
sensing nodes that are recruited for data acquisition need to
be rewarded based on their sensing costs and the usefulness of
the data they have provided. Figure 2 illustrates a comparison
between the statistical, vote-based and collaborative trust-
worthiness assessment approaches in terms of crowdsensing
utility where reputation-unaware data acquisition is used as
a benchmark. Utility is defined as the difference between
the total usefulness of the acquired data and the rewards/-
compensation made to the sensing nodes. Figure 2 is based
upon a simulation study in a 1000mx1000m terrain with
1000 nodes and a sensing range of 30m. Amongst the 1000
nodes, 5% report wrong sensing data intentionally whereas
the rest of the nodes report accurate sensor readings 97-
98% of the time. The upper bound for the usefulness of
acquired data and the sensing costs are set at 5 and 10,
respectively. The 30-minute monitoring period under various
sensing task arrival rates shows the viability of collaborative
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trustworthiness assessment for the sensing nodes. Furthermore,
solely vote-based assessment leads to biased votes under heavy
data acquisition rates leading to lower crowdsensing utility.

V. SOFTWARE IMPLEMENTATION CHALLENGES

In this section, we quantitatively study two key software-
side technical challenges of designing a D-Health system.
First, the large volume of sensor data produced from long-
term, persistent patient monitoring would easily overwhelm
a physician caring for 20-30 patients; therefore, new data
visualization methods must be introduced to present medical
data in an intuitive, summarized format. Second, decision
support based on statistical trends in a patient cohort has the
potential to increase diagnostic accuracy and clinical predictive
capabilities, but significant challenges exist (including the
assurance of data privacy).

A. Data Visualization

A novel visualization mechanism is introduced in [81] that
is capable of presenting multi-modal medical data on a scale of
>24 hours. The authors generate these visualizations through
several stages of preprocessing, which transform the raw
sensor data into filtered clinical markers for plotting [82]. This
preprocessing step also addresses the issue of data volume by
simplifying raw data into a summarized and practical format
for clinical use. A quantitative example of data visualization
for the QTc clinical market is given in Fig. 3 using the open
source code provided in [81]. In this example, the polar plot
shows intervals measured beat-to-beat during a 24 hour ECG
of a patient. While the patient’s daytime QTc values are only
somewhat alarming, the nighttime values are distinctly life-
threatening.

QTcB for 5yo male LQT2 patient
00:00 — QTc
healthy

danger

12:00

Fig. 3. Example 24-hour QTc plot in the “ECG Clock” format [81]. QTc
for a healthy patient should normally fall into the green range for the entire
day. While this patient shows a borderline high QTc range during daytime,
QTc becomes clearly abnormal at night, indicating a potential cardiac hazard.
Increased risk during sleep is consistent with this patient’s LQT2 diagnosis.

B. Decision Support

We tested several machine learning (ML) algorithms on 639
24-hour Holter ECG recordings. 145 of the recordings came
from LQTS type 2 patients, 294 came from LQTS type 1
patients (both are genetic disorders affecting cardiac function),
and 200 recordings came from healthy patients. We used the
scikit-learn Python library [83] to provide decision support.
70% of the data set is used for training the ML algorithms,
and the resulting model is tested on the remaining 30% of the
dataset. Classifier performance was characterized based on 20
trials with Holter recordings randomly split between “training”
and “testing” during each trial. On average, classification of
“healthy” vs. “long QT” was relatively accurate (around 90%).
Additionally, differentiation between type 1 and type 2 LQTS
is found to be 70-75% accurate with Support Vector Machine
(SVM) and Random Forest ML algorithms.

All classifiers were generally effective, especially when op-
timized attributes were used; for example, setting the coef0
attribute for Polynomial SVM to 1.0 and dual for Linear
SVM to False improved the scores by ~4%. Random Forest
and SVM generally proved superior to other algorithms. The
ability to change the SVM classification method by simply
changing the kernel attribute offers great versatility; in our
case, polynomial SVM performed slightly better than the linear
or radial basis function (RBF) SVM.

VI. CONCLUSION AND ONGOING WORK

The digital health (D-Health) revolution is propelled for-
ward by the Internet-of-Everything (IoE) paradigm, leading
to the creation of advanced D-health systems capable of
remote monitoring, analytics, visualization, and decision sup-
port. In this paper, we have studied the feasibility of a holistic
framework for D-Health systems where data acquisition is
based on IoE and assisted by mobile crowdsensing, and
processing and storage are handled at a cloud platform to
provide services such as visualization, analytics and decision
support. The proposed D-Health framework consists of Front
End and Back End sections. The front end is responsible
for data acquisition via IoE sensors (i.e., on-body sensors
and crowdsensing smartphones) and incorporates a cloudlet
which performs aggregation and pre-processing. The back
end consists of the cloud platform, which primarily provides
storage and processing for services that include visualization,
analytics, and so on. We have thoroughly investigated the
challenges faced in the implementation of this framework, and
we have discussed the possibility of integration of existing
solutions to those challenges. To this end, we have studied
the feasibility of crowdsensed data acquisition under various
correctness assessment techniques, and we have concluded
that the collaborative approaches perform better when data
acquisition is assisted by crowdsensing nodes. As for the back
end processing, we have used measurements from 24-hour
Holter ECG recordings to test the performance of various
data classifiers, and found that SVM and Random Forest
based classifiers were superior to other approaches in this case
study. Finally, as a service component in the back end, we
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have presented an intuitive way to visualize the continuously
monitored data to the end user.

We are planning to integrate these pieces on a real testbed,
where on-body sensors are interfaced by front end circuitry
and communicate with the cloudlet through low-power Blue-
tooth. We will also attempt to address trustworthiness/tamper-
resistance of sensor data, as conceptualized in [4]. Further-
more, social networks currently serve as the data publishing
layer in the data acquisition block of the front end plane.
Therefore, we are planning to extend the role of social
networks to an unstructured knowledge-base which will be
analyzed by the cloudlet in order to retrieve useful data.
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