Solar/Wind Hybrid Energy Harvesting for Supercapacitor-based Embedded Systems

Mohamadhadi Habibzadeh*, Moeen Hassanalieragh†, Tolga Soyata*, Gaurav Sharma†
*Department of Electrical and Computer Engineering, SUNY Albany, Albany, NY 12203
†Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627
hhabibzadeh, tsoyata}@albany.edu, {m.hassanalieragh, gaurav.sharma}@rochester.edu†

Abstract—For autonomous medium power (1–10 W) field systems deployed in off-grid applications without established power infrastructure, two system design criteria are crucially important: i) continuous availability of power, ii) robust and low-maintenance operation. In this paper, we provide circuit and system designs for energy harvesters that address both issues by utilizing supercapacitors as their energy buffer and hybrid solar and wind power sources for their power supply. By utilizing the complimentary nature of solar and wind power sources, the necessity for large supercapacitor buffers is eliminated. Although a rich body of solar-only designs exist in the literature, in our knowledge, this is the first paper that demonstrates a hybrid harvester design for the medium power range. We experimentally demonstrate the functionality of our harvester designs.

Index Terms—Hybrid energy harvesting; wind power harvesting; embedded systems; solar power harvesting.

I. INTRODUCTION

A rich body of medium-power (1–10 W) harvester designs exist in the literature for solar-only power input, which is the most common power supply for embedded field systems [1]–[3]; to ensure robust and low-maintenance operation, supercapacitors are commonly used in these systems as the sole energy buffer [4]. When solar is the sole power source, a large supercapacitor block must be used to compensate for the unavailability of solar power at night (or cloudy days), which drastically increases system cost and physical footprint. Hybrid power sources (solar and wind) provide a complimentary availability because the lack of power during cloudy days are partly compensated by the availability of wind [5].

Existing designs focus on μW and mW range harvesters [6], [7], in our knowledge, this is the first paper that demonstrates a working prototype of a medium power (1–10 W), supercapacitor-based hybrid harvesting system that can be modularly expanded to incorporate multiple solar and wind power sources. Our expandable design uses a single solar-only harvester and provides a platform expandable to multiple solar and multiple wind power sources buffering all harvested energy into a single supercapacitor block. We investigate the necessary peripheral circuit components, as well as the necessary firmware, to permit this modular design. We demonstrate the functionality of our designs experimentally through an actual supercapacitor-based harvester that harvests a 50 W-rated wind turbine and a 30 W-rated rated solar panel.

The rest of this paper is organized as follows: In Section II, we describe the architecture of a generalized harvester.

Figure 1: Generalized system architecture of an energy harvester capable of harvesting hybrid power sources.

In Section III, we discuss the necessary hardware/firmware changes to turn a commonly-available solar-only harvester into a wind-only harvester. Based on this foundation, we expand our design to provide hybrid harvester designs in Section IV and investigate their expandability. We provide experimental evaluation results and concluding remarks in Section V.

II. HARVESTING SYSTEMS

Figure 1 depicts a generalized system architecture of a harvester that is capable of harvesting multiple power sources. This architecture consists of four components:

A. Power Sources

This component includes the transducers that generate electric power by harvesting ambient power sources. Although different ambient power sources such as thermal [8], vibration [9], and RF [7] can be utilized for μW and mW power sources, the only two options that are suitable for supplying medium power ranges (1–10 W) are solar panels and wind turbines. Our particular focus in this paper is field applications that require autonomous operation, low maintenance, and a significant amount of computing power; for example, in environmental monitoring, recognition of different bird species requires intensive image processing [10], which can only be achieved using a computational device that incorporates a multi-core ARM processor (e.g., an Android tablet). Such devices have been reported to consume 1–5 W just for computations and more when WiFi or USB are turned-on, hence our definition of “medium-power range of 1–10 W.”

B. Pre-conditioning

Because the harvester requires a DC voltage, AC voltage sources (such as wind turbines) require a rectifier before they can be used by the harvester. Furthermore, voltage levels at the
Power Sources component are highly dependent on ambient conditions; in cases where this voltage level exceeds the allowed maximum of the **Harvesting** component specifications, a “voltage limiter” is required before the power source is applied to the harvester. We term the combination of these two auxiliary circuits the **Pre-conditioning** component.

C. Harvesting

Hardware in this component includes a SEPIC DC-DC converter and its microcontroller firmware executes a Maximum Power Point Tracking (MPPT) algorithm [2] to harvest the maximum amount of energy from the power source.

D. Energy Storage

Many harvesting systems incorporate an **Energy Buffering** component to buffer the surplus portion of the harvested energy, which can be used later to compensate for lack of power when the ambient power source is temporarily unavailable (e.g., during nights for solar energy harvesters). **Energy Storage** components are typically implemented using batteries, supercapacitors, or a combination of both.

III. **WIND ENERGY HARVESTING**

Our goal in this paper is to conceptualize a modularized system design from an existing solar-only harvester that incorporates a microcontroller; such a design allows easy expansion to wind power sources by implementing a different MPPT algorithm in its firmware and adding a rectifier and a voltage limiter if the voltage output of the wind turbine exceeds the specified maximum of the solar-only harvester.

Figure 2 (top) depicts an open-source solar-only design [11] that we utilize in our experiments, which implements the fractional-VOC MPPT algorithm for solar harvesting in its firmware. Figure 2 (bottom) depicts how a wind harvester can be implemented from this solar-only harvester by adding a rectifier and a voltage limiter and by implementing a wind MPPT algorithm. In this section, we describe each component.

A. Wind Energy Harvester Components

Power Source: For the wind turbine, we use a conventional permanent-magnet vertical axis wind turbine.

Pre-conditioning: The rectifier composed of six Schottky diodes and a capacitor converts the three-phase AC wind turbine output into DC. The wind turbine we utilize can generate up to 50 V under high-speed winds. Our voltage limiter in Figure 2 (bottom) turns on the MOSFET and shuts the excess wind turbine current when the wind turbine voltage exceeds \(\approx 25 \) VDC (which is the limit for the solar-only harvester) using the 24 V Zener diode (1N4749). This causes the MOSFET to dissipate the excess power and requires a heat sink to dissipate the generated heat; in our practical implementation, we used six parallel MOSFETs to substantially reduce the dissipation on each transistor.

Harvester: The solar-only harvester employs a fractional open circuit voltage MPPT algorithm to calculate the MPP voltage. It then maintains this voltage by applying the proper

\[
\begin{align*}
I_{\text{SEPIC}} > I_{\text{Wind}} & \quad C_{\text{in}} \text{ is discharging} \\
I_{\text{SEPIC}} = I_{\text{Wind}} & \quad C_{\text{in}} \text{ is by-passed} \\
I_{\text{SEPIC}} < I_{\text{Wind}} & \quad C_{\text{in}} \text{ is charging}
\end{align*}
\]

Note that the only control the HC algorithm has is the \(I_{\text{SEPIC}} \) through adjusting the duty cycle \((D) \) of the SEPIC DC-DC converter. At any instant, the voltage of the wind turbine

Figure 2: Design of a wind harvester from a solar-only harvester by adding a rectifier and a voltage limiter.
The harvester adjusts for harvesting the maximum power. The harvester adjusts \(V_{\text{wind}} = V_{\text{MPP}} \) as follows:

\[
\begin{align*}
V_{\text{wind}} > V_{\text{MPP}} &: \text{increase } D \quad \text{or } I_{\text{SEPIC}} \uparrow \\
V_{\text{wind}} = V_{\text{MPP}} &: \text{keep } D \\
V_{\text{wind}} < V_{\text{MPP}} &: \text{decrease } D \quad \text{or } I_{\text{SEPIC}} \downarrow
\end{align*}
\]

Maximum \(C_{\text{in}} \) value can be computed from these conditions. We first analyze the scenario \(V_{\text{wind}} > V_{\text{MPP}} \) and consequently \(I_{\text{wind}} > I_{\text{MPP}} \); SEPIC reduces its voltage \(V_{\text{wind}} \rightarrow V_{\text{MPP}} \) by increasing its \(D \), which discharges \(C_{\text{in}} \). This requires three distinct steps, tabulated in Table I. Each step transfers a certain amount of energy from \(C_{\text{in}} \) into the supercapacitor block (i.e., harvests), quantified as:

\[
\begin{align*}
E_1 &= \frac{1}{2} \cdot (I_{\text{wind}} + I_{\text{MPP}}) \cdot V_{\text{wind}} \cdot \Delta t_1, \\
E_2 &= \frac{1}{2} \cdot (I_{\text{wind}} + I_{\text{MPP}}) \cdot V_{\text{wind}} \cdot \Delta t_2, \\
E_3 &= \frac{1}{2} \cdot (I_{\text{wind}} + I_{\text{MPP}}) \cdot V_{\text{wind}} \cdot \Delta t_3.
\end{align*}
\]

Their sum equals the energy wind turbine supplied during these three steps \((E_{\text{wind}}) \) and the energy \(C_{\text{in}} \) lost \((E_{C_{\text{in}}}) \):

\[
E_1 + E_2 + E_3 = E_{\text{wind}} + E_{C_{\text{in}}},
\]

\[
E_{C_{\text{in}}} = \frac{1}{4} \cdot C(V_{\text{wind}}^2 - V_{\text{MPP}}^2),
\]

\[
E_{\text{wind}} = \frac{1}{4} \cdot (I_{\text{MPP}} + I_{\text{wind}})(V_{\text{MPP}} + V_{\text{wind}}) \cdot \Delta t,
\]

where \(\Delta t = \Delta t_1 + \Delta t_2 + \Delta t_3 \). Using a piecewise linear approximation for these three phases, we can calculate:

\[
\begin{align*}
C_{\text{in}}^{\text{max}1} &= \frac{2}{V_{\text{wind}}^2 - V_{\text{MPP}}^2} \cdot \frac{E_{\text{wind}}}{E_1 + E_2 + E_3}, \\
C_{\text{in}}^{\text{max}2} &= \frac{2}{V_{\text{MPP}}^2 - V_{\text{wind}}^2} \cdot \frac{E_{\text{wind}}}{E_1 + E_2 + E_3}, \\
C_{\text{in}}^{\text{max}} &= \min(C_{\text{in}}^{\text{max}1}, C_{\text{in}}^{\text{max}2}),
\end{align*}
\]

where \(C_{\text{in}}^{\text{max}} \) is the opposite condition when \(C_{\text{in}} \) is charging.

The minimum \(C_{\text{in}} \) value \((C_{\text{in}}^{\text{min}}) \) is determined by the maximum tolerable ripple in \(V_{\text{MPP}} \) \((\Delta V_{\text{MPP}})\) by using a linear approximation in the current and voltage ripples:

\[
C_{\text{in}}^{\text{min}} = \frac{1}{2} \cdot \frac{I_{\text{wind}}^{\text{max}}}{\Delta V_{\text{MPP}}} \Delta t_1
\]

Practical Example: Using practical values \(I_{\text{wind}} = 3 \) A, \(I_{\text{MPP}} = 2 \) A, \(I_{\text{MPP}}^{\text{max}} = 4 \) A, \(V_{\text{wind}} = 20 \) V, and \(V_{\text{MPP}} = 15 \) V, and \(\Delta t_1 = 1 \) ms, \(\Delta t_2 = 9 \) ms, and \(\Delta t_3 = 1 \) ms, which are realistic values determined by wind turbine characteristics and computational power of the microcontroller. Eq. 6 yields \(C_{\text{in}}^{\text{max}1} = 18000 \mu F \) and \(C_{\text{in}}^{\text{max}2} = 129000 \mu F \), therefore \(C_{\text{in}}^{\text{max}} \approx 18000 \mu F \). Furthermore, if we assume \(I_{\text{wind}} \) = 3 A and \(\Delta V_{\text{MPP}} = 1 \) V, Eq. 7 yields \(C_{\text{in}}^{\text{min}} = 1500 \mu F \). Therefore, the optimal \(C_{\text{in}} \) is \(1500 \mu F < C_{\text{in}} < 18000 \mu F \). In our actual design, we used \(C_{\text{in}} = 4700 \mu F \).

Table I: Three phases of SEPIC current and voltage transitions

<table>
<thead>
<tr>
<th>(\Delta t)</th>
<th>(D)</th>
<th>(V_{C_{\text{in}}} \rightarrow V_{\text{SEPIC}})</th>
<th>(I_{\text{SEPIC}})</th>
<th>(I_{C_{\text{in}}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta t_1)</td>
<td>(\uparrow)</td>
<td>(\Leftrightarrow V_{\text{wind}})</td>
<td>(\uparrow I_{\text{wind}} \rightarrow I_{\text{MPP}}^{\text{max}})</td>
<td>Disch.</td>
</tr>
<tr>
<td>(\Delta t_2)</td>
<td>(\uparrow)</td>
<td>(\Leftrightarrow V_{\text{wind}} \rightarrow V_{\text{MPP}})</td>
<td>(\Leftrightarrow I_{\text{MPP}}^{\text{max}} \rightarrow I_{\text{SEPIC}})</td>
<td>Disch.</td>
</tr>
<tr>
<td>(\Delta t_3)</td>
<td>(\downarrow)</td>
<td>(\Leftrightarrow V_{\text{MPP}})</td>
<td>(\Leftrightarrow I_{\text{SEPIC}} \rightarrow I_{\text{MPP}})</td>
<td>Disch.</td>
</tr>
</tbody>
</table>

IV. HYBRID SOLAR/WIND ENERGY HARVESTING

In Section III, we used a solar only harvester to design a wind-only harvester. We will use the notations \(S \) and \(W \) to denote these two harvesters, respectively. We will now expand on this foundation to introduce our hybrid harvester designs, which are capable of harvesting more than one power source.

A. Hybrid Solar/Wind Energy Harvester

Figure 3 depicts the high-level implementation of our first hybrid solar/wind harvester, which we refer to as the \(SW \) configuration. It consists of a single solar-only \((S) \) and a single wind-only \((W) \) harvester operating independently. The output of each of these single-source harvesters is connected to the same supercapacitor block. The Schottky diodes within the SEPIC converters (Fig. 3a) prevent charge from erroneously flowing from one harvester into the other [11].
include more than two power sources such as can change abruptly based on location. Moreover, systems that wind-only harvesters. Suitable applications for such systems based on its relative orientation towards the sun. Similarly, allow the solar panels to have complementary power availability patterns, as the generated power of each panel changes based on its relative orientation towards the sun. Similarly, W harvesting system can be implemented by utilizing two wind-only harvesters. Suitable applications for such systems include mountainous areas, where wind availability patterns can change abruptly based on location. Moreover, systems that include more than two power sources such as WWW, SWW, and SSS can be implemented as shown in Fig. 3. In-depth analysis of these configurations is available in [14].

B. Modular Expansion of Hybrid Energy Harvesters

The modularity of this harvester design enables us to readily modify the SW configuration to incorporate other types of power sources. For example, replacing the wind-only harvester in Fig. 3 with a solar-only one converts the system into an SS configuration, which can also be considered to be a "hybrid" harvester if the solar panels are placed at different locations/orientations; different angles/orientations allow the solar panels to have complementary power availability patterns, as the generated power of each panel changes based on its relative orientation towards the sun. Similarly, WW harvesting system can be implemented by utilizing two wind-only harvesters. Suitable applications for such systems include mountainous areas, where wind availability patterns can change abruptly based on location. Moreover, systems that include more than two power sources such as WWW, SWW, SWW, and SSS can be implemented as shown in Fig. 3. In-depth analysis of these configurations is available in [14].

FIGURE 4: Experimental results for the SW harvester. Far left plot shows the output power of solar panel, while the middle plot shows the output power of the wind turbine. The voltage of the supercapacitor energy storage block is depicted in the far right sub-figure. During this period, \(\hat{P}_{\text{solar}} \approx 2 \text{ W} \) and \(\hat{P}_{\text{wind}} \approx 1.7 \text{ W} \) and the average cumulative incoming powers \(\hat{P} \approx 3.7 \text{ W} \).

V. EVALUATION AND CONCLUSIONS

Figure 4 shows the performance of our SW hybrid harvester, which utilizes an S harvester with a 30 W solar panel and our firmware-modified version W harvester with a Higoo™ 50 W residential wind turbine as our wind power source. Our energy buffer is 8 serially-connected Maxwell 3000 F supercapacitors. Starting from the left, the first sub-figure depicts the instantaneous harvested power from the solar panel, the second sub-figure depicts the harvested power from the wind turbine, and the last figure shows the instantaneous voltage of the supercapacitor block. As observed in Fig. 4, the supercapacitor block starting voltage is \(V_{\text{start}} = 14.24 \text{ V} \), which rises to \(V_{\text{end}} = 14.65 \text{ V} \) after an observation period of 10 minutes. The total harvested energy is \(E = E_{\text{end}} - E_{\text{start}} = 0.5 \times 3000 \times (14.65^2 - 14.24^2) = 2221 \text{ Joules} \). We can infer that the average incoming power in 10 minutes is \(\hat{P} = \hat{P}_{\text{solar}} + \hat{P}_{\text{wind}} = 2221/600 \approx 3.7 \text{ W} \). Averaging the data depicted in Fig. 4, we calculate \(\hat{P}_{\text{solar}} \approx 2.0 \text{ W} \) and \(\hat{P}_{\text{wind}} \approx 1.7 \text{ W} \) during the 10 minute harvesting period; the experimental result of 3.7 W for the average of the two hybrid sources is consistent with their sum, thereby confirming the functionality of our SW harvester.

REFERENCES