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Abstract—Today’s off-the-shelf, inexpensive Unmanned Aerial
Vehicles (UAVs) are an emerging breed of devices that promise
to reshape tomorrow’s search and rescue landscape. Multiple
identical drones can be utilized to achieve more complex tasks
when arranged in a swarm formation. In either the single-drone
or swarm configuration, these Lithium Polymer (LiPo) battery-
powered machines can only stay in the air for a brief period of
time (usually between 10 and 30 minutes) due to the high power
consumption of their motors. For example, drones weighing only
200 to 600 grams can consume between 100-600 Watts. Most
search-and-rescue operations last for days, even weeks, rendering
these inexpensive drones impractical.

A novel charge replenishment mechanism is proposed in this
paper that allows a swarm of drones to stay in the air perpetually.
This is achieved by employing a fleet of drones much larger than
the flying swarm in order to continuously replace and charge
energy-depleted drones. The required fleet size for various drone
models is calculated analytically and through a simulation. A
rule-of-thumb formula is derived based on Queuing Theory and
Energy Conversation to confirm the feasibility of this proposal
with simulation results.

Index Terms—Unmanned Aerial Vehicles; Queuing Theory;
Drone Swarms; Energy Replenishment, Drone Simulation, En-
ergy Storage.

I. INTRODUCTION

An unmanned aerial vehicle (UAV) can be described as a
flying vehicle that does not need a human being on board to
control/pilot it. Its flight, rather, is controlled autonomously or
by a remote pilot. Myriad sensors can be installed on UAVs
for data gathering, such as video recordings [1], analyzing the
composition of atmospheric gases [2], [3], performing search
and rescue operations [4], [5], and beyond. An interesting first
step to realizing these goals is forming a swarm of identical
drones, capable of perpetual flight, that can perform more
complex tasks than an individual drone.

Perpetual flight can only be achieved if the drones flying
in formation have sufficient energy to fly forever. Many
techniques have been proposed to realize this vision, including
wireless (in-air) charging [6]-[8], laser charging [9]-[11],
and automated battery swapping [12]-[15]. While innovative,
these approaches are drone-specific, require specialized and
expensive equipment, and can even be dangerous [11], [16].

This paper proposes a continuous energy replenishment
method, which enables a swarm of drones to attain per-
petual flight by swapping freshly charged drones into the
swarm to relieve their more energy-depleted counterparts. A
conceptual depiction of the proposed method is shown in
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Fig. 1. Our proposed continuous energy replenishment method allows
perpetual flight for a swarm size of n, however requires a much larger total
fleet size of . As shown in our experimental study, a swarm size of n=4
can require a total of A=32 drones. Energy replenishment stations are shown
as the battery symbols on the sides.

Fig. 1, which shows the drone swarm (in the middle) and
the charge stations that the drones fly to/from for energy
replenishment (battery symbols on the sides). Our proposed
method eliminates the disadvantages of previously proposed
methodologies for perpetual flight and creates a platform
for utilizing inexpensive, disposable, and commercial off-the-
shelf (COTS) drones. Despite its advantages, our proposed
method introduces a challenge of its own: the size of the
operational fleet (termed A throughout the paper) is large,
when compared to a specified swarm size (termed n). For
example, as we will comprehensively study in our experi-
mental results in Section IV, the required fleet size can be
N =32 when the swarm size is n=4, although this disparity
can be improved by using drones that have better battery
capacities. Because our mechanism allows the usage of COTS
drones, the challenge introduced by a large A is algorithmic,
rather than financial; controlling a large number of drone
take-off/landing/charge/flight patterns introduces algorithmic
complexity, however, it makes the resulting fleet much less
expensive and general-purpose. Our scheme not only allows
the usage of COTS and disposable drones, but also drones



with heterogeneous features (e.g., varying battery and flight
characteristics), albeit at further increases in control algorithm
complexity. This, in turn, permits newer and more efficient
drone models to be brought into the system with minor (if
any) updates to the control software.

The primary goal of this paper is to determine the required
fleet size (N) based on drone manufacturer specifications
(such as battery capacity, flight speed, etc.) and user-specified
parameters (such as the swarm size n). This paper approaches
the problem both analytically and programmatically. For an-
alytical formulation, equations are derived to model the fleet
and swarm’s expected behavior based on Queueing Theory
and the conservation of energy. The goal of this analysis is
to determine the required fleet size (N), given the desired
swarm size (n) and the manufacturer specifications of the
drones (e.g., battery capacity, B and total charge time C).
For programmatical formulation, a software simulation is
created to estimate values for various commercially available
drone models. To this end, three drones of varying weight
and power classes were flown to obtain experimental values.
Additional drone models are examined based on the manu-
facturers’ specifications. The simulation results are compared
to the expected, computed theoretical best-case, confirming
the viability of perpetual flight using the proposed continuous
energy replenishment mechanism.

The rest of this paper is organized as follows: a review of
related works and current literature is presented in Section II.
The concept of continuous charge replenishment is explored
in Section III, as well as the derivation of analytical formulae
modeling the theoretical best-case scenario. Section IV details
the creation and testing of simulation software to obtain
values useful in drone fleet planning. Finally, a conclusion
and remarks are offered in Section V.

II. BACKGROUND
A. Related Work

Unmanned aerial vehicles have been the subject of increased
research over the past decade. Remote building inspection and
monitoring [17], UAV computer vision [18], UAVs in precision
agriculture [19], UAVs for 3D mapping [20], simultaneous
localization and mapping (SLAM) [21], and even surveying
archaeological sites [22] are just a few examples of the wealth
of research being performed. The literature is clear: better
charging and energy replenishment techniques are necessary
to increase the viability of UAV-based applications across
disciplines.

The concept of wireless energy transmission to provide
power to remote devices (modernly referred to as “far field
power transmission”) was first proposed by Nikola Tesla
in the 19" century through his resonant inductive coupling
technique [6], [23]. Two promising techniques for mid-air
drone charging have emerged: laser charging and inductive
charging. Laser charging involves transmitting energy to an in-
flight drone via a beam of focused light, allowing it to recharge
while in flight [9]-[11]. Inductive charging proposes a novel
technique: charging UAVs by using the electromagnetic field

produced by the power lines that already line city streets all
over the world [24].

As an alternative to charging drone batteries in-air, there
are numerous examples in the literature of swapping depleted
drone batteries for freshly charged batteries rather than taking
the drone out of commission for an entire charge cycle [25].
The batteries can then be charged while the drones remain
in flight, and multiple sets of batteries can be available per
drone to ensure continuous flight. The authors of [12] have
developed an “endless flyer:” a UAV that never needs to
charge. When the vehicle senses it is low on energy it flies to
a designated battery exchange platform, where its battery is
automatically exchanged for a fresh one. The automation of
drone “refueling” (or, battery swapping) is also investigated
in [26]. Their battery swapping system not only automatically
swaps small UAV (helicopter) batteries, but also monitors their
health with various algorithms.

B. Energy Storage

The overwhelming majority of COTS drones available today
employ rechargeable Lithium-ion Polymer (LiPo) batteries.
Each LiPo battery cell has a nominal voltage of 2.4V, which
are typically connected in series to attain a higher voltage; for
example, a 3S LiPo battery has 3 cells in series [27] with
a nominal votage of 7.2V. As they are lighter-weight and
higher capacity (providing a higher specific energy) than their
counterparts [28], they present the perfect solution for UAV
power. Diagnostics can be performed on LiPo batteries [29]
to monitor their health and longevity and to ensure that only
healthy UAVs are flying. It is not recommended that the depth
of discharge (DOD) exceeds 70% in order to maximize battery
lifetime and efficiency [30]. To account for this phenomenon,
we use the parameter A to represent the maximum DOD
throughout this paper.

III. CONTINUOUS ENERGY REPLENISHMENT

The goal of this study is to formulate a method of energy
replenishment that will allow a swarm of homogeneous COTS
UAVs to fly perpetually (in practice, as long as the swarm
needs to be airborne to accomplish the task that a specific
application may require). This section will investigate the
queued charge replenishment finite state machine and work
through the derivation of formulae to compute the theoretical
best-case scenario.

A. Queued Charge Replenishment

To ensure that a swarm of size n can be in flight and
operational at all times, charged drones need to standby to
replace energy-depleted swarm drones when necessary. For
ease of control and management, we propose that the drone
fleet can be modeled as a finite state machine (as depicted in
Figure 2). Every drone’s current action(s) can be represented
by a unique state and the drone will either stay in the same
state or move to the next state depending on the situation. We
assume that a central software makes decisions on individual
drone states based on the status of the entire fleet.
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Fig. 2. A drone can be in one of the following finite states:

A: Ready, B: Flying in Swarm, C: In Swarm Awaiting Replacement,
D: Flying to the Swarm, E: Flying to the Charger,

F: In the Charge Queue, G: Charging.

Each drone in the fleet can be in any one of six states:

(A) Ready: when a drone is 100% charged and idle (not
flying), it is in the Ready state. Every drone in the fleet
begins in the Ready state at time 0. Drones will remain
in the Ready state until they are dispatched (i) when a
drone in flight requires a replacement or (ii) to form the
initial flying swarm.

Flying in Swarm: Drones part of the flying formation are
in the Flying in Swarm state. Drones will continue to fly
in the swarm until their battery level reaches a critical
threshold (taking into consideration the energy needed to
fly to the charging station). Only drones in the flying in
the swarm state execute swarm tasks, such as capturing
audio and video signals. A drone will remain in the
Flying in Swarm state until it calls for its replacement.

In Swarm Awaiting Replacement: When a drone flying
in formation reaches a critical threshold (30% battery
power remaining + energy to return to the charger), it
calls for a replacement and enters the In Swarm Awaiting
Replacement state. It will continue in formation in
the In Swarm Awaiting Replacement state until it is
relieved.

Flying to the Swarm: When a replacement is needed
to relieve a drone flying in the swarm, a Ready state
drone is dispatched to rendezvous with the swarm. Once
dispatched, the drone will remain in the Flying to the
Swarm state until it joins the swarm.

Flying to the Charger: Once a drone is relieved from
the swarm, it must fly to a charging station and enter the
Flying to the Charger state. It will remain in the Flying
to the Charger state until it reaches a charging station
and successfully lands.

TABLE I
TERMS USED TO MODEL DRONE OPERATIONAL CHARACTERISTICS.

Setting Description

N Minimum number of drones required for perpetual flight

n Swarm size (number of drones in the swarm)

A Percentage utilization ratio of the battery to prevent damage

R Radius (miles) of drone coverage area

@ Charge time from 0-100% (min) required for Li-Po battery

B Battery 100% capacity (Wh)

Th Time (min) drone can hover in place before battery depletion
Ty Time (min) drone can fly before battery depletion

T Total expected/actual operational flight time of the fleet (min)
Ph Power consumed (W) hovering

Py Power consumed (W) during flight at maximum speed

% Maximum velocity (mph) allowed for the drone

(F) Inthe Charge Queue: Once a drone returning from the
swarm lands on the charging station, it enters the In the
Charge Queue state. If the charging station can accom-
modate it, it immediately moves to the Charging state.
Otherwise, it remains in the In the Charge Queue state
until charging is available.

Charging: Once a charger is available, a drone enters the
Charging state at the beginning of its charge cycle. It will
remain in the Charging state until its battery level reaches
100%, and which point it will enter the Ready state and
again be available for dispatch to the swarm.

B. Computing Theoretical Best Case of N

A list of the parameters used in the derivation of formulae
can be found in Table I. Assuming the goal of maintaining a
swarm of n drones in flight at all times over total runtime 7,
it is intuitive that a larger fleet of A/ drones will be necessary.
The system will, however, reach a state of equilibrium where
the number of drones returning to charge and being subse-
quently dispatched to relieve future energy-depleted drones in
the swarm will be sufficient to achieve perpetual flight without
the addition of any new drones.

Equation 1 gives the time (in minutes) of a round-trip from
the charging station to the swarm, where R is the distance
between the swarm and the charging station and V is the
drone’s maximum velocity. Total flying time is multiplied by
120% as flying drones will generally consume ~ 20% more
power than hovering drones, by 2 to account for the round
trip, and by 60 to convert from hours to minutes.

Tiying = (2><60><%)x1.2 (1)

Equation 2 gives the time (in minutes) a drone can effec-
tively hover in the swarm. The correction factor A = 0.7 is
used to ensure the drone’s battery never falls below 30% (see
Section II-B). Besides ensuring an optimal DOD, this 30%
“buffer” is used to offset any unexpected operations the drone
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may have to complete besides normal hovering and flying
to/from charging stations and the swarm. 7}, is the total amount
of time (in minutes) a drone can hover until its battery is
depleted from 100% to 0%.

Eovering = )\Xﬁ - Eying (2)

Equation 3 gives the total number of swaps S that must
occur to maintain a swarm of size n over total simulation
time 7. S, in other words, is the total number of instances
that energy-depleted drones need to be replaced over 7. If no
charged drones are reintroduced to the system, then A/ = S.
This is the worst-case scenario, however, as most scenarios
will allow energy-depleted drones to complete their charging
cycle and return to the swarm.

T
== 3
s [ﬁlovering Xn“ ©

Equation 4 gives the time (in minutes) it takes to charge
a drone from 30% to 100%. C is the time (in minutes) it
takes to charge a drone from 0% to 100% (as reported by the
drone manufacturer). A linear charging cycle is assumed, and
for the purposes of this study drone batteries will never fall
below 30%.

7::harging =AxC €]

Equation 5 gives the total number of drones that will
both fly in the swarm and recharge in time to re-enter the
swarm to relieve other drones. In other words, n. is the
number of completed charge cycles over time 7. As previously
mentioned, without 7., the fleet size A" would have to equal S
as a new drone would be required for every necessary swap.
Also, the condition of summation Thovering | % (read Thovering
divides ¢) ensures that the summation index only increments by
multiples of Thovering (SWarm drones will require replacement
every Thovering Minutes). It should be noted that for the purposes
of this study, the initial set of swarm drones is assumed to
immediately be flying in formation at time O.

Fig. 3. Three drones used to provide preliminary results in Table II.

7;Iying

. .
ne=n x 1, 7- (7/ + ﬁlovering + + 7zharging) >0
7;=7vaering O7

ﬁovering | ?

otherwise
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Given the total number of necessary swaps and the total

number of charged drones introduced back into the swarm,

the total fleet size N necessary to maintain a swarm of n
drones over time 7 can be computed with Equation 6.

©

The energy consumption of the fleet can now be investi-
gated. Equation 7 gives the total initial energy of the fleet,
assuming that each drone begins with a full charge, while
Equation 8 gives the total energy added to the system from
charging drones over 7. The total energy in, therefore, is given
by Equation 9.

Einitial = AXBxN (N
gcharging = AxBxn, (8)
Ein = initial + Scharging 9

The total energy consumed by the fleet’s operations can be
broken into two parts: total energy consumed while flying,
given by Equation 10, and total energy consumed while
hovering, given by Equation 11.

gﬂying =8Sx 7?1ying X Pf

ghovering =TxnxPy

(10)
(1D
By conservation of energy, the total energy consumed by
the fleet must be less than or equal to the amount of energy
introduced to the system, as shown in Equation 12.

gin 2 gﬂying + <c/'hovering (12)

Ein must be greater than or equal to the energy consumed, as
the fleet may require more energy in than it actually consumes.



TABLE 11
EXPERIMENTALLY OBTAINED INDIVIDUAL DRONE PARAMETERS. “PARAMETERS BASED ON MANUFACTURER SPECIFICATIONS.

Parameter = B C Th Ph Ty Py %
Drone Model Cost Battery Charge Time  Weight Hover Time Hover Power Flight Time Flight Power Speed
(Watt-hours) (minutes) (grams) (minutes) (Watts) (minutes) (Watts) (mph)

Skyracer-901H 30 0.81 36 24.9 11 4.42 8.8 5.52 10

X5SW-vV3 99 1.85 55 119 10 11.1 8 13.88 15

Contixo-F18 299 15.5 92 454 8 116.25 6.4 145.31 20

DJI Phantom 4" 999 81.3 120 1380 28 174.21 224 217.77 25

DJI S900* 3198 278 150 3300 40 417 32 521.25 30

TABLE III

SIMULATION RESULTS INDICATING THE MINIMUM NUMBER OF DRONES (N') NECESSARY TO ENSURE CONTINUOUS FLIGHT. Theoretical REFERS TO THE
THEORETICAL BEST-CASE AS COMPUTED FROM FORMULAE DERIVED IN SECTION III-B. Simulation INDICATES SOFTWARE SIMULATION RESULTS.

2-Drone Swarm
Drone Model

Theoretical — Simulation

Skyracer-901H
X5SW-v3
Contixo-F18

4-Drone Swarm

Theoretical

8-Drone Swarm

Simulation — Theoretical — Simulation

For example, some drone batteries may charge towards the
end of time 7 that do not discharge before the fleet ceases
operation.

IV. SIMULATION RESULTS

Three small, commercially available drones were purchased
and flown to determine their actual hover and flight times.
These results were used in both analytical and computer
simulation calculations to determine the minimum fleet size
(N) to ensure perpetual flight.

A. Drone Selection

Various specifications were considered when choosing test
drones, including their cost, battery capacity, weight, and
recharge time. Table II lists this information, along with
experimentally determined values (such as hover time and
power, flight power, and speed). Hover power was calculated
using Eq. 13. As the drones that were purchased for this study
did not perform well enough, two additional, professional
drone models are included in Table II —the DJI Phantom
4 and the DJI S900. The 3 swarm candidate drones tested in
this study (the Skyracer-901H, XSSW-V3, and Contixo-F18)
are shown in Figure 3.

_60xB
T

Pr 13)

B. Test Case Computation

To gain intuition into Eq. 6, let us calculate the necessary
fleet size (NV) for a swarm of n = 8 using the XSSW-V3 drone.
From Table II, we derive the following drone parameters:

en=2_§
e \=0.7
e V =15mph

e 7}, = 10 minutes
e R =0.5miles
e C = 55 minutes

o P, = 7.8 Watts
e 3 =1.85 Watt-hours
e 7 = 120 minutes

Substituting these parameters into Eqs. 3—6:

120
S= x8| = |5=209
0.7x10-144 x %2
120 1 19 . 7?1ying
Ne = 8% Z s 0- (’L + 7710ven'ng + 9 + %harging) >0
i=Thoerine |0, oOtherwise
/ﬁmvering I %

SN =209-128 =

This result shows the theoretical minimum A of 81 for a
swarm of size n = 8 using the X5SW-V3 drone. Values have
been calculated for various drones and swarm sizes, and are
shown in Table III.

C. Simulation Software

Simulation software was developed in order to determine
the minimum number of drones necessary, A/, to ensure a
drone swarm’s perpetual flight over varying conditions. The
simulation accepts parameters from the user, such as the drone
model, length of simulation (7), and desired drone swarm size
(n). The simulation then offers the user a choice:

i Calculate \V: the simulation software will create a drone
fleet of 2n (two times the desired swarm size). When
drones in the swarm reach a critical energy threshold
and signal for a replacement, the simulation determines if
there are any drones in the Ready state to relieve them.
If not, the simulation automatically adds new drones to
the fleet. Once complete, the total number of drones (N)
required to maintain a perpetually flying swarm of size
n is displayed to the user (as seen in Figure 4).
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Fig. 4. Screen shot of the simulation software (created in Java) to test for
the minimum number of drones necessary to ensure perpetual flight (N).

ii Specify A: the simulation software will create a drone
fleet of the user-entered size. The simulation will ter-
minate either when no drones in the Ready state are
available to relieve drones in the swarm with depleted
energy, or when the desired simulation time has elapsed.
The software gives the user a Boolean result (true or false)
indicating whether or not perpetual flight was possible
with the specified NV.

D. Simulation Settings

As discussed in Section III-A, all drones in the fleet exist
in one of seven states. Depending on the drone’s state, energy
will be lost (used in flying) or gained (charged) with each clock
tick. The simulation triggers state changes to form the initial
swarm, when a drone has completed a charging cycle, when a
drone in the swarm reaches a critical energy threshold, when
a drone arrives at a charger, when a drone begins charging,
when a drone arrives at the swarm, and when a drone leaves
the swarm to fly to a charger.

The critical energy threshold that signals a drone in the
swarm to call for a replacement is defined in Equation 14,
where Tqying i the same as derived in Eq. 1. Table I further
details each parameter used in the simulation.

Eeritical = A X E + 771ying (14)

It should be noted that the simulation software makes
various assumptions. The distance from the swarm to any of
the charging stations is assumed to be constant, and charging
stations are assumed to be able to accommodate an unlimited
number of resting drones (i.e., an unlimited number of drones
can land on the charging station), though the number of drones
charging at any given time is bound. The speed at which a
drone flies to or from the swarm is assumed to be constant,
based on the drone model’s maximum speed. Charging is
assumed to be linear (if a drone takes 100 minutes to charge,
and has 0% energy, each minute will increment the drone’s
energy by 1%), rather than a more realistic logarithmic model.
The energy consumed by each done, whether in flight or
hovering, is approximated to constant (based on the specific
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Fig. 5. Comparison of theoretical best-case based on the equations in

Section III-B and the simulation results described in Section IV-E for the
three drone models that were purchased for this study.

drone model). When the drone fleet is first created, the drones
comprising the initial swarm go straight to the Flying in
Swarm state from the Ready state. This means they start
flying with 100% battery power, rather than consuming energy
on their flight to form the initial swarm. The simulation was
created to accept a time quantum of at least one second. The
simulation was programmed with a quantum of 1 second to
produce the results presented. Depending on the quantum used,
it is assumed that state changes, energy updates, and distance
flown will all update at the beginning of the next quantum.
If one minute is chosen, even if a state change (such as a
drone has finished Charging and is now Ready) occurs in
the middle of the quantum, the fleet may not be immediately
updated.

E. Experimental Results

Table III lists experimental results with varying drone
models and swarm size. It would appear, as expected, that
the largest factor impacting N is the ratio of flight- to charge-
time. The longer a drone can fly without being recharged,
the lower N is necessary to maintain perpetual flight. Other
factors include R, the distance from the swarm to the charging
station (which determines both how long a drone must wait
for a replacement and how much reserve energy a drone needs
to return to a charger after being relieved from the swarm),
and V), the maximum speed of the drone.

V. CONCLUSION

As indicated by the study conducted in this paper, perpetual
flight is indeed a viable concept. Clearly, the drone fleet must



contain a certain number of drones, /, and a sufficient number
of charging stations to ensure fully charged drones are always
available to relieve swarm drones whose energy has been
depleted. The expected, theoretical best-case A (as derived
in Section I1I-B) and the N calculated by simulation software
can be seen in Table III. The theoretical best-case vs. simulated
results for the three drone models purchased for this study can
also be seen as plots in Figure 5. The numbers determined
from both the best-case scenario and the simulation software
are not prohibitive; the perpetual flight of a homogeneous
UAV swarm can be attained with inexpensive and a sufficient
number of readily available COTS drones. For example, to
sustain a swarm size of n = 4, a fleet size of N = 32 is
necessary for the Skyracer-901H, while the theoretical best-
case for X5SW-V3 is A'=40 and Contixo-F18 is A'=52. The
difference in A/ between the various drone models is primarily
influenced by the battery capacity (B) and charge time (C).

The results indicate a disparity between the theoretical and
simulation values. This stems from the fact that the simulation
imposed a limit on the number of drones charging at any time,
while the equations assumed that an infinite number of drones
were able to charge. In the simulation, in order to more closely
model real-world situations, there were 4 charging stations that
could each charge 8 drones at a time, restricting the number of
charging drones. The effect of this added restriction was more
pronounced in drones that require longer charge times, forcing
the addition of more drones to the fleet to compensate. This
indicates that, in a real-world situation, the number of charging
stations and how many drones each station can charge at given
time are equally important as the flight to charge ratio.
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