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A B S T R A C T

Deployments of Cyber Physical Systems (CPSs) in smart cities are poised to significantly improve healthcare,
transportation services, utilities, safety, and environmental health. However, these efficiencies and service im-
provements will come at a price: increased vulnerability and risk. Smart city deployments have already begun to
proliferate, as have the upsides, efficiencies, and cost-savings they can facilitate. There are, however, pro-
liferating challenges and costs as well. These challenges include important technical questions, but equally
important policy and organizational questions. It is important to understand that these policy and technical
implementation hurdles are perhaps equally likely to slow or disable smart city implementation efforts. In this
paper, a survey of the theoretical and practical challenges and opportunities are enumerated not only in terms of
their technical aspects, but also in terms of policy and governance issues of concern.

1. Introduction

The unprecedented proliferation of IoT services has fueled an ever-
increasing competition in introducing new and innovative products for
smart city applications; system developers are typically compelled to
comply with strict deadlines to avoid losing their competitive ad-
vantage. This hastened development process often treats security and
privacy requirements as afterthoughts, which can be later added to the
system as features (Arias, Wurm, Hoang, & Jin, 2015). Consequently,
the process leads to immature products that fail to satisfy security and
privacy requirements of their target applications, both of which are of
paramount importance in IoT and consequently, smart cities (Khatoun
& Zeadally, 2017; Zhang, Ni, et al., 2017).

The decision to under-implement the security and privacy aspects is
an implication of the infancy of the smart city concept. Research has
mostly focused on exploring possible applications and their ramifica-
tions on smart cities (Habibzadeh, Qin, Soyata, & Kantarci, 2017;
Zanella, Bui, Castellani, Vangelista, & Zorzi, 2014) and smart citizens
(Pouryazdan & Kantarci, 2016). Security and privacy in smart city

systems were not viewed as an important aspect until the recent un-
expected—and large-scale—DDoS attacks and ransomware threats
(such as cryptolocker (Liao, Zhao, Doupe, & Ahn, 2016), cryptowall
(Cabaj & Mazurczyk, 2016), and wannacry (Mohurle & Patil, 2017)).
The reprecussions of these attacks stirred a sense of mistrust against the
IoT to the extent that some criticized the Internet of Things for turning
into the Internet of Vulnerabilities (Angrishi, 2017).

IoT and smart city communities have reacted to these developments
by creating a new tidal wave of research toward investigating cyber-
security and data privacy within the smart city context. Companies
have begun advertising secure smart city products. Nonetheless, the
aforementioned considerations in smart city cybersecurity have left
many of these secure products vulnerable to non-conventional cyber-
attacks (Arias et al., 2015). Designing robust and secure services is
contingent upon the understanding of various aspects of cybersecurity
research in smart cities.

The ongoing research in cybersecurity and privacy of IoT is ad-
vancing in two parallel—yet complementary—branches. In the first
branch, researchers and involved policy makers, such as Federal
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departments and agencies, identify and categorize various types of
threats, dominantly from a social and financial perspective. The main
contribution of this effort involves investigating the depth and extent of
the implications of cyberattacks and the output is often used as the basis
of new policies and regulations. The second branch consists of com-
puter scientists and researchers, who inspect the technical tools to meet
the security and privacy requirements of smart city regulations. The
research community has come to the realization that technical im-
plementation of smart city security is also a multi-faceted problem, in
which the overall security of the system is determined by the weakest
link. This observation proves to be the source of many vulnerabilities in
existing smart city systems, where developers wrongly assume that they
can improve the security of their products by securing a portion of the
system and neglecting others.

It is, therefore, critical to view the security of smart cities through
bifocal lenses to avoid biased—and common—magnification of tech-
nical considerations against policy aspects; even with ideally func-
tioning technological solutions, cities with ossified bureaucracies and
decades old civil service titles will struggle to make their cities smarter.
A major—and wildly underexplored in the literature—factor in the
distance between what smart city applications could help achieve, and
what they have so far is in the non-technical realm. Issues of politics,
bureaucracy, liability, and other non-technical factors are driving slow
implementation, even when the technologies are considered ready to
use. In fact, Scientific American has called the need to improve the
policy side of smart city implementation (Smith, 2017): “A big reason for
the disconnect between smart city potential and reality is the fact that smart
cities are where the digital world blends, but can also collide, with the non-
digital world. Non-digital issues such as legacy governance, social justice,
politics, ideology, privacy and financial elements that are not so smart, ef-
ficient or resilient when smart-city planning starts can become large factors
(Smith, 2017).”

Outside of smart cities, this is seen as obvious and normal
(Whittaker, 1999), however with a few exceptions (Nam & Pardo,
2011), there has not been a lot of focus on the non-technical im-
plementation challenges. And this insight is not a new one; in a 1999
study of “unsuccessful information technology projects,” (Whittaker,
1999) the three most common reasons for failure were non-technical
(or depending on how you interpret the first, at least two of three
were)—they were “poor project planning,” “weak business case,” and
“lack of top management involvement and support.” It seems clear that
non-technical challenges routinely derail information technology pro-
jects; it would be strange if smart city implementations were different.

This problem is particularly pronounced in the public sector. Within
the public administration literature, there is a long history of the study
of information technology implementation projects, however that lit-
erature suggests several reasons to show pessimism (Goldfinch, 2007)
about technology adoption in government agencies. Heeks and Bhat-
nagar suggest that “conception-reality gaps” often lead to failure in
public IT projects (Heeks & Bhatnagar, 1999). These gaps exist along
various axes; they name six: Information, Technology, Processes, People
(objectives, values, and motivations), People (staffing and skills),
Management and structures (Heeks & Bhatnagar, 1999). Of these six
areas of disconnect, at least half are entirely non-technical, focusing
instead on the people and organizations that are attempting to adopt or
implement the information technology process. The fact that this clear
empirical literature is so often ignored in the smart city world is sur-
prising, illustrating that there seems to be some bias toward solving the
concrete engineering problems (the technical ones) and devaluing or
ignoring the often times harder to measure and manage policy problems
(the non-technical ones). This has lead to serious lacunae in the field.

Yet even from the technical standpoint, securing IoT is a difficult
task. Some of the challenges root from Wireless Sensor Networks
(WSNs). Particularly, the limited computational capability of CPSs
(Shishvan, Zois, & Soyata, 2018; Soyata, 2018) hampers the deploy-
ment of advanced security mechanisms (Soyata, Copeland, &

Heinzelman, 2016). Nonetheless, the majority of stubborn challenges
are based on inherent characteristics of IoT. Furthermore, the scale of
IoT poses various practical limitations in implementing suggested se-
curity mechanisms (Kocabas, Soyata, & Aktas, 2016; Zhang et al.,
2014). The dynamic nature of such systems along with the mobility
requirement of some of the CPS devices exacerbates the problem. This
characteristic is particularly preeminent in smart cities, where the ever-
changing conditions of the cities and direct interaction between CPS
devices and citizens result in a highly dynamic system.

Another fundamental complication arises from the heterogeneity of
the system; the protocols and the architectures used within a smart city
are diverse and incompatible. The interoperability among these various
implementations is not guaranteed, which impacts various aspects of
the system, including security and privacy considerations. This het-
erogeneity also implies that a single security and privacy initiative
cannot be comprehensive enough to satisfy the requirements of all
applications.

Cities are, and have been, facing serious economic and resource
challenges in recent years. These include budget declines (Reuben,
2011), decreasing state aid (Maciag & Wogan, 2017), and increased
budgetary uncertainty (Pagano & Hoene, 2018). It is in this precarious
or worsening resourcing environment, that cities have been embracing
smart city solutions. While this makes sense because some smart city
applications can improve efficiency or save money, it creates serious
challenges to the cities ability to both make the major upfront capital
investments such applications require, and also to recruit and retain a
sufficiently sophisticated information technology workforce to run and
monitor such applications. Just as cities are becoming more interested
in pursuing smart city applications, many of them are becoming less
able to do so effectively. In this paper, we review the privacy and se-
curity of smart cities from the perspective of policymaking and tech-
nical aspects. To study the implications and urgency of cyberattacks
that target smart cities, we analyze the latest developments in the field
and investigate some prominent attacks against critical smart city in-
frastructure. We then provide technical breakthroughs that can mitigate
the vulnerability of smart cities against various attacks and study their
strengths and weaknesses.

The rest of this paper is organized as follows. We first review the
implications of cyberthreats on security and safety of smart cities in-
frastructure in Section 2. In Section 3, we discuss how policymakers
have reacted to these vulnerabilities by enforcing new laws and reg-
ulations. We study the underlying architecture of the smart city in
Section 4 and explain how this structure imparts vulnerabilities
common among all smart city services. In addition to this shared sus-
ceptibility, each smart city applications faces domain-specific security
concerns. We investigate these challenges in Section 5. We conclude the
paper by discussing open issues, as well as a summary of our manu-
script.

2. Potential security and safety implications for critical
infrastructure in smart cities

There is little question that the growth of smart cities will introduce
numerous risks while making many aspects of the city operation more
efficient. In this section, we study these risks in multiple categories.

2.1. Infrastructure risk in the smart city

One of the most important risks are the ones involving the smart city
critical infrastructure and related systems, often called lifelines
(National Protection and Programs Directorate Office of Cyber and
Infrastructure Analysis, 2015). These infrastructure risks come in nu-
merous variations and types and so it is important to think about ways
to conceptualize and link such risks together. There are two key con-
ceptual aspects of smart city cybersecurity: Firstly, the massive increase
in embedded computing capacity rapidly expands the attack surface
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that network defenders must secure. In the consumer space, this in-
volves taking items as diverse as televisions, refrigerators, video cam-
eras, routers, and all of the smart devices and turning them into attack
vectors or resources for malicious activity (e.g., conducting Distributed
Denial of Service (DDoS) attacks). The emerging ubiquity of computers
and sensors in all matter of urban infrastructure and hardware—from
parking meters to traffic signs to waste water infrastructure—is likely to
have comparable effects on urban networks.

Secondly, the presence of actuators that adjust/control things in the
physical infrastructure of the smart city (e.g., heating elements,
switches, valves, filters, and the like), as opposed to sensors that mea-
sure things, means that those who can compromise such systems have
the potential to cause physical damage in addition to data theft or de-
nial of services. In this sense, the expansion of computing power—-
particularly when joined with sensors and actuators—expands two of
the three components of infrastructure risk as described by Sandia
National Lab (Baker et al., 2019). While the smartening of cities and
infrastructure does not increase the threat (the number, capability, or
intent of threat actors) necessarily, it does in fact increase the vulner-
ability (in the form of a much larger and more complex attack surface)
and increase the potential consequence of an attack (by allowing at-
tacks on networks and data to cause physical damage in the real world).
Thus, it is fair to say that, for all the myriad benefits that smart cities
bring with them, it is important to remember that they do seriously
increase infrastructure risk as well. Fig. 1 conceptually depicts the
consequences of cyber threats on a smart city infrastructure.

2.2. Information security and operational security

Few cyber threats have received more press recently than the many
ransomware campaigns that have wrought havoc on individual users’
computers and on organizations of all stripes. Ransomware, malware
that encrypts files in order to deny data access until the owner pays a
ransom (typically in Bitcoin or some other virtual currency), has been
widespread and very disruptive (Al-rimy, Maarof, & Shaid, 2018).
Variants like reveton, cryptolocker, cryptowall, and wannacry
(Hampton & Baig, 2015) among many others have resulted in large
numbers of users paying ransoms, as well as in immeasurable loss of
data. A typical ransomware victim likely loses important work or per-
sonal files ranging from financial information to family pictures
(O’Gorman & McDonald, 2012); however there is a different class of
victims for whom the damages are more complicated—enterprises that
rely on data for operations.

Numerous police agencies have been infected with ransomware
(Francescani, 2016) and some non-trivial portion have paid ransoms to
recover their data. There are even reported cases where police agencies
lost digital evidence; such cases affect pending trials or appeals
(Mathews, 2018). A higher profile series of cases appeared in the
healthcare sector. First, Hollywood Presbyterian hospital in California

was forced to pay a larger-than-normal ransom in order to recover their
data and their operations were crippled as a result of this ransomware
infection (Wagstaff, 2013). The wannacry ransomware infections in
early 2017 had similar impacts on numerous sites of the British Na-
tional Health Service (NHS) (Dwyer, 2018; Ehrenfeld, 2017; Martin,
Ghafur, Kinross, Hankin, & Darzi, 2018). These are cases where the
inability to access key data—e.g., dosage levels, drug interactions,
medical histories—could well result in injury or loss of life. The at-
tachment of computers to medical devices is a small scale version of the
informatization of infrastructure, which is common in a smart city.

What happens when data denial or availability attacks hit critical
infrastructure, for example transportation infrastructure? Assume a
scenario where public transportation system becomes the victim of a
massive ransomware attack that does not target the industrial control
system networks and infrastructure that actually controls the trains;
instead, it aims to disable the ticket machines and payment infra-
structure, through which purchases are made. The attack may also
impact computer systems that are used to manage the city's buses
(Gallagher, 2016). Attackers of this type, seemingly cognizant of the
impact of their attack, are likely to attempt to extort a ransom payment
of over some tens of thousands of dollars or a similar amount in Bitcoins
(Stewart, 2016); far more than the typical ransomware payments which
tend to be in the range of hundreds of dollars. In the presence of such an
attack, the public transport system may simply allow the riders to travel
for free and lose revenue, as the Bay Area Regional Transit system did in
California (Bay Area Rapid Transit, 2017). Furthermore, the transit
system has to re-image machines and do other work to clean up their
systems, all the while unable to process most of the payments.

2.3. Financial impacts vs. operational and safety impacts

Ultimately, this move from cyber attacks impacting data (with a
focus on confidentiality concerns) and having significant financial
consequences, to impacting operational networks and having potential
operational and even physical impacts (in addition to financial impacts)
is one of the key conceptual changes that smart cities, the IoT, and other
embedded computing systems are making manifest. In fact, Microsoft
includes a variation on this insight in a recent white paper on
Cybersecurity Policy for the IoT, and state that the operations depend on
data integrity and availability (Abendroth, Kleiner, & Nicholas, 2017).

Infrastructure systems such as the electrical grid, transportation
networks, and even water and waste water systems have long had
computerized controls. Historically however, those systems were dis-
crete, unconnected, and fairly limited. The computerization and real-
time analysis and manipulation of more and more urban infrastruc-
ture—from traffic lights to public WiFi networks to parking manage-
ment systems—and the connection of these new networks and the
often-insecure legacy infrastructure systems into smart citymanagement
portals and systems will vastly increase the complexity,

Fig. 1. The infrastructure risk in smart cities is determined by three parameters: (i) threat, (ii) vulnerability, and (iii) consequence (Baker et al., 2019). Making cities
smarter does not increase the threats they face. However, it does create new vulnerabilities by increasing the system's complexity and attack surface. Because the
cyber world and physical world in smart cities are integrated, any successful attack to the former can lead to tangible consequences in the latter, thereby aggravating
the consequence parameter (Baker et al., 2019).
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interconnectedness, and vulnerability of urban infrastructure networks.
Smart cities will bring with them major advances in efficiency and

capability for cities. Smart devices do the same for many consumer
products. The important thing for policy makers and those concerned
with security to remember is that the “smart” in smart cities can be read
in many ways. While it can mean smart in the sense of optimizing
operations based on the best available data, it can also mean “hack-
able.” Ultimately smart just means having computing power and sen-
sing capabilities embedded in or appended to it, and like most sensors
and computers, these too are likely to remain susceptible to manip-
ulation, misconfiguration, malicious misuse, and outright attack.

3. Policy implications at the city, regional, national, and
international levels

Intricate connections among various aspects of smart cities form a
complicated web of technologies, policies, and services, which by en-
tangling the attack surface, imparts new security dimensions into city's
management. A robust approach to overcoming such complications
must involve close cooperation among city authorities, engineers, and
different levels of the government. In this section, we investigate the
integral role of the latter in safeguarding the security of smart cities.

3.1. Smart city security: a key factor of governance

The cyber security community has begun to respond to the growth
in smart city technologies with a growing stream of analysis and insight
that make clear that cities will have their work cut out for them as they
attempt to become smarter while remaining secure (or perhaps even
increasing security). As cities adopt these technologies, and particularly
as they attach them to physical infrastructure systems, it will become
incumbent upon the cities to assure traditional variations on con-
fidentiality, availability and integrity; the latter two of which become
particularly serious in the case of cyber-physical systems (Mosenia &
Jha, 2017). While much of the work of the traditional cybersecurity
community, particularly much of the highest profile work that has re-
ceived public attention (Data Breach Investigations Report, 2018), has
focused on issues of confidentiality (through data breaches and the
like); the security community has begun to focus on the threats to
availability—from ransomware to DDoS attacks—and integrity that are
tied to the IoT and Smart Cities (Bartoli et al., 2011; Cerrudo, 2015;
Logota, Mantas, Rodriguez, & Marques, 2014).

Conti, Cross and Raymond (Conti, Cross, & Raymond, 2015) de-
scribe additional challenges and vulnerabilities facing smart city de-
ployments including a review of multiple instances of cyber attacks
targeting corporations and businesses and underlying infrastructure
such as air quality control and airport security, all of which can lead to
exploitation, deception, diversion, disruption, delay, and degradation
of/in citizens and services. The authors also detail some of the inter-
dependencies among key infrastructures, critical and non-critical city
sectors, and their possible domino-like failure. In (Cerrudo, 2015), the
researchers detail numerous cyber vulnerabilities that are common to
many large smart or informatized cities; these include (i) common in-
formation technology problems such as the lack of patch deployment
capabilities, (ii) specific problems like overlapping infrastructure sys-
tems and personnel challenges, and (iii) limited cyber incident planning
or incident response teams. This research also analyzes a host of po-
tential attack targets and vectors that could be of concern to cities,
including potential attacks on (a) traffic control systems, (b) water and
waste water systems, (c) street lighting systems, and (d) the potential
manipulation of smart electrical infrastructure (Cerrudo, 2015).

Ultimately, the smart cities and smarter cities face a large number of
security challenges that range from technical problems like large and
complex attack surfaces to insecure legacy systems to people and process
issues arriving from public sector bureaucracy (Cerrudo, 2015). In all of
these cases, the technology has often arrived—and been

deployed—much more quickly than these cities can change their per-
sonnel practices, contracting vehicles, security policies, and other
agency and municipal practices. Thus, there is the emergence of a se-
curity debt, in which the upsides of smart city technologies are realized
very quickly, but security downsides are often pushed off into some as-
yet-unclear-when future. Despite these clear security challenges facing
smart cities, cities are hardly the only stakeholders with an interest in
securing smart cities.

3.2. Smart cities, federalism, and national security

One of the further challenges presented by the Internet of Things
and embedded computing to traditional governance models involves
questions of ownership, control and regulation, guidance and strategy,
all across different levels of government. Smart cities are likely to ex-
ercise the most control over sensors and other embedded devices in
their networked infrastructure; however if other areas of technology
adoption are an indicator, governments in other levels of federalism
(like states, provinces, and national governments) are likely to play
numerous roles as well. These higher levels of government might play
roles in terms of regulation, standard setting, funding of research and
development, as well as funding both pilot programs and larger roll-
outs of such technologies. This multi-layer governmental in-
volvement—particularly when paired with the complexities of public-
private partnerships and contracting with vendors—will result in a very
complex web of governance. While cities will often own and operate
much of the smart city infrastructure (in conjunction with vendors and
contractors), state/provincial and national governments obviously have
strong interests in the security of such systems.

Two national examples of this illustrate interesting—and differ-
ing—sets of priorities in the case of the United States and Ireland. In
both cases, the national governments are decidedly not attempting to
intervene directly and regulate or set requirements for smart city in-
frastructure; rather, in both cases, the national governments are in-
vesting in research and strategy formation to think about security and
privacy concerns with the hope that such resourcing will improve the
quality of municipal decision-making around security.

In the US, the Department of Homeland Security issued a 2015
document entitled The Future of Smart Cities: Cyber-Physical
Infrastructure Risk (National Protection and Programs Directorate
Office of Cyber and Infrastructure Analysis, 2015). The document takes
a broad look at infrastructure risks that emerge from the adoption and
potential expansion of smart city technologies. It examines such risks in
the transportation, electricity generation and delivery, water and was-
tewater subsectors. In each of these areas, it looks at potential versions
of corruption, malfunction, manipulation, disruption, or other com-
promise. Throughout all of these concerns, it focuses on three themes
that draw them together—changing seams (i.e., new interactions, new
stakeholders, and new access points or attack surfaces), inconsistent
adoption, and increased automation (National Protection and Programs
Directorate Office of Cyber and Infrastructure Analysis, 2015). In Ire-
land on the other hand, much focus was placed on the data collected by
smart cities, and the security and particularly privacy implications of
such data (Kitchin, 2016). This focus on the myriad aspects of privacy
obviously differs in some important ways from the US DHS focus more
narrowly on the security of particular infrastructure systems. That
being said, both are key to understand the security implications of
smart cities, and both illustrate that different governments (whether in
different countries or at different levels within the same countries) are
likely to prioritize security concerns around smart cities differently. The
US government has also looked at issues around privacy in the IoT and
smart cities (Internet of Things, 2016). In addition to national level
documents outlining approaches to smart city security, supranational
entities—like the European Union—have also issued some suggestions
about how they will view smart city security. For example, the EU
Network and Information Security Agency (ENISA) issued (Lévy-
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Bencheton & Darra, 2015) an exploratory analysis of cybersecurity for
smart cities focused on the public transportation sector. These parallel
prioritizations of security issues will inevitably lead to complicated
negotiations and governance challenges.

Many of the security questions raised by smart cities are broader
even than individual countries, levels of government, or agency stake-
holders. Some end up as broad, almost philosophical, legal and reg-
ulatory questions.

4. Security implications of the smart city architecture

Smart cities are realized through an assembly of interacting em-
bedded CPSs, shared infrastructures, and distributed systems, which are
interconnected through a heterogeneous communication platform
(shown in Fig. 2). This platform is proven to be a weak link in security
and privacy management of smart cities, as it is vulnerable to various
attacks that might be originated by insiders, outsiders, or a collabora-
tion of both (Ijaz, Shah, Khan, & Ahmed, 2016). Although several stu-
dies have proposed countermeasures against security challenges in
smart city settings (Balte, Kashid, & Patil, 2015; Elmaghraby and
Losavio, 2014; Zhao, 2013), existing well-established information se-
curity and privacy techniques—which originally target non-smart city
applications—still need to be tailored to address the latent flaws and
weaknesses of smart city systems. A comprehensive approach entails a
multi-layer—yet coherent—security mechanism that can cater rigorous
protection to all levels of the systems, which consist of (i) physical, (ii)
communication, and (iii) processing and storage components. Although
existing cybersecurity research primarily focuses on a single component
of the system at a time, a robust CPS can only be implemented by
balancing the cybersecurity capabilities of all of its components, as the
overall potency of the system against cyber attacks is typically de-
termined by its weakest link. This section investigates the security
characteristics pertaining to these three components and reviews ex-
isting solutions to address them. Since many smart city applications
leverage the same structure, these vulnerabilities and their associated
remedies are applicable to a wide range of services.

4.1. Physical level vulnerabilities

The physical level of smart cities refers to the sensors and actuators
that directly interact with the environment. In a large-scale smart city
application, this level encompasses thousands of different sensors and
actuators that are scattered across the city. This heterogeneity along
with the constantly changing nature of the physical level—which is
induced by the dynamic nature of the modern cities—can easily over-
whelm system developers with myriad challenges. As a result, security
and privacy considerations of this level are often neglected.
Unfortunately, a system administrator might wrongly assume that this
overlook can be remedied by incorporating additional security features
in other levels of the system. In reality, however, the physical layer can
become the weakest link in the system and compromise its security
entirely. An example of this overlooking design practice is studied in
(Arias et al., 2015), where the authors successfully hijack an exciting
smart home product with robust communication and processing se-
curity features by exploiting its hardware vulnerabilities. Through the
compromised device, they establish a rogue DHCP server and conse-
quently endanger all the other devices that are part of the home WiFi
network, including the residents’ smartphones and laptops.

4.1.1. Device protection
The literature recommends various security and privacy measures

for the physical level. The most straightforward approach is to use
conventional cryptography. However, the computational capability of
conventional cyber-physical systems is typically bounded (Soyata et al.,
2016; Soyata, Muraleedharan, Funai, Kwon, ö Heinzelman, 2012),
which limits the applicability of advanced cryptographic techniques.
Furthermore, although cryptographic approaches provide software se-
curity, they cannot ensure immunity against side-channel (Kocabas
et al., 2016) and hardware attacks (Arias et al., 2015). These short-
comings imply that solely relying on software-based cryptography
cannot protect IoT devices, sufficiently. More comprehensive solutions
are required.

A robust holistic device security mechanism must provide protec-
tion in four different levels: (i) firmware-level, (ii) device-level, (iii)
circuit-level, and (iv) energy harvesting and storage-level. Table 1

Fig. 2. An abstraction of the smart city and, the interactions among its various component, and the flow of data to and from local to back haul networks. The
adversary can target the system during sensing, transferring, and processing of data. As shown in the figure, the complexity, scale, and extent of smart services
provide more opportunities for the adversary.
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summarizes some of the important security solutions of each level as
well as the types of threats each solution is most effective against. In
general terms, firmware-level security must provide protection against
firmware tampering attacks as a compromised node can readily be
converted to a launchpad for data leakage and a variety of network
attacks. The literature provides a long list of solutions and re-
commendations. From simply limiting the access to debug pins and
ports to various platform integrity attestation mechanisms that can
verify the authenticity of a device's hardware and firmware. Many ex-
iting integrity attestation solutions, however, are not fully compatible
with IoT devices. For example, both hardware and software im-
plementations of the widely-used Trusted Platform Module (TPM)
suffer from significant power and cost overhead. This has motivated the
emergence of IoT-optimized integrity attestation solutions that do not
rely on TPM (Broström et al., 2018). Firmware-level security for more
resourceful devices is not straightforward either. Particularly, being an
integral hub for many IoT services, smartphones and their operating
systems (OS) are subject to security heterogeneity complications. This
implies that each of the many IoT services that a smartphone hosts
demands unique security services. To address this problem, the study
conducted in (Wessel et al., 2015) suggests a low-overhead OS-level
isolation mechanism that can decouple the resources of secure and non-
secure applications. To achieve maximum security, the proposed tech-
nique uses both hardware and software isolation, implying that hard-
ware modifications to the device are required (although as simple as
using a memory card or pairing a module using BLE). Smartphone-
based IoT applications must also adhere to security services of their
hosts’ operating system, effectively. The literature particularly under-
lines proper device access privileges as many existing apps are over-
privileged (Fernandes, Rahmati, Jung, & Prakash, 2017).

Indeed, the firmware is only a single component of IoT devices.
Complementary measures are needed to secure devices and protect
them from deliberate tampering or unintentional damages, whether the
device is deployed on-site or off-site (to safeguard against insiders).
Covering physical nodes in safe cases that limit unauthorized access can
be a simple and effective (yet costly) approach that greatly enhances
device-level security (Tedeschi, Mehnen, Tapoglou, & Roy, 2017). An-
other dimension of device security involves provable data erasure, a
mechanism that guarantees sensitive data are indeed deleted and hence
inaccessible in a node's memory. A scenario pertaining to provable data
erasure involves a transmitter that requests the erasures and a receiver,
which hosts the sensitive data and is expected to erase them without
leaving any possibility of data recovery. The most straightforward ap-
proach requires the transmitter to send random packets that fill the
receiver's memory and overwrites the sensitive data. This solution is
straightforward but it incurs significant communication overhead. As
an alternative, the study conducted in Ammar et al. (2018) proposes a

software-based solution that stores the sensitive data in a secure iso-
lated memory block. This eliminates the reliance on excessive package
transmission. Additionally, a software-based approach is applicable to
legacy IoT devices. To enhance the integrity of the device and improve
its resistant against tampering, device-level Physically Unclonable
Functions (PUFs) have been proposed as viable solutions. Manu-
facturing imperfections imply that every single IoT device has unique
characteristics. PUFs utilize these device-specific imperfections to un-
iquely identify IoT nodes. A PUF can be viewed as an input-output
module, which for a given input (often termed challenge or query in the
literature), generates different outputs (often called response) across
various devices. This exclusive output can be used (say) as the seed of a
random number generator to construct secrete keys on demand, thereby
eliminating any need for their secure storage. PUFs are typically based
on circuit-level implementations, however, device-level solutions that
utilize idiosyncrasies of energy harvesting units and sensors are also
proposed in the literature (Labrado & Thapliyal, 2019). Aside from their
many advantages, PUFs suffer from stability issues as challenge-re-
sponse pairs can sometimes be inconsistent (Suzuki, Ueno, Homma, &
Aoki, 2019). Nonetheless, the importance of PUFs in IoT security is
expected to grow in the coming years.

Circuit-level security protects embedded chips of IoT devices. The
attacks that target this level generally require more expertise and are
relatively less straightforward to carry out. Additionally, as chips’
functionality and structure differ significantly from application to ap-
plication, circuit level attacks often evince an astonishing variety. This
has motivated the emergence of various techniques that aim to counter
(very) specific attacks. Within this inclusive bracket, side-channel at-
tacks form a major category. Many circuit-level solutions are proposed
to battle side-channel attacks. Perhaps the most uncomplicated solution
is to randomize computations and control, hence decoupling power
demand and memory access from the task and critical parameters. In
addition to its simplicity, randomization can be completely software-
based, which increases its applicability. The drawback is that it in-
creases the computational load and can expedite the battery drain.
Another effective countermeasure against side-channel attacks is to
increase the area of the chip. This can be achieved by unrolling rounds
of iterated block ciphers, which not only battles power-based side-
channels attacks but also increases the throughput of the system albeit
at the cost of the increased area (Singh et al., 2019). Using laser as an
instrument for fault injection attacks has also been studied in the lit-
erature. When targeted at the chip, tuned laser beams can induce
photocurrent in transistors and possibly alter their status, thereby sa-
botaging its normal operation. Laser attacks are not straightforward to
carry out. They require expertise and equipment. They also involve
thorough chip analyses, careful timing, and time-consuming laser
tuning. Nonetheless, the results can be quite rewarding for adversaries

Table 1
An overview of physical security countermeasures. An effective approach must span all four dimensions of physical security.

Dimension Countermeasures (Description) Effective against

Firmware-Level OS-Level Isolation (Wessel, Huber, Stumpf, & Eckert, 2015) (Heterogeneity in
Security Requirements for Smartphone-Integrated Applications) / Platform
Integrity Attestation (Broström, Zhu, Robucci, & Younis, 2018) (Detecting
Unauthorized Changes in Device Hardware and Software)

Hardware-based Injection Attacks, Eavesdropping Android Root Access
Attack, Effective Against Insiders (if access to debug pins is limited) /
Impersonation Attack, Replay Attacks Tampering, Exploitation, &Injection
Attacks

Device-Level Provable Memory Erasure (Ammar, Daniels, Crispo, & Hughes, 2018)
(Ensuring the Erasure of Sensitive data) / Physically Unclonable Functions
(Labrado & Thapliyal, 2019) (Generating Device-Specific Unclonable IDs)

Privacy Leakage and System Reset Attack / Tampering &Sybil Attack

Circuit-Level Laser Injection Protection (Liu, Gu, Qu, & ONeill, 2018) (Counter Laser
Injection Attacks) / SIMON Round Unrolling (Singh, Chawla, Ko, Kar, &
Mukhopadhyay, 2019) (Immunity Against PSCA)

Tampering, Injection, Laser Fault &Voltage Glitch Attack / Power-based
Side-Channel Analysis (PSCA)

Energy-Level Energy-Depletion Countermeasures (Nguyen, Lin, & Hwang, 2019) (Detecting
Abnormal Channel Activities to Curtail Energy Depletion Attacks) / Battery-
Drain Countermeasures (Shakhov & Koo, 2018) (Detecting Abnormal Battery
Level Changes Even with Temporary QoS Improvements)

Energy Depletion Attack, Battery Exhaustion Attack Vampire Attack, Denial
of Sleep Attack / Battery Exhaustion Attack Depletion of Battery Attack
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as even changing a single bit in a security status register might be
sufficient for circumventing (say) secure boot procedures (Vasselle,
Thiebeauld, Maouhoub, Morisset, & Ermeneux, 2018). Covering sensi-
tive areas of the chip with photosensitive materials is an effective way
to detect and combat laser attacks. However, this change needs to be
incorporated into the system from early design phases.

Considering the vital role of energy storage units in IoT, many ad-
versaries use energy depletion and drain of battery attacks to cripple
individual nodes or even an entire network. Energy depletion attacks
interfere with device communications to intentionally increase their
energy consumption cost. In a simple scenario, a simple transmitter is
sufficient to keep the channel occupied. This increases the back-off
periods and wake-up times of legitimate nodes. Jamming attacks with
the intention of increasing the error rate are another archetypes of
energy depletion attacks. To avoid detection, malicious transmitter can
only operate when the network load increases. Random transmissions
are also effective for evading detection. In general, frequency hopping
(which reduces interference) and statistical tools that detect abnormal
channel access behaviors are the main means against these attacks
(Nguyen et al., 2019). Drain of Battery (DoB) attacks aim to reduce
device lifetime by increasing its power dissipation rate. Unlike the en-
ergy depletion attacks, however, DOB can temporarily increase the
device performance and network QoS (e.g., by increasing the trans-
mission power to more than sufficient levels). This complicates their
detection using conventional solutions. An effective countermeasure
against DoB attacks must be implemented in device-level. Algorithms
that monitor energy consumption irregularities can help detect DoB
attacks although at the cost of added computational overhead (Shakhov
& Koo, 2018).

4.1.2. Mobile crowd-sensing security and privacy
A major trend in smart city sensing context is the proliferation of

smart portable devices, which has created myriad opportunities in the
emerging Mobile Crowd-Sensing (MCS) platform. In MCS, citizens use
the non-dedicated sensing capabilities of their smart devices
(Habibzadeh, Qin, et al., 2017) and smart vehicles (Nunes, Moreira,
Kimura, Sastry, & Mahmoodi, 2017) for either participatory or oppor-
tunistic data acquisition; MCS provides the foundation for Sensing as a
Service (SaaS) framework. Securing MCS systems is a challenging task
as not only they face all the security and privacy challenges of dedi-
cated sensing but their unique structure also poses additional threats
and vulnerabilities. Overall, the security and privacy concerns in MCS
are multi-faceted and highly interwoven. However, they can be broadly
associated with (i) compensation (ii) trustworthiness and reputation
assessment, and (iii) sensing data leakage.

Compensation mechanisms to encourage citizens’ participation im-
part additional security flaws (Zhang et al., 2016). Many existing im-
plementations use auction-based recruiting mechanisms, where a server
recruits devices with the lowest bids, subject to its quality require-
ments. Conventional auction-based solutions, however, can potentially
lead to privacy leakage as each bid can reveal sensitive information
about the participants. For example, participants closer to the point of
interest tend to bid higher (as they provide higher quality data), which
can potentially reveal their location. It is possible to use grouping and k-
anonymity to battle these security flaws (Li, Jung, et al., 2018).

Whether monetary or not, blindly compensating all participants
always leaves adversaries a chance to get rewarded for providing fal-
sified information. This drawback has motivated the research for
quantifying the reputation of participants and the trustworthiness of
their submitted data. To this end, the hard and soft reputation metrics
are introduced to estimate the trustworthiness of the sensing hardware
and its user, respectively (Pouryazdan et al., 2016; Pouryazdan,
Kantarci, Soyata, Foschini, & Song, 2017). This way, it is possible to
make a distinction between hardware failures of genuine participants
and the malicious intention of the adversaries. Hard and soft reputation
can be quantified using either centralized or decentralized approaches.

Trustworthy Sensing for Crowd Management (TSCM) compares current
and past data to detect outliers and suspicious samples (Kantarci &
Mouftah, 2014). Because TSCM relies on an archive of information, it
typically entails a centralized implementation. Alternatively, voting-
based solutions provide a basis for many decentralized reputation
analyzers such as Social Network-Aided Trustworthiness Assurance
(SONATA) (Kantarci, Carr, & Pearsall, 2016), where participants in a
sub-network vote for the trustworthiness of their peers. SONATA also
adjusts the voting powers of participants dynamically based on their
current reputation, hence limiting the influence of adversaries.

Many existing solutions to gauging data trustworthiness (including
the preceding works) are based on a common premise, where different
weights are computed and assigned to each node. This effectively
measures trustworthiness; nonetheless, sharing weights of individual
nodes can lead to additional security repercussions because it gives
servers an opportunity for manipulation attacks. Homomorphic en-
cryption can remedy this problem but at a significant computation
overhead. Furthermore, MCS generally involves a high-rate of duplicate
packets. Encryption makes it difficult to effectively detect duplicates
(Ni, Zhang, Yu, Lin, & Shen, 2018). Another approach is to relegate this
task to individual devices. To this end, the server aggregates the data
(in an encrypted environment) and transmits the result back to in-
dividual nodes. Each node can then compare its sample with aggregated
results to measure its deviation (which can be used as the basis for
updating weights) (Xu et al., 2017). This approach, however, can incur
additional communication overhead. Another alternative is to decouple
trustworthiness measurement and rewarding process to third parties;
particularly, miners in a blockchain-based cryptocurrency can effec-
tively perform these task. Nonetheless, k-anonymity is still required to
prevent privacy leakage to miners (Wang et al., 2018).

The intricate interaction between users and their smart portable
devices in MCS platforms also poses significant privacy concerns.
Adversaries can use eavesdropping and traffic analysis to gain private
information about participants, pinpoint their location, or record their
private conversations. Particularly, many MCS systems are vulnerable
to collusion attacks, where multiple adversaries share their resources to
circumvent security mechanisms (He, Chan, & Guizani, 2015). Making
the participants completely anonymous might not be an effective ap-
proach as it can complicate their reputation analysis; it is hard to assess
the trustworthiness of a user without knowing them. For some sensitive
data such as location-based information, frequently changing the
pseudonyms (Beresford & Stajano, 2003) and adding noise and mis-
leading information intentionally (Ghinita, 2013) can be effective
against privacy leakage. Another effective solution is to minimize the
data exchange between the cloud and the participants, which reduces
the opportunities for data leakage. To this end, some researches propose
the game-theory and fundamentals of the free market to create a self-
regulatory bidding and task assignment procedure, which can run in-
dependently of the cloud (Pouryazdan, Fiandrino, et al., 2017). In these
applications, QoS is the utility of the server, whereas rewards are user's
utility. Any risk to undermine the participant's privacy can model the
cost function. Monopoly and oligopoly models can be used to create a
self-regulatory system; users and the server try to maximize their utility
function while minimizing their cost (Liu, Zhou, Zhu, Zhou, & Lin,
2017). They will eventually settle in equilibrium without requiring any
involvement from third-party or explicit communication. Finally, al-
though cloaking mechanisms and k-means can reduce the chances of
privacy leakage, they are not effective against inadvertent data leaks.
For example, camera-based services must automatically use face de-
tection algorithms to blur and protect the identity of bystanders (Li,
Jeong, Shin, & Park, 2017). Table 2 provides a summary of MCS se-
curity and its various dimensions.

4.2. Communication level vulnerabilities

The communication level comprises a short and medium range
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network that allows the sensors to transmit their data to a gateway or
cloudlet (Powers et al., 2015). Similar to sensors, these networks are
used on-site and suffer from the same limitations such as meager power
availability. Therefore, the networks connecting sensors and gateways
are typically short-range, multi-hop, and low-rate, which allows them
to manage their power consumption. The gateways are typically more
powerful computers and have access to Internet, through which the
data are transferred to and from the cloud. The network between the
sensors and the gateways is sometimes considered as a part of the data
acquisition level because the communication and sensor modules are
typically implemented within the same device. Therefore, it is difficult
to physically separate them. However, as their functionality is logically
different, we assume them separate and group all the communication
modules as a part of the communication level.

Communication security is arguably the most well-studied security
challenge in smart city and IoT. Although this has made it easy to im-
prove the security of this level by employing off-the-shelf techniques, it
has also made it the target for many cyberattacks, as its strength and
weaknesses are better known in comparison to other levels.
Furthermore, in many smart city applications, the communication level
joins non-IoT local networks at some point. Therefore, compromising a
node through network attacks can endanger other non-IoT devices that
share the networking infrastructure, including laptops and smart-
phones. IoT wireless networks are usually attacked by eavesdropping,
jamming, and message injection. As discussed in (Kolias, Stavrou, Voas,
Bojanova, & Kuhn, 2016), WiFi is vulnerable to man-in-the-middle at-
tacks. This attack is typically defined as the manipulation of the mes-
sages from a sender to a receiver by an adversary, which is left un-
noticed by both ends (Krimmling & Peter, 2014) (and hence it is
alternatively referred to as manipulation attacks (Suo, Wan, Zou, & Liu,
2012)). ZigBee, too, is prone to replay attacks as it lacks a robust me-
chanism to evaluate the freshness of packets (Kolias et al., 2016). Both
ZigBee and WiFi are very common in smart city implementations.

Smart city communication implementations are oftentimes vulner-
able to manipulation attacks. Particularly, those targeting the network
layer right after the introduction of a new device are known to be very
effective. The mobile and distributed nature of IoT further exacerbates
this vulnerability, as it substantially complicates the successful ver-
ification of end devices (Covington & Carskadden, 2013). Man-in-the-
Middle attacks primarily exploit the inherent weakness of the session
key establishment process in smart city applications. Ye, Zhu, Wang,
Malekian, and Qiao-min (2014) propose a secure access control method
to establish the session key according to the authentication of mutuality
between the sender-receiver pairs. The proposed methodology is based
on Elliptic Curve Cryptography (ECC). It restricts data transmission to
genuine nodes that have undergone a two-stage authentication. Data is
particularly vulnerable during its transmission from the network edge
to the cloud servers. Systematic approaches are, therefore, required to
ensure the security of information. A highly abstract three-component
architecture consisting of a (i) perception layer, (ii) network layer, and
(iii) application layer can combat these vulnerabilities (Puthal, Nepal,
Ranjan, & Chen, 2016). Designing a system at such an abstract level
makes it compatible with many IoT applications. However, every

design process must address the nuances of each application (See Sec-
tion 5 for more details).

An effective security and privacy preserving initiative must include
all network layers. Encryption can be used to validate both the au-
thenticity—to detect spoofing—and integrity (Zhou, Cao, Dong, &
Vasilakos, 2017). Encryption techniques, however, cannot provide im-
munity against side-channel attacks. Additionally, running robust en-
cryption on resource-limited devices is challenging. One promising
solution is Advanced Encryption Standard (AES) as its required energy
consumption and memory usage are economical, thereby making it
suitable for 8-bit microcontrollers (Honan, Page, Kocabas, Soyata, &
Kantarci, 2016); particularly, many chips benefit from dedicated AES
modules that accelerate encryption and decryption. Alternatively, El-
liptic Curve Cryptography can provide very robust security while using
less memory. This reduction in memory usage is achieved by using
smaller keys. However, it does not support processing encrypted data
(they must be first decrypted) (Kocabas et al., 2016).

The communication level of the majority of IoT application includes
an adaption layer that provides compatibility with IP. IPv6 over Low
power Wireless Personal Area Network (6LoWPAN) protocol is a
widespread selection. It provides multiple security configurations to
preserve authentication, encryption, and confidentiality (Habibzadeh,
Soyata, Kantarci, Boukerche, & Kaptan, 2018; Hennebert ö Santos,
2014). 6LoWPAN is also compatible with IPSec, which can provide
security, regardless of whether the application layer includes any se-
curity mechanism or not (Hennebert & Santos, 2014). In the Applica-
tion layer, the Constrained Application Protocol (CoAP) is mostly used
in smart city and IoT applications, as it provides efficient compatibility
for HTTP and the web. To ensure security and privacy CoAP uses Da-
tagram Transport Layer Security (DTLS) and IPsec. DTLS is similar to
TLS, but it is designed for UDP, which makes it more IoT-friendly. The
authors in (Singh, Pasquier, Bacon, Ko, & Eyers, 2016), suggest that all
data transfers in a smart city application must be protected by TLS,
including data transfers among the servers—even if they are operated
by the same provider.

4.3. Data processing and storage level vulnerabilities

Many smart city services are cloud-based, meaning that the data of
in-field sensors is eventually transmitted to a centralized server. Cloud-
based servers are preferred because (i) they are powerful and can
perform complicated algorithms, (ii) they can be scaled to meet the
ever-changing requirements of a smart city, and (iii) cloud is always
available (Singh et al., 2016). Cloud servers must provide real-time
services to a large number of clients, simultaneously. Therefore, they
are typically designed to be resourceful. As the power, size, and com-
putational capabilities of cloud servers are not a limiting factor in this
level, it is suggested that, whenever possible, advanced and compli-
cated security and privacy measures should be implemented (Zhou
et al., 2017). Cloud-based servers are the convergence point of all the
data collected in a smart city application; thus, any security breach can
endanger the privacy and safety of a large number of users, and can
subsequently lead to more severe and larger scale consequences. This is

Table 2
Regardless of its complexity, security and privacy protection in MCS applications includes three major dimensions. Oftentimes, the security of one dimension
complicates the security of others; implying that designers should maintain a subtle tradeoff to achieve maximum security.

Dimension: Description Solutions Shortcomings

Recruitment &Compensation: Bids causing privacy
leakage

Blockchain-based Compensation Cloaking (e.g., k-
anonymity)

Cloaking Interference with Accurate Compensation &
Location-based Services

Trustworthiness &Reputation Assessment: Participants
submitting falsified or inaccurate information

History-based Analysis (e.g., TSCM), Voting-based
Analysis (e.g., SONATA), (Additive) Homomorphic
Encryption

Weights Causing Privacy Leakage Communication &
Computation Overhead, Manipulation Attacks by Server

Sensing Data Leakage: Advertent/inadvertent privacy
leaks

Anonymity Mechanisms Minimizing Data Exchange
(Game-Theory Models)

Complicating Reputation Analysis Due to Anonymity
Not Effective Against Inadvertent Privacy Leaks
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in contrast to security threats of data acquisition and communication
levels, which can impact only a user or a small group of them. As the
result, the importance of security in cloud servers cannot be empha-
sized enough.

Servers in a cloud-based smart city application are prone to different
attacks, such as DoS, malicious data injection, spoofing, and data
leakage (Zhang, Ni, et al., 2017). It is possible to improve the immunity
of the system against such attacks by using commonly used techniques
such as encryption, anonymity, and access control (Zhang, Ni, et al.,
2017). However, the inherent characteristics of IoT raise multiple
challenges in deploying such off-the-shelf techniques. Advanced data
encryption is an effective way to provide security and privacy; al-
though, it is normally not possible to process encrypted data. In private
servers, where the servers are owned and controlled by only one smart
city provider, this limitation does not raise serious concerns. However,
many smart city applications rely on public servers to benefit from the
advantage of scale and reduce their costs. Public servers typically
provide multiple services to different clients simultaneously. Therefore,
decrypting data before processing can expose them to attacks and
leakage (Kocabas et al., 2016; Singh et al., 2016; Zhang, Ni, et al.,
2017). Fully homomorphic encryption (Honan et al., 2016; Kocabas et al.,
2013; Page, Kocabas, Soyata, Aktas, & Couderc, 2014) can address the
requirement. It enables servers to apply algorithms to encrypted data,
without first requiring them to be decrypted. However, homomorphic
encryption is still mostly considered as an untrodden field. Un-
fortunately, current homomorphic algorithms suffer from a significant
performance penalty, which makes them impractical in many applica-
tions. Furthermore, cryptography does not improve the immunity of the
system against hardware and side-channel attacks such as timing at-
tacks, power attacks, and cache attacks (Kocabas et al., 2016). None-
theless, techniques such as Montgomery's multiplication (Koc, Acar, &
Kaliski, 1996) and randomizing computations (Okeya & Sakurai, 2002)
can enhance the system's robustness against these threats.

The anonymity of users can be protected by conventional methods
such as pseudonyms. However, the system must be able to identify the
users in case of a dispute (Zhou et al., 2017). Furthermore, some smart
city service providers might intentionally gather information about
their users for either future use or selling to third parties. Many smart
city applications require flexible file sharing platforms. Conventional
solutions that involve public/private key schemes are not applicable to
these modern scenarios as they require an additional copy of data for
every data access request (Kocabas et al., 2016). Clearly, in applications
such as smart healthcare with intricate data access patterns, these so-
lutions can become prohibitively complicated. Attribute-Based En-
cryption (ABE) must be used in these cases (Kocabas et al., 2016).

The dynamic nature of the smart cities requires a continuous au-
thentication and verification method for participating devices. This non-
trivial problem can be best addressed by employing hybrid solutions,
which combine novel conceptual designs—such as defining social re-
lations between the nodes, identifying behavioral patterns, etc.—with
conventional biometrics-based authentication techniques. Defining re-
lations among smart objects (first introduced in the work by Holmquist
et al. (2001)) is perceived as socialization of smart objects. A conceptual
review of the IoT-social network integration is presented in (Ding, Shi,
& Liu, 2010), which can form a basis for continuous and/or behavior-
based authentication in smart city applications. An example study of
such authentication mechanisms based on the social interactions of
users is conducted in (An, Gui, Zhang, & Jiang, 2011). Despite its ne-
gative impact on performance, biometric authentication remains a vi-
able solution for secure and continuous authentication. Biometric-based
solutions authenticate users using either their physiological (e.g., fin-
gerprint and facial features) or behavioral biometrics (e.g., gait and
handwriting) (Sultana, Paul, & Gavrilova, 2014). When conducted im-
plicitly, behavioral authentication paves the way for robust, convenient,
and non-invasive authentication. For example, users can be authenti-
cated by analyzing their interactions with smartphones, web browsing

habits, and location history (De Luca, Hang, Brudy, Lindner, &
Hussmann, 2012; Feng et al., 2012; Gascon, Uellenbeck, Wolf, & Rieck,
2014; Khan, Atwater, & Hengartner, 2014; Khan & Hengartner, 2014).
As opposed to authentication by (say) fingerprint scanning, behavioral
solutions do not require users’ explicit attention, hence the term implicit
authentication.

Various studies conducted in the literature prove the applicability of
behaviometrics-based authentication to a diverse range of applications.
For example, the authors in Crandall and Cook (2013) show that this
technique can substantially facilitate the interaction between users and
their surrounding in smart environment implementations. In another
study (Budurusubmi & Yau, 2015), the authors enable smartphone user
to unlock their devices by analyzing their touchscreen gesture patterns.
Similar studies are conducted in the literature to investigate the
growing role of behavioral authentication in smart cities (Batty et al.,
2012; Khatoun and Zeadally, 2016).

In Anjomshoa, Aloqaily, Kantarci, Erol-Kantarci, and Schuckers
(2017), the authors study the behavioral patterns of mobile users on
several various social network platforms with the aim of continuously
verifying users on their smart handheld devices. The main motivation of
this idea is that users’ mobile devices can be recruited for large-scale
non-dedicated sensing campaigns. Fig. 3 presents a minimalist view of
the system architecture. The authors aim at mitigating the drawbacks
and/or inconvenience of the conventional verification schemes such as
pin codes/passwords or fingerprints/face recognition. The former ca-
tegory faces inevitable security vulnerabilities as mentioned by many
researchers (Zhang & Li, 2011) whereas the improved security in-
troduced by the latter comes at the expense of implementation cost
(Dantcheva, Elia, & Ross, 2016; Liu-Jimenez, Sanchez-Reillo, &
Fernandez-Saavedra, 2011; Meng, Wong, Furnell, & Zhou, 2015;
Poursaberi et al., 2013). The mobile behaviometric framework moni-
tors and assesses social activity on mobile devices through newly in-
troduced sociability metrics.

5. Domain-specific security challenges of smart city applications

As almost all smart city applications share the same stratum, they
remain susceptible to the same vulnerabilities (as discussed in Section
4). However, the nuances of each application also entail domain-spe-
cific considerations. This section is dedicated to studying these parti-
cularities. Because the concept of the smart city encompasses a wide
range of applications, a thorough study of each possible domain exceeds
the scope of this paper. Nonetheless, the included applications form
(arguably) the backbone of the smart city. Additionally, each applica-
tion, in the context of this section, should be envisioned in a broad
concept. For example, the provided discussion on smart homes remains
fairly applicable to smart buildings and smart environments as well.

5.1. Smart health

The traditional healthcare typically requires the physical presence
of patients in hospitals. The patients first need to be hospitalized, where
the professional and trained staff can monitor their biomarkers and
assess their health status (Honan et al., 2016; Page et al., 2015). This
rather archaic approach fails to provide real-time and continuous
monitoring, which is a requirement for successfully diagnosing and
remedying chronic diseases such as cardiovascular disorders, diabetes,
and hypertension (Honan et al., 2016). The design of a reliable system
that can provide real-time, personalized, and clinical-grade digital
health information has been addressed by creating smart—or equiva-
lently digital—health (Shishvan et al., 2018). The progress in smart
health is mostly due to recent innovations in the CPS arena; as devices
have become inexpensive, non-invasive, bio-compatible and accurate
enough for personal and clinical use, their application in an IoT-based
CPS becomes feasible. Further contributing to the realization of smart
healthcare, the advances in Wireless Body Area Networks (WBAN)
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(Habibzadeh et al., 2018) have removed many obstacles against low-
cost, reliable, and ubiquitous communications. Additionally, modern
data analytics and machine learning can analyze and correlate collected
data to assist medical personnel with decision-making and provide real-
time and personalized recommendations to users. Smart health systems
can now reliably measure cardiovascular parameters (Mahbub et al.,
2017; Rachim & Chung, 2016), blood pressure (Kachuee, Kiani,
Mohammadzade, & Shabany, 2017), respiration variables (Liu, Cao,
Tang, Wen, & Guo, 2016; Reyes, Reljin, Kong, Nam, ö Chon, 2017), etc.
Non-invasive commercial products such as Apple watch (Apple Inc.,
2017a) and Fitbit (FitBit Inc., 2017) can provide fitness related in-
formation. More technical sensors and devices such as MC10 (MC10
Inc., 2017) products can also provide clinical grade information.

Parallel to the evolution of smart healthcare systems, threats and
attacks that target users’ privacy have also increased in complexity and
frequency. Two mega-trends transpiring in the field can be primarily
associated with these developments. First, the ever-increasing applica-
tion of sundry implantable, wearable, and ambient sensors increases the
odds of sensitive data leakage (Piwek, Ellis, Andrews, & Joinson, 2016).
These vulnerabilities span almost all smart healthcare services, from
clinical devices (e.g., privacy vulnerabilities of some cardiac devices
exposed in 2017 by the Food and Drug Administration (FDA Safety
Communication, 2018)) to casual fitness sensors such as smartwatches
and fitness bands (e.g., BLE-based communication can be compromised
to reveal sensitive information about users’ physical activities (Das,
Pathak, Chuah, & Mohapatra, 2016)). Second, the cloudification of smart
healthcare not only creates a centralized single point of failure but also
enables adversaries to gain valuable insight by taking advantage of data

fusion (Zhou et al., 2017). For example, in the recent incident reported
in Rogers (2018), the publication of seemingly unimportant data of an
activity tracking application (collected from smart wearables) led to an
unexpected data leakage about sensitive locations such as military
bases.

Cyber attacks that target smart health systems can easily lead to
privacy violation of the patients, as health data is very sensitive. Due to
this sensitivity, the Health Insurance Portability and Accountability Act
(HIPAA) 104th Congress Public Law 191, 1996 mandates smart
healthcare services providers to respect and protect the privacy of their
patients (Ara, Al-Rodhaan, Tian, & Al-Dhelaan, 2017; Kocabas et al.,
2013). Hence, it is critical to ensure that the new innovations in smart
healthcare field meet the requirements of HIPAA (The reader should be
aware of ongoing efforts to relax HIPAA requirements, with the intent
of reducing regulations and motivating innovation and production
(Knopf, 2019)).

A major complication in smart healthcare applications stems from
the large number of stakeholders and their indeterministic roles. The
personal data of the patients must be shared with hospitals, physicians,
specialists, pharmacies, insurance companies, etc. Additionally, some
constituents of smart healthcare (e.g., first responders) require on-de-
mand and temporary privileges. This complication entails two re-
quirements. First, the existing data must be digitized in a standard
format (to generate electronic health records or EHR) and second, the
EHRs must be securely and effectively shared with multifarious con-
stituents of smart healthcare. HIPAA-compatible standards such as
OpenEHR and Health Level Seven International (HL7) can address the
former requirements, although their variety still raises interoperability

Fig. 3. Continuous behavioral authentication mechanism developed in (Anjomshoa et al., 2017) encompasses five modules for monitoring, data acquisition, nor-
malization, training, and verification.
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concerns (Blobel, 2018). The latter requirement is typically fulfilled by
novel data sharing protocols as conventional file sharing mechanisms
are ineffectual in the dynamic environment of smart healthcare.

A typical EHR may include comprehensive information about a
patient. A secure model should allow access only to the portion that is
relevant to the requester's role. This, however, should not limit a sta-
keholder's ability to search the entire record for relevant information.
Attribute-based decryption (ABE) is an effective approach to provide
diverse access control privileges, which makes it particularly applicable
to cloud-based smart healthcare scenarios. In ABE, the owner of the
data (e.g., the patient) determines access policies based on attributes
and relationships. The users can access an entry in EHR if their attri-
butes match the designated policy. This is an effective solution when
attributes and relations are static. However, it fails to provide justified
temporary access to new users (e.g., allowing access to first responders
during an emergency). Therefore, access control should be “self-adap-
tive” and differentiate between normal and emergency situations. A
self-adaptive system involves a master key that is shared with the pa-
tient and their emergency contacts. The emergency units need to
communicate with these emergency contacts to obtain the password
and gain access to complete health record of the patient (Yang, Zheng,
Guo, Liu, & Chang, 2019).

Notwithstanding its remarkable performance for protecting on-
cloud data, ABE computational complexity makes it inapplicable to
WBAN technologies, which constitute the front-end of smart healthcare.
In these scenarios, it might be productive to revert to more conven-
tional solutions augmented with new improvements. Particularly, for
WBANs, identity-based access control provides a practical balance be-
tween simplicity and security. Additionally, efficient Certificateless
Signcryption (SLSC) can further reduce the energy consumption and
computational demands of the algorithm. SLSC also benefits from the
advantage of improved security, as the service provider only dispenses
partial keys (hence eliminating the need for a completely trustful
server) (Li, Han, & Jin, 2018).

ABE and identity-based access control can deliver access manage-
ment for the back and front-end of smart healthcare, respectively. Both
of these solutions, however, rely on central servers, which impedes
their applicability to ever-growing distributed implementations.
Blockchain-based access control is a nascent technology that aims to
address this limitation. Rather than storing the entire EHR on the
blockchain, the existing works merely employ it as an access control
mechanism (meaning that the blockchain only stores references to
data), which enables the data owners (e.g., the patients) to have com-
plete control over sharing their information. This reduces the storage
overhead of the blockchain but creates a weak link in the central node
that stores the EHR of a patient. Despite its increasing popularity,
blockchain is not a panacea for EHR sharing. The platform remains
always vulnerable to 51% attacks. Additionally, tracking the transac-
tions of a user can reveal their visiting patterns, hence compromising
their privacy. Blockchain-based access control is also inherently com-
plicated. This adds to the access delay and can result in inconvenience
for users (Dagher, Mohler, Milojkovic, & Marella, 2018). Table 3 lists
some of the major challenges in healthcare security. These challenges
involve various domains of the healthcare; the most important of which
are listed in the table.

5.2. Smart transportation

The main purpose in smart transportation (also called intelligent
transportation) is to improve the safety of roads and to provide a more
convenient driving experience (Habibzadeh, Qin, et al., 2017), using
either dedicated (Datondji, Dupuis, Subirats, & Vasseur, 2016) or crowd
sensing (Calabrese, Colonna, Lovisolo, Parata, & Ratti, 2011). It in-
volves various aspects of transportation. Smart parking services address
the challenge of finding a vacant parking spot in busy cities
(Chatzigiannakis, Vitaletti, & Pyrgelis, 2016). Smart driving

applications employ various technologies to assess and evaluate the
status of the road and assist the driver accordingly with the goal to
prevent accidents and improve the safety of the passengers and other
drivers (Teichmann, Weber, Zoellner, Cipolla, & Urtasun, 2016). Some
smart driving technologies also analyze the status of the driver to detect
if they are sleepy, stressful, or distracted (Yamaguchi & Sakakima,
2007). Other systems aim to improve public transportation and provide
citywide services, which allow them to guarantee the smooth flow of
traffic (Brisimi, Cassandras, Osgood, Paschalidis, & Zhang, 2016). Smart
transportation can also overlap with smart healthcare, where traffic
manipulation is used to minimize the response time of emergency units.
It can assist law enforcement in addressing traffic incident disputes (Wu
& Horng, 2017). Because fixed sensors can only provide highly localized
information, many smart transportation systems include a large number
of non-dedicated sensors in their front-end (Habibzadeh, Qin, et al.,
2017). Moreover, a substantial portion of the sensors used in smart
transportation is incorporated within the vehicles, which implies a
mobile and highly dynamic framework. Smart transportation also in-
volves infrastructure sensors and actuators that facilitate the interaction
between vehicles and roads. Infrastructure units must reliably serve
multiple clients simultaneously, which increases their computational
and energy-consumption requirements. Hence, they are either im-
plemented as grid-connected or self-sufficient devices with energy
harvesting capabilities (Habibzadeh, Hassanalieragh, Ishikawa, Soyata,
ö Sharma, 2017; Habibzadeh, Hassanalieragh, Soyata, & Sharma,
2017c, 2017).

The highly dynamic characteristics of some of the smart transpor-
tation services require flexible and ad hoc architecture. Within the core
of this architecture lies the Vehicular Ad Hoc Network (VANET). It
allows Vehicle-to-Vehicle (V2V) communication and utilizes Road Side
Units (RSU) (Rajput, Abbas, Eun, & Oh, 2017) for Vehicle-to-Infra-
structure (V2I) data exchange. Such communication provides a basis,
upon which vehicles can coordinate their behavior to maximize safety
and improve traffic flow based on the condition of the infrastructure.
Not unlike the smart healthcare that generally revolves around an in-
dividual (WBAN), smart transportation services ultimately involve in-
dividual vehicles. Vehicles, however, are significantly more resourceful
than smart wearables, which implies more opportunities for advanced
on-site data processing. This resource abundance of on-vehicle nodes
paves the way for agile communication services (using cognitive radio),
which are crucial for overcoming many existing challenges of V2V
communication (e.g., heterogeneity) (Ding, Zhang, Cai, & Fang, 2018).
The proliferation of smart vehicles is currently the major driving force
in the growth of smart transportation. The threats against smart ve-
hicles can be categorized based on their vulnerability (Baig et al.,
2017). Physical threats target the electronic control unit of vehicles to
gain unauthorized access to data or sabotage the operation of the ve-
hicle. Interception attacks intercept the data transmission within the
vehicle or between the vehicle and the cloud. The reliance on com-
munication technologies and operating systems such as Android Auto
or Apple's CarPlay leaves smart vehicles susceptible to known vulner-
abilities of these systems.

Although privacy leakage—especially for location data—is im-
portant in smart transportation, it is not as disquieting as in smart
health applications. Instead, the ramifications of the cyber attacks on
smart transportation mostly include safety concerns and economic
losses. For example, it is shown that radio signals can interfere with the
smart vehicle braking system, which directly threatens the safety of the
occupants and other drivers. Furthermore, an attack on public trans-
portation systems—such as the one on the Bay Area Rapid Transit
(BART) (Bay Area Rapid Transit, 2017)—may inflict substantial fi-
nancial losses. Adversaries can generate falsified data to manipulate the
traffic to their advantage, which hints at the significance of evaluating
data trustworthiness and authentication in smart transportation (Guo
et al., 2017). These attacks, when transpired in the intricate ecosystem
of smart transportation, are particularly difficult to detect and
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countervail. This mirrors the significance of Intrusion Detection Sys-
tems (IDS), which are critical to smart transportation security. There
are two general approaches to IDSs. The common implementations use
a database of known attacks and their signature to detect irregularities
in the network's behavior. This signature-based solution is very effective
against known vulnerabilities but falls short of protecting the system
from zero-day threats. Alternatively, anomaly detection-based solutions
analyze the current status of the system to detect irregularities. This can
provide security against zero-day attacks albeit the overall accuracy is
typically lower. Various implementations for IDS have been proposed in
the literature. Some adopt the principles of game theory to model the
intricate competition between the defender and adversary. These two
agents typically aim to maximize their utility while considering the
optimal response of their competitors. Game theoretic solutions are
applicable to distributed architectures and are proven efficacious in the
context of large-scale systems (Sedjelmaci, Hadji, & Ansari, 2019).
However, their performance remains reliant on various assumptions
e.g., the rules of the game and whether or not the adversaries are co-
operative. Hybrid machine learning (ML) techniques that integrate
multiple ML algorithms are also proven effective (Aloqaily, Otoum,
Ridhawi, & Jararweh, 2019). ML-based approaches, however, rely on
feature extraction techniques which pose two major challenges. First,
extracting the most salient features is oftentimes complicated. Second,
adversaries can eventually learn the relevant features and engineer
their attacks accordingly (Diro & Chilamkurti, 2018a). The growing
deep learning (DL) techniques can mitigate this drawback as they op-
erate on raw data. Additionally, DL-based IDSs are more robust against
zero-day attacks (as DL is more tolerant of small changes in data than
ML) (Diro & Chilamkurti, 2018b). Nonetheless, DL algorithms require
large and high-quality training datasets (van der Heijden, Dietzel,
Leinmller, & Kargl, 2019).

Location-based services are inherent to smart transportation appli-
cations, which inevitably raises privacy concerns. The existing solutions
for protecting users’ location privacy offer a trade-off between com-
putation and communication requirements. Pseudonyms are arguably
the most widely used approach. However, pseudonym management is
typically centralized, which raises concerns about its scalability and
latency; especially considering the increasing number of connected
vehicles. Distributed pseudonym management systems that utilize edge-
computing can mitigate this problem (Kang, Yu, Huang, & Zhang,
2018). Spatial cloaking (e.g., k-Anonymity and l-diversity) adds to
communication's overhead, while homomorphic encryption compli-
cates computations (Lin, Niu, Li, & Atiquzzaman, 2019). VANETs are
also susceptible to a diverse range of cyber attacks. Intercepting or
eavesdropping attacks may steal some of the critical information about
the vehicle and its driver because beacons transmitted by each vehicle
contain a unique ID and location-related information (Rajput et al.,
2017). Table 4 summarizes IDS and privacy of location-related data as
the major security and privacy dimensions of smart transportation

along with some suggested solutions.

5.3. Smart grid

Smart grid applications improve the efficiency of power generation,
distribution, and consumption, which not only reduces costs but also
decreases pollution and retards the climate change. A modern smart
grid application must be particularly compliant with renewable energy
sources and energy storage blocks. They must provide tools for hand-
ling complex modern smart grids, self-healing feature, and compat-
ibility with emerging electric vehicles (Eder-Neuhauser, Zseby, &
Fabini, 2016). Three objectives can be enumerated for smart grid ser-
vices: (Chu & Iu, 2017) (i) converting the currently centralized energy
network to a more decentralized system, (ii) improving network man-
agement and monitoring in order to add to the system's resilience, and
(iii) analyzing the bulk of information system-wide to improve effi-
ciency and prevent blackouts. Example applications of smart grid in-
clude pricing in real-time, managing demand, and distributed gen-
eration—which is also an implication of the propagation of renewable
energies. Making the grid decentralized also increases its resilience
against different types of attacks, natural disasters, and human errors
(Eder-Neuhauser et al., 2016).

Advanced Measuring Infrastructure (AMI) is a key component of the
smart grid. It facilitates the interaction between consumers and op-
erators. Consumers benefit from AMI as it allows them to accurately
monitor their consumption and take full advantage of dynamic pricing
policies. It benefits operators by enabling them to automatize meter
readings, which improves accuracy and reduces costs. At the heart of
the smart grid, the Supervisory Control and Data Acquisition (SCADA)
manages the entire network. It collects AMI's data, processes them, and
makes decisions to adjust the grid based on its real-time status (Tan, De,
Song, Yang, & Das, 2017).

Similar to other smart city services, smart grid applications are
highly dependent on communication technologies (Kalalas, Thrybom, &
Alonso-Zarate, 2016) (especially, technologies such as power line
communication, ZigBee, IEEE 802.11 h, Bluetooth, etc. (Habibzadeh
et al., 2018)). Making the grid intelligent and integrating it with the
cyber world renders the system vulnerable to various cyber attacks
threatening the system's availability, integrity, and privacy. At the
lowest level (data acquisition level), the smart grid CPSs are prone to
attacks that manipulate the readings of smart meters and pricing po-
licies (energy theft). Moreover, as power consumption can reveal va-
luable information about the occupants of a building, their habits, and
their lifestyle, privacy-violating attacks such as eavesdropping and in-
tercepting are also important in a smart grid. The existing counter-
measures against energy theft can be broadly categorized into state-
based, game theory-based, and data analytics-based solutions. State-
based solutions use state equations to model energy consumption. This
way, possible biases in state estimators (e.g., Kalman filter) can be

Table 3
Some major challenges in smart healthcare security and privacy along with domains they affect.

Challenges Domain Trends Comments

Data Sensitivity/Multi-Faceted Heterogeneity in
Privacy &Security Requirements/Number and
Dynamic Roles of Stakeholders

Structure &
Architecture

Cloudification, Edge-Computing,
&Hybrid Architectures

Cloudification increases latency, limits scalability, and creates
single-point-of-failure. Edge-computing causes availability
issues and is not compatible with many existing data analytics
algorithms.

Access Control Attribute-Based &Identity-based
Access Control

These are used for back- and front-end respectively. ABAC
entails a central implementation. It does not provide emergency
access privileges, effectively and burdens the front-end. ABAC
has also poor scalability.

Data Sharing &
Semantic Extraction

Standardized EHR, Blockchain,
&Natural language Processing
(NLP)

NLP is used to process unstructured data such as EHR. EHR
standards (e.g., OpenEHR) promise good inter-family
interoperability while meeting many requirements for secure
information sharing regulations. However, different formats of
different standards are not typically compatible.
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interpreted as power consumption irregularity, which can potentially
imply malicious activity (Salinas & Li, 2016). This is an effective ap-
proach but sometimes it requires multi-sensor data fusion (McLaughlin,
Holbert, Fawaz, Berthier, & Zonouz, 2013), which can incur additional
installation costs. Alternatively, the interaction between energy com-
panies and energy thefts can be modeled as a game to structure an
inexpensive energy theft detection mechanism. The performance of
these solutions, however, mostly relies on the game rules (e.g., defining
utility functions), which are oftentimes not easy to determine (Jokar,
Arianpoo, & Leung, 2016). Many emerging studies use ML and DL to
detect irregular energy consumption (Yip et al., 2017). These algo-
rithms typically deliver impressive accuracy; however, they require
high-quality training data. Additionally, ML algorithms oftentimes fail
to differentiate between malicious users and innocuous events (such as
new tenants in of a building); therefore, they suffer from high false
positive rates. To protect users’ privacy during processing, FHE can be
applied (Yao et al., 2019).

Smart grid cybersecurity should equally emphasize both software
and hardware aspects, thereby providing communication and device
security. Fulfilling this vital requirement demands early counter-
measure against cyber attacks. This is, however, not an easy task to
undertake as the extent of smart grid systems (which may even span an
entire country) provides ample attack opportunities for adversaries
(Kabalci, 2016). Furthermore, even a relatively small subset of com-
promised devices are adequate to disturb the delicate balance of the
smart grid and, hence, causing a domino-like chain of failures. These
complications give rise to attack prevention, detection and mitigation
models. Reducing the communication between the field (home area
networks and building area networks) and the control center lowers the
chances for privacy leakage and possible cyber attacks. This can be
achieved by localizing some of the computations to field devices and
hence making them more independent; building area networks can
provide some level of management to locally distribute the load among
home area networks by estimating their expected demand. In many
cases, the deviation from the expected load can be handled by redis-
tributing the load among different home area networks without invol-
ving the control center. This effectively increases the immunity of the
system against outsider attacks (Abdallah & Shen, 2017). Attack de-
tection in the context of the smart grid oftentimes involves evaluating
data for anomalies and inconsistencies (falsified data do not comply
with physical rules of electric circuits). Conventional detection solu-
tions utilize these anomalies to expose attacks, where the deviation in
key parameters of the grid (e.g., power and phase) passes a given
threshold (meaning that deviations are inexplicable using physical
rules, even after accounting for expected noise). This approach, how-
ever, fails to detect stealth attacks, where the adversary, aware of the
network's topology and status, ensures that data manipulations do not
violate the system's norms. This necessitates more powerful tools for
anomaly detection. Both supervised and unsupervised solution can
surmount these complexities, although the scale of the smart grid
causes dimensionality issues (principal component analysis is shown to
be effective to battle this problem) (Esmalifalak, Liu, Nguyen, Zheng, &
Han, 2017). Machine learning solutions utilize past smart grid data to
develop statistical models, which can later be used to detect outliers. A

cyber attack involves compromised nodes that aim to undermine the
integrity and availability of the system. An attack mitigation model
employs trusted nodes to counterbalance the wrongdoings of adver-
saries. These interactions between two competing entities naturally
lead to game-theoretic solutions that can approximate the complex
nonlinear behavior of participants without having full knowledge of
their action-taking process (Srikantha & Kundur, 2016).

The scale and complexity of the smart grid, coupled with the sheer
number of stakeholders involved, significantly complicate the intrusion
detection problem. Cyber attacks are getting more insidious, where
adversaries perform their attack in extended time frames to gradually
infiltrate the network. As mentioned in the preceding discussion, this
hints at the importance of modern intrusion detection systems (IDS) in
the context of the smart grid. An alternative to game-theoretic solu-
tions, immune theory and principles of artificial immune systems pro-
vide a solid basis for the development of an effective IDS. Such systems
include antigens and detectors—typically categorized as immature,
mature, and memory detectors,—which can identify and neutralize
intrusions. The remarkable performance of these systems, however,
stems from their ability to dynamically evolve, which renders them
effective against unknown threats as well. The proper execution of this
methodology hinges on establishing an information library. The content
of this library along with the detected attacks is then used to alarm the
system manager (Liu, Yang, Zhang, Chen, & Zeng, 2011). Artificial
immune systems, however, are a growing field. Therefore, their ap-
plicability to real-world scenarios is not completely known (Pump,
Ahlers, & Koschel, 2018).

Forestalling spoofing cannot be assured by solely relying on con-
ventional encryption and authentication techniques. Instead, it requires
more comprehensive solutions. SVELTE (Raza, Wallgren, & Voigt,
2013) is proposed as a real-time intrusion detection system for the IoT
to detect sinkhole and selective forwarding attacks. SVELTE was in-
itially designed for a Low-power Wireless Personal Area Networks with
IPv6 (6LoWPAN) (Kushalnagar, Montenegro, & Schumacher, 2007) that
uses message security technologies to provide end-to-end message se-
curity. The main components of SVELTE include: (i) 6LowPAN Mapper
(6Mapper), which collects data about the status and performance of the
network and uses RPL to establish links and routes among nodes, (ii)
intrusion detection, which secures the network against intrusions, and
(iii) distributed firewall, which controls the traffic to and from the
network and blocks malicious packets. In case no particular im-
plementation of IDS can fulfill the requirements of an application, hy-
brid solutions are also proposed in the literature (Krimmling & Peter,
2014) (Table 5). Table 5 tabulates the major security dimensions of the
smart grid, as well as some typical challenges and prominent solutions.

5.4. Smart home

The smart home ecosystem involves smart appliances, which pri-
marily focus on providing convenience, e.g., smart refrigerators that
can keep track of users’ shopping list. Many smart home services in-
volve improving energy consumption (which implicitly binds them with
the smart grid). Smart Heating, Ventilation, and Air Conditioning
(HVAC) systems fall into this category (Yan, Zeng, Liang, He, & Li,

Table 4
Two dimensions of security and privacy are particularly important in smart transportation systems. This table tabulates the main trends in each solution.

Challenges Domain Trends Comments

High-Accuracy/Highly Dynamic/
Low-Latency &Delay-Intolerance

Intrusion Detection
Systems (IDS)

Game-theoric Models, Machine
Learning, &Deep Learning Models

The performance of models that use game theory mostly depends on their
assumptions about the game rules. Similarly, the performance of ML
solutions highly depends on proper feature extraction, which is not
straightforward. DL requires a large amount of training data.

Location Data
Privacy

Pseudonyms, Cloaking, &
Homomorphic Encryption

Pseudonyms management is centralized, which causes additional latency.
Cloaking techniques cause communication overhead while Homomorphic
encryption is computationally expensive.
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2017). Some applications provide security services e.g., home access
control through doors and windows, break-in detection, and fire de-
tection systems (Jose & Malekian, 2017). An interesting application is
when the smart home and smart health meet. For example, a home-
wide fall detection service can detect fall incidents for the elderly
(Stone & Skubic, 2015). Notwithstanding these multifarious ad-
vantages, the widespread adoption of smart home technologies still
faces many challenges. Particularly, security and privacy concerns are
known to be a major hindrance (Wilson, Hargreaves, & Hauxwell-
Baldwin, 2017). Social implications of smart homes also require further
investigation, as these technologies can sway the control to tech-savvy
residents or even third-parties (Gram-Hanssen & Darby, 2018).

Generally, smart home applications are cloud-based. Numerous
frameworks such as Home Kit (Apple Inc., 2017b), SmartThings
(Samsung Electronics Co., 2017), and Weave (Google Inc., 2017) can
provide various ready-to-use smart home services without requiring a
complicated and costly setup (Fernandes, Rahmati, Jung, et al., 2017).
This reliance on various cloud-based services and technologies, how-
ever, inevitably leads to excessive fragmentation, which evinces itself in
sensing, communication, security, and processing dimensions of smart
home systems. Circumventing this heterogeneity is a major unresolved
challenge in smart home technology. A suggested solution utilizes
hierarchical cloud architecture to consolidate the services of in-
dependently-operated cloud servers. This solution involves a mediator,
which dispenses commands and requests among various independent
servers and enables them to remain synchronized. By identifying the
relationships among various security feature, ontology-based security is
used to ensure security interoperability (Tao, Zuo, Liu, Castiglione, &
Palmieri, 2018). The dependence on the cloud, however, brings about a
major reliability ramification; being the single point of failure, any
accidental or intentional interruption in the cloud's operation can
render the smart home unavailable and leave it susceptible to security
threats. In-home processing services can mitigate this vulnerability.
This approach involves a local processing hub that remains constantly
in sync with the cloud. Upon any interruption in connectivity with the
cloud, this hub assumes control of the smart home to provide basic
services (e.g., maintaining the operation of surveillance systems or
safety sensors) (Doan, Safavi-Naini, Li, Avizheh, & Fong, 2018).

Making homes smart has exposed them to new threats; in addition to
conventional security vulnerabilities, smart homes are now prone to
cyber attacks and cyber thieves. Constituting the communication fra-
mework of the system, many smart home services also share the
weaknesses of wireless LAN protocols (WLAN), implying their vulner-
ability against routing and wormhole attacks (Jose & Malekian, 2017).
Particularly, data leakage can reveal information about the residents’
lifestyle. For example, it is possible to use the data of an IR sensor to
determine when residents are home. For applications that primarily
target security, sabotaging the system can compromise the security of
the entire home. Even more disturbing is that some available smart
home devices fail to adopt even the most fundamental communication
security services (which are, thanks to existing off-the-shelf solutions,
relatively easier to implement in comparison to say hardware security.)
These devices are typically shipped with simple default passwords,
which many users neglect to alter. Even in the presence of strong

passwords, spoofing and firmware attacks can compromise the equip-
ment (Ling et al., 2017).

Fulfilling privacy and security requirements of smart homes typi-
cally revolves around standard cryptography including TLS and SSL.
These solutions, however, can be quite expensive for resource-con-
strained smart home devices. Many lightweight key-establishment
mechanisms based on symmetric encryption are proposed to address
this drawback. However, they typically rely on trusted centralized
providers, which is not a valid assumption in many smart home ser-
vices. Additionally, encryption can complicate data query and data
processing (Poh, Gope, & Ning, 2019). Particularly, in the context of
smart homes, users’ privacy is often threatened by eavesdropping. Ad-
versaries can trace data streams to their individual source devices (by
simply monitoring IP address or using ML). They can monitor the ac-
tivities of these devices to infer householder's habits and lifestyles. An
individual device might not reveal much information but fusing data
from multiple sensors can pose a serious threat to privacy. Hence, it is
important to make devices unidentifiable and employ mechanisms to
preempt unauthorized data fusion (Kumar, Braeken, Gurtov, Iinatti, &
Ha, 2017). The study conducted in (Apthorpe, Reisman, & Feamster,
2017) proposes four practices to minimize privacy leakage in smart
home applications, particularly when subject to eavesdropping and
analysis by last-mile entities. The first practice is a preventive method
to minimize the outgoing traffic of smart devices (e.g., using a firewall).
However, many devices require Internet connectivity to function (in
fact, many smart home devices are over-privileged. They need cloud
connectivity even though it is not critical to their operation). The
second practice recommends encryption of DNS queries as they contain
information about devices’ identities. ML technique can still identify
devices even if DNS queries are encrypted although with much higher
difficulty for adversaries. The third suggestion recommends VPNs for
data encryption and aggregating multiple data streams into a single
one, which can make devices less identifiable. Finally, traffic shaping
and injection (where devices use random delays to make their activities
look more sporadic or sending decoy traffic) is effective against
eavesdroppers.

Unlike other smart city applications that are administrated by pro-
fessionals, householders are typically the managers of smart home de-
vices. However, typical householders may lack the technical under-
standing of cyber-security. Additionally, different residents might have
different priorities and interpretation of their security and privacy
(Zeng, Mare, & Roesner, 2017). Hence, protecting device security be-
comes very crucial in the smart home context. Especially, firmware
updates and platform attestation mechanisms are very important. If the
device resources are limited, delta updates must be implemented, where
only a portion of the firmware is changed. This also ensures device
stability (Lin & Bergmann, 2016). However, secure boot and delta up-
dates must be added in the design phase and many existing products
lack such crucial features (Heartfield et al., 2018). Table 6summarizes
the major privacy and security aspects of smart homes.

5.5. Public safety and emergency management

Public safety services focus on protecting people's security,

Table 5
Privacy and Security of smart grid systems include two major dimensions to battle energy theft and stealth insidious attacks.

Challenges Domain Trends Comments

DDoS Attacks/Large Scale/
Stealth Attacks

Energy Theft State-based, Game Theory-
based, ML &DL-based
Detection

State-based solutions do not require extensive data selection but the may incur an
additional cost. Game theory is inexpensive but relatively less effective. ML and DL
require training data and can introduce privacy concerns.

Attack Prevention,
Detection, &Mitigation

Game-Theory, ML &DL,
Artificial Immune Systems

Game-theory based solutions are effective against stealth attacks as they can curb
the damages. Machine learning based systems require training datasets that are
inclusive enough for overcoming heterogeneity. artificial immune systems are not
applied to real-world applications, hence, their applicability is doubtful.
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especially during abnormal situations such as natural disasters, attacks,
riots, etc. It is important to provide supportive services shortly after a
disaster. It is possible that in a disastrous situation, the backbone net-
work is interrupted and hence the communication is not feasible
(Habibzadeh, Xiong, et al., 2017). A substitute is needed in such cases
to enable firefighters, police, and medical staff to communicate
(Habibzadeh, Xiong, et al., 2017). Isolated E-UTRAN Operation for
Public Safety (IOPS) is proposed for this purpose, which allows public
safety users to communicate, even in the absence of connectivity be-
tween access points and the backhaul network (Oueis, Conan, Lavaux,
Stanica, & Valois, 2017). Even if there is no infrastructure, it is possible
to use easy-to-deploy access points to create a network or alternatively
Software Defined Radio (SDR) networks can be employed to quickly
create an LTE network—or any other type of communication such as
WiFi. These deployable nodes can harvest their own power from the
environment to minimize their dependence on any infrastructure
(Habibzadeh, Xiong, et al., 2017).

Public safety is highly dependent on the data generated by IoT
nodes. Due to its purpose (protecting public security), any successful
attack can have devastating consequences. Moreover, in the case of
non-natural attacks (man-made), it is possible that attackers also target
the public safety infrastructure. Therefore, securing smart city public
safety services is critical. Particularly, IoT-based public safety is vul-
nerable to unauthorized access (Butun, Erol-Kantarci, Kantarci, & Song,
2016). This vulnerability is escalated with the scale and during disasters
when an alternative IoT infrastructure is quickly deployed to replace
the dysfunctional one. Furthermore, the cloud-access authentication is
extremely important, as public safety services typically collect sensitive
information about the city and citizens. Other security-related chal-
lenges in IoT public safety authorized data sharing and data storage
(Butun et al., 2016).

6. Summary and concluding remarks

The concept of modern smart city reaches far beyond what dis-
cussed in this paper. The smart city now plays an integral role in the
economy, government, tourism, education, etc. Part of these emerging
services can be subsumed under traditional applications. For example,
smart homes are closely entangled with smart building and smart en-
vironments (e.g., smart classrooms (Kim, Soyata, & Behnagh, 2018)).
This integration of services can be associated with two different attri-
butes of smart cities. First, no concise definition of these services exists,
which enables researchers to liberally interpret the domain of their
application. Second, fueled by advancements in big data analytics, an
emerging branch of smart city comingles once stand-alone applications
to consolidated ecosystems. Electric vehicles link the smart grid with
smart transportation and, less directly, with the smart home and smart
healthcare (via energy management systems and traffic control for
emergency situations).

This unification of services brings about various security ramifica-
tions. The dynamic and heterogeneous nature of the smart city renders

traditional digital forensics ineffective, e.g., it can become difficult to
determine the jurisdiction of various entities over the data as it travels
through various states, countries, and organizations (Baig et al., 2017).
The increasing reliance of companies on advanced cryptography also
entangles digital forensics; it improves users’ privacy but makes it dif-
ficult to resolve legal disputes (Baig et al., 2017). Also inherent in this
unified structure is the inexorable security disparity among various sta-
keholders. Data circulates through various public and private sectors,
with different security and privacy guidelines. This requires a need for
secure data mashup techniques that enable various organizations to
combine their datasets. Existing mashup solutions, however, face nu-
merous challenges (e.g., combining data increases its dimensionality,
which potentially undercuts privacy protecting solutions such as k-
anonymity.) (Braun, Fung, Iqbal, & Shah, 2018). The increasing influ-
ence of smart city technology also furthers the pull of governments and
corporations. This underlines the importance of transparency. It is cri-
tical to somehow incentivize these entities to keep their customers in-
formed about the purpose and extent of data mining. The utilization of
data by corporations and governments should be hence contingent
upon users’ consent. This is, however, not straightforward as, in many
cases, users are not even aware of data collections or may not find it
worthwhile to actively consent every instance of data usage (Eckhoff &
Wagner, 2018). This hints at research opportunities for continuous and
unobtrusive consenting techniques. In addition to the increasing data
dimensionality, combining various applications into a coherent service
increases the number of stakeholders. The perception of knowledge
among these diverse stakeholders varies based on their interests. This
substantially convolutes data presentation in cross-domain smart city
services.

The recent technological advances in the radii of the smart city also
bring about unanticipated security threats. Botnets, artificial in-
telligence, smart vehicles, and virtual reality each imparts additional
security challenges (Cui, Xie, Qu, Gao, & Yang, 2018). Botnets can ef-
fectively launch DDoS attacks. AI empowers adversaries to extract
sensitive knowledge from ostensibly insensitive data. Furthermore, the
reliance of machine learning algorithm on input data (oftentimes in an
unpredictable fashion) renders them vulnerable against data manip-
ulation attacks, where adversaries can generate seemingly genuine
input that deceives the algorithm (Fernandes, Rahmati, Eykholt, &
Prakash, 2017). Smart vehicles’ dependence on ICT and electronic de-
vices gives adversaries the opportunity to seize control of the vehicle,
jeopardizing the privacy and safety of occupants and other drivers.
Virtual reality applications often tend to deprioritize privacy (Cui et al.,
2018).

Not all vulnerabilities can be associated with software/hardware
deficiencies. In fact, an all-inclusive security framework should also
emphasize human errors (whether intentional or not). It is critical to
unambiguously define security roles of individuals (particularly, in city
administration, cybersecurity officers can often be subject to lay-offs to
reduce expenses). Cities should also value security leadership and form
and maintain specialized security teams to carry out routine security

Table 6
Two major dimensions of smart home security and privacy considerations.

Challenges Domain Trends Comments

DDoS Attacks/Large
Scale/Stealth Attacks

Privacy Leakage Standard Cryptography, Lightweight
Cryptography (Symmetric Encryption), VPN
&Traffic Shaping

Standard Cryptography is effective but it is often too computationally
demanding for smart home devices. Proposed lightweight cryptography-
based solution typically rely on trusted servers which are not always
available. Traffic Shaping is effective against eavesdropping but can
incur communication and latency overhead.

Device-Level Security &
System Management

Secure Boot, Firmware Integrity Attestation,
&Regular Security Updates Self-Configurable
Security

Householders in charge of smart home devices oftentimes lack technical
knowledge of cybersecurity. Hence, devices must be regularly updated
and self-configured for optimal security. However, these features must
be integrated into the device from early design phases. Many existing
products fail to comply with these requirements.
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measures such as training, firmware updates, developing emergency
response plans, maintaining communications with different vendors
and services providers, etc. (Kitchin & Dodge, 2017).

There are nascent innovations in the literature that can potentially
mitigate the challenges described in the section. Blockchain, coupled
with software-defined networks (SDN), can significantly virtualize the
platform, hence contributing to the practicality of decentralized im-
plementations. In the heart of a hybrid SDN/blockchain architecture, a
number of resourceful devices (controlled by SDN for increased resi-
lience) assume the role of miners to verify transactions and form blocks.
They are also responsible for performing advanced data processing.
Local servers in the edge of the network provide preliminary processing
and security services to end-devices in their proximity, thereby cutting
the distance between end-devices and the processor (not unlike
cloudlets) (Sharma & Park, 2018). From another standpoint, the game
theory is increasingly being used in the context of smart city security.
The applications of game theory do not limit to containing cyberattacks
(See Section 5.2). It can also be used to study the effects of government's
policies on corporates’ decision to invest in security and privacy fea-
tures of their products (for example, paying premiums for security
features vs. monetarily penalizing vendors for cyber attacks and se-
curity breaches) (Li & Liao, 2018). Ontology, when applied in the
context of the smart city, can help with battling many challenges of data
presentation and knowledge sharing. Ontology provides a formal re-
presentation of concepts and describes the existing relations among
them. This formal structuring of the domain into various components
(e.g., smart city into smart and city, city into stakeholders and outcome,
outcome into sustainability, resilience, life quality, and so on
(Ramaprasad, Sánchez-Ortiz, & Syn, 2017)) makes it interpretable by
computers, which in turn can provide query services to users, enabling
them to extract relevant knowledge. Recommended by World Wide
Web Consortium (W3C), Semantic Sensor Network (SSN) ontology re-
ceives raw (even real-time) data from sensors and converts them to
interoperable semantics (Daniello, Gaeta, & Orciuoli, 2018) (refer to
Gyrard, Zimmermann, and Sheth (2018) for further information). The
evolution of authentication and authorization is also expected to
transform the smart city. They are mostly driven forward by advances
in emerging behavioral and biometrics-based techniques, where re-
silient and strong verification can be implemented by employing two-
factor and three-factor authentication (e.g., using conventional pass-
words, smart cards, and biometrics) (Mishra, Chaturvedi, &
Mukhopadhyay, 2015; Zhang, Zhu, ö Tang, 2017). Although effective,
such solutions complicate the authentication process, which can be-
come prohibitive for certain users of the smart city (the elderly and the
disabled). They also fail to provide continuous authentication. These
limitations give rise to an emerging research field, which aims to pro-
vide non-invasive and user-friendly authentication based on informa-
tion gathered by cameras, RF sensors, RFID, etc. (Kumar, Braeken,
Liyanage, & Ylianttila, 2017).

The preceding paragraphs clearly show that the implementation of
secure smart cities requires a holistic approach. In parallel to techno-
logical efforts to improve the security of all software and hardware
components of the smart city, citizens, governments, and policymakers
should join forces to address many unresolved and under-discussed
challenges in the field. This paper aims to show that only the combined
efforts of these various entities can provide adequate momentum to the
realization of sustainable and secure smart city ecosystems. To this end,
this manuscript presents a bifocal view of the field, starting with a
thorough discussion on the potential security and safety implications
for critical infrastructures as well as the resulting policy implications at
the city, regional, national and global scales. The paper also provides a
review of privacy and security vulnerabilities imparted by the generic
architecture of the smart city, followed by a study of specificity of most
common applications in the smart city.
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