
Enabling Real-Time 
Mobile Cloud Computing 
through Emerging 
Technologies

Tolga Soyata
University of Rochester, USA

A volume in the Advances in Wireless 
Technologies and Telecommunication (AWTT) 
Book Series 



Published in the United States of America by 
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA, USA 17033
Tel: 717-533-8845
Fax:  717-533-8661 
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2015 by IGI Global.  All rights reserved. No part of this publication may be reproduced, stored or distributed in 
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or 
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.
			   Library of Congress Cataloging-in-Publication Data

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the 
authors, but not necessarily of the publisher.

For electronic access to this publication, please contact: eresources@igi-global.com.�

Enabling real-time mobile cloud computing through emerging technologies / Tolga Soyata, editor.
       pages cm 
  Includes bibliographical references and index. 
  ISBN 978-1-4666-8662-5 (hc) -- ISBN 978-1-4666-8663-2 (eISBN)  1.  Cloud computing. 2.  Mobile computing.  I. 
Soyata, Tolga, 1967- 
  QA76.585.E55 2015 
  004.67’82--dc23 
                                                            2015015533 

 
This book is published in the IGI Global book series Advances in Wireless Technologies and Telecommunication (AWTT) 
(ISSN: 2327-3305; eISSN: 2327-3313)

Managing Director: 
Managing Editor: 
Director of Intellectual Property & Contracts: 
Acquisitions Editor: 
Production Editor: 
Development Editor: 
Cover Design: 

Lindsay Johnston 
Austin DeMarco 
Jan Travers 
Kayla Wolfe 
Christina Henning 
Brandon Carbaugh 
Jason Mull 



116

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  4

DOI: 10.4018/978-1-4666-8662-5.ch004

ABSTRACT

Extending cloud computing to medical software, where the hospitals rent the software from the provider 
sounds like a natural evolution for cloud computing. One problem with cloud computing, though, is ensur-
ing the medical data privacy in applications such as long term health monitoring. Previously proposed 
solutions based on Fully Homomorphic Encryption (FHE) completely eliminate privacy concerns, but 
are extremely slow to be practical. Our key proposition in this paper is a new approach to applying FHE 
into the data that is stored in the cloud. Instead of using the existing circuit-based programming models, 
we propose a solution based on Branching Programs. While this restricts the type of data elements that 
FHE can be applied to, it achieves dramatic speed-up as compared to traditional circuit-based methods. 
Our claims are proven with simulations applied to real ECG data.

INTRODUCTION

Software as a Service (SaaS) provides an excellent alternative to any corporation looking to simplify their 
IT infrastructure. By renting Software as a Service (SaaS), rather than purchasing, the responsibility of 
software upgrades, as well as the infrastructure to run the software are transferred to the provider of the 
software. Upgrades on the software could be done instantly, since new patches and code improvements 

Secure Health Monitoring 
in the Cloud Using 

Homomorphic Encryption:
A Branching-Program Formulation

Scott Ames
University of Rochester, USA

Muthuramakrishnan Venkitasubramaniam
University of Rochester, USA

Alex Page
University of Rochester, USA

Ovunc Kocabas
University of Rochester, USA

Tolga Soyata
University of Rochester, USA



117

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

could be contained at the source, which resides within the servers of the provider of the software. While 
SaaS has been very successful in certain categories of applications, such as Salesforce.com (SalesForce.
com, 2014), its adoption in the medical application arena has been very slow due to the strict rules and 
regulations introduced by Health Insurance Portability and Accountability Act - HIPAA (HIPAA, 2014). 
According to HIPAA regulations, private medical information should be treated with utmost care, and 
the penalties associated with the breach of HIPAA are steep and unacceptable. Despite the fact that a 
hospital can confidently switch its application hosting and file storage to cloud operators, save money, 
and simplify its IT infrastructure (Reichman, 2011; Good, 2013), this transition has been very slow.

A novel application introduced in (Kocabas, et al., 2013; Kocabas & Soyata, 2014)guarantees pri-
vacy of patient medical information during cloud computing. This technique owes its capability to using 
Fully Homomorphic Encryption (FHE) during its computations. FHE allows generalized operations on 
encrypted data (Gentry, 2009), without actually observing the underlying medical data, thereby com-
pletely eliminating privacy concerns due to processing sensitive medical information. While novel in 
theory, this technique is plagued by performance bottlenecks: FHE-based computations are orders of 
magnitude slower than their unencrypted counterparts, which confine the application space of FHE-based 
implementations to a very restricted set. Additionally, FHE-encrypted data takes up orders of magnitude 
larger storage space (Page, Kocabas, Soyata, Aktas, & Couderc, 2014). With this significant expansion in 
storage space, and extremely prolonged execution time, the cost-saving advantage of cloud outsourcing 
becomes questionable for FHE-based implementations.

This performance disadvantage of FHE motivated the launch of the large-scale DARPA PROCEED 
program (DARPA-PROCEED, n.d.) to improve FHE performance. While the privacy advantages of 
FHE-based implementations are clear, substantial work has to be done before FHE can be practical. In 
this chapter, a reformulation of the idea introduced in (Kocabas, et al., 2013) is discussed, where FHE 
is not applied to the problem in a generalized way. Instead, a meaningful trade-off is presented between 
performance and range of input data. It is shown through simulations that, when a medical application 
is performing operations on data elements that lie within a well-defined range (e.g., 0.4 and 0.6 in the 
case of the QTc value extracted from an ECG as will be described shortly in this chapter), comparisons 
can be made drastically faster. While most of the existing FHE implementations treat the arithmetic 
operations within a computer application as a set of operations that can be represented as a circuit, the 
formulation in (Page, Kocabas, Ames, Venkitasubramaniam, & Soyata, 2014) takes a radically different 
approach and is described in detail in this chapter.

In (Page, Kocabas, Ames, Venkitasubramaniam, & Soyata, 2014), a study is provided on a set of 
arithmetic (and logical) operations required for the execution of a medical application. These operations 
primarily consist of integer comparisons to determine the health state of a patient. These comparisons 
are performed on the vitals of a patient, such as the heart rate, or certain other metrics extracted from an 
Electrocardiogram (ECG). Rather than using the usual circuit-based representation of the operations, a 
branching program approach is taken, where each comparison is represented as a set of decisions applied 
to the bits of the compared values. Allowing the medical application to be represented as a branching 
program opens the door to borrowing from a rich body of research that exists for this computational 
model (Barrington, 1989; Sander, Young, & Yung, 1999; Ishai & Paskin, 2007). While the branching 
program approach restricts the applicability of FHE due to the limited values that the input data can 
have, the performance advantage of this approach which will be demonstrated in the Evaluation section 
far outweighs this disadvantage. Especially for medical applications that will be described in the next 



118

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

section, since the values are indeed in a restricted range, the disadvantages that the Branching Program 
formulation introduces can be mostly eliminated by a careful selection of the branching program that is 
used to replace the equivalent circuit.

This rest of this chapter is organized as follows: In the next section, background information is pro-
vided on FHE and medical applications of interest, followed by a specific case study medical applica-
tion. For this case study, a detailed description of the medical condition that is being detected by the 
application is provided along with a functional infrastructure. Mapping of this functional infrastructure 
to an FHE-based implementation is the key contribution of this chapter, which is based on the Branch-
ing Program. A theoretical background is provided for this implementation, followed by an evaluation 
based on a simulated program and ECG data. Conclusions and future research directions are provided 
after this evaluation.

MOTIVATING APPLICATION

Due to the complexity of Fully Homomorphic Encryption (FHE), attempting to formulate a general-
ized framework for running a wide variety of cloud-based medical applications is not realistic at this 
point. While a mainstream adoption for FHE might take years or decades, the goal of this chapter is to 
investigate a set of applications that can be executed in a privacy-preserving setting through the use of 
open source FHE libraries such as HElib (HElib, 2014), based on the Brakerski-Gentry-Vaikuntanathan 
(BGV) encryption scheme (Brakerski, Gentry, & Vaikuntanathan, 2012). Target applications that can be 
adapted to HElib possess similar characteristics and we will identify them in this section. To determine 
what type of applications can be formulated to run on FHE-encrypted data, we first need to understand 
the limitations of FHE, which manifests itself on multiple fronts:

1. 	 Each arithmetic operation (e.g., addition) that would normally take one cycle on regular numbers 
(e.g., integers) takes hundreds of thousands, and in some cases millions of cycles,

2. 	 Representing each bit in FHE-encrypted format occupies hundreds of thousands, and in some cases 
millions of times larger storage area,

3. 	 Usual data formats, such as integer and floating point types are not necessarily native to the FHE-
style formulation, thereby making the application of any function non-trivial,

4. 	 Due to the improvements made in the state-of-the-art BGV scheme (Brakerski, Gentry, & 
Vaikuntanathan, 2012), operations are performed SIMD-like, i.e., Single Instruction Multiple Data. 
This requires re-thinking how data elements should be represented/packed for native application 
to these SIMD operations.

While a broad set of applications might be suitable to work in an environment with such constraints, 
we specifically focus on long term patient health monitoring applications in this chapter. Figure 1 depicts 
the conceptualized long term cardiac health monitoring for patients outside the healthcare organization. 
In this application scenario, patients are given a sensor that is capable of acquiring and transmitting ECG 
signals, which is called an ECG patch (CardioLeaf-Pro, n.d.). Since energy consumption is a top priority 
for the longevity of the device, a powerful processor cannot be incorporated into such an ECG patch. An 
example microcontroller that is suitable for such a device is a 16-bit Texas Instruments MSP430 (TI-
MSP430, n.d.). MSP430 consumes only 600μW during operation and including the peripheral acquisition 



119

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

circuitry, an ECG patch that is architected around MSP430 could be expected to consume around 1mW 
during continuous operation. Additionally, communicating the acquired samples over a WiFi or Zigbee 
link can consume an average of 1mW, resulting in a total of 2mW power drain. A typical coin battery 
has 675 mWh energy stored in it (CR2032, n.d.), and can sustain this patch for almost two weeks, which 
is sufficient for long term cardiac monitoring. This patch has the capability to perform Digital Signal 
Processing (DSP) operations, which will allow it to compute preliminary metrics on the acquired ECG 
data, such as the QT and RR values, as we will describe later in this chapter.

While pre-calculating the QT and RR values from the ECG signals might make sense for the patch, 
it doesn’t make sense when the bigger picture is concerned, which involves privacy-preserving transfer 
of these values into the cloud. To ensure privacy of the acquired ECG samples, this chapter proposes 
to apply FHE into these samples. To run the long-term health monitoring application in an FHE-based 
environment, the first step, encryption, must be performed at the source. This encryption operation is 
extremely computationally-intensive and the ECG patch has no way of performing it. Therefore, the 
data has to be transferred to a nearby computationally capable device. We conceptualize this device to 
be either a smart-phone, with approximately 5 GFLOPS computational capability (iPhone5s, n.d.) or a 
cloudlet with close to 100 GFLOPS capability (Soyata, Ba, Heinzelman, Kwon, & Shi, 2013; Soyata T., 
et al., 2012; Soyata T., Muraleedharan, Funai, Kwon, & Heinzelman, 2012; Wang, Liu, & Soyata, 2014; 
Alling, Powers, & Soyata, 2015; Powers, Alling, Gyampoh-Vidogah, & Soyata, 2014). Encrypted signals 
should include two different flavors: a traditional encryption, such as PGP or AES (NIST-AES, 2001), or 
FHE. While the traditionally-encrypted data occupies significantly lower amount of space in the cloud 
(and, therefore, during transmission through the internet), the FHE path is both computationally and 
communication-wise intensive. However, FHE-based data allows computations in the encrypted format. 
Our idea in this chapter is to use the AES or PGP based storage for permanent archiving, and the FHE 
version of the data for computation (i.e., health monitoring). Communication time of the FHE-based data 
is less of a concern when the cloudlet is transferring the data, rather than a 3G or 4G telecom network 
(Kwon, et al., 2014; Kwon M., 2015).

Figure 1. A system for monitoring cardiac-related health vitals of a patient at home. An ECG patch is 
given to the patient (CardioLeaf-Pro, n.d.) which transmits its data to a nearby smart-phone or cloudlet.



120

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

Medical records must be stored for a period of time to comply with regulations pertaining to Elec-
tronic Medical Records (EMRs). In the redundant storage mechanism described above, this obligation is 
complied with. Also note that, storing the data in AES format permanently allows the conversion of this 
data to FHE at any point in time in the future using AES to FHE conversion techniques (Gentry, Halevi, 
& Smart, 2012), thereby allowing temporary processing on the data until it is no longer needed. When 
processing is done, the FHE version of the data can be discarded, since the AES version is permanently 
stored for future reference.

APPLICATION CASE STUDY: LONG-TERM CARDIAC HEALTH MONITORING

One specific function that can be performed by the system in Figure 1 is QT monitoring. The QT in-
terval – illustrated in Figure 2 – is an important marker for the onset of Torsades de Pointes (TdP), a 
potentially-fatal arrhythmia (Priori, Bloise, & Crotti, 2001). Because QT varies with heart rate, clinicians 
prefer to look at corrected QT, known as QTc. Many QT correction formulas exist; the most popular is 
Fridericia’s (Fridericia, 1920):

QT
QT

RR
cF
=

/ sec3
	 (1)

where ‘F’ denotes that this is the Fridericia correction, and QT and RR are the durations of the intervals 
illustrated in Figure 2. Prolongation of QTcF is a warning sign for TdP. This prolongation may occur as a 
result of genetic mutations, or as a reaction to certain medications (Shah, 2004). Patients who are at risk 
due to any of these factors are frequently monitored via ECG, particularly when adjusting prescriptions. 
Based on a patient’s gender, medications, and history, a cardiologist will assign some threshold for QTc. 
If the patient’s QTc goes above this threshold, the doctor should be notified immediately. Thresholds 
are typically around 470ms.

While monitoring of QTc is incredibly important for at-risk patients, it is usually only conducted in 
hospitals. This occurs in real-time, but does not provide a good picture of a patient’s QTc throughout a 
typical day/week. One solution is to discharge the patient with a Holter monitor. This device can record 

Figure 2. QT and RR intervals in an ECG recording. Prolongation of the QT interval points to poten-
tially hazardous cardiac events (known as Long QT syndrome). Image based on “SinusRhythmLabels” 
by Anthony Atkielski.



121

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

the patient’s ECG for several days. It is then returned to the hospital for analysis. This provides a good 
long-term view of the patient’s cardiac health, but does not allow for instant notifications of potential 
problems. Ideally, monitoring should be both long-term and real-time. Such a monitoring system would 
involve the patient’s ECG data being continuously uploaded to a server for immediate analysis, which 
poses many challenges to hospitals in terms of privacy and administration (Patel & Shah, 2005).

The application (and problem) we’ve just described has a few features that make it ideal for FHE: 
(1) It involves only simple calculations, (2) privacy of the data is paramount, and (3) the algorithm 
cannot be released. (In this case, the algorithm isn’t secret; by ‘cannot be released’ we really mean that 
it cannot be remotely updated on the patient’s hardware, for security reasons.) We therefore envision 
a system where FHE-encrypted ECG data is uploaded to a cloud-based server for QTc analysis. The 
server then pushes the encrypted results to the doctors’ phones, which will decrypt them and raise 
an alarm if necessary. We will now look at some of the details of how data will be passed around in 
such a system.

ECG samples are generally taken with 16-bit resolution, on three or more leads, at 200-1000Hz. 
The resulting data stream is on the order of 10KB/sec. However, this stream can be preprocessed by a 
microprocessor on the patient to output only the QT and RR value associated with each heartbeat. This 
limits the upload stream to under 20 bytes per second, depending on the chosen data type for QT and 
RR, and on the patient’s heart rate. For example, if we choose to represent QT and RR as 32-bit floating-
point numbers, and heart rate is 60bpm, we will only need to upload and process two 4-byte values per 
second. On the download side of the system, we really only need to convey 1 bit of information to the 
doctor for each heartbeat: ‘sick’ or ‘not sick’.

Because we intend to use HElib for processing (HElib, 2014), all values must be stored as integers. 
We could, for example, store the time durations in ‘samples’ or ‘milliseconds’ rather than ‘seconds’, or 
use a fixed-point notation to accomplish this. Also, because processing speed can be greatly increased 
by reducing the number of bits per value, it would be reasonable to store QT and RR as short ints, i.e. 
16-bit values. And while the unencrypted QT and RR values are only generated at a rate of a few bytes 
per second, homomorphic encryption will explode them to several megabits per second. One way to 
avoid transferring QT and RR to the cloud at this exploded data rate is to use AES encryption for the 
upload, and an AES→FHE circuit in the cloud (Gentry, Halevi, & Smart, 2012). The consequences of 
using the AES→FHE technique will be extra computation in the cloud, and the need to distribute or 
generate the AES key without revealing it to the server.

We have described the input and output data rates and types, and now need to define the cloud-based 
function that will be reading and generating this data. The function to compute is given by Equation (1), 
which can be rewritten as:

QT3>t3×(RR/sec) 	 (2)

where t is the threshold QTc value above which a warning should be raised. Note that t3/sec can be 
pre-computed, rather than actually performing the cube and division operations under FHE. Or, in the 
case where t=500 ms, we see that multiplication by t3 will become a right shift operation. These types 
of simplifications will be useful when translating the equation to the FHE domain. Later sections will 
explain how to rewrite this function as a matrix of FHE-encrypted values.



122

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

THEW ECG DATA REPOSITORY

The telemetric and holter ECG warehouse initiative (THEW) is a worldwide repository hosted by the 
University of Rochester (Couderc, 2010). This library contains patient-identification-removed ECG 
recordings for healthy and unhealthy patients with certain known cardiac problems (e.g., LQTS). Fig-
ure 3 shows an example ECG recording from the THEW library, which contains multiple Normal (N) 
heart beats, and multiple abnormal beats denoted as V and S types. To determine the correctness of the 
algorithms proposed in this chapter, simulations can be performed based on the data obtained from the 
THEW library. The storage of the recordings in the THEW library follows the ISHNE format (Badilini, 
1998). In this format, there is a standard header that contains information such as the sampling rate and 
the number of samples between two beats.

Each beat is recorded as a 16-bit voltage value and the number of samples between two beats can be 
used to determine the temporal distance between two beats. This allows us to work with a summarized 
yet realistic ECG database, since in our concept system shown in Figure 1, we assume that the QT and 
RR values and the distance between two consecutive QT and RR values are being transferred to the cloud 
in FHE-encrypted format. Therefore, the knowledge of every single sample within the ~100 to 1000 
samples between two heartbeats contains no additional useful information for our algorithm. Knowing 
the QT and RR values, the QTcF value mentioned in the previous section can be computed in the cloud 
and compared against a known “hazard” value, such as 500 ms as previously described. As in some of 
our previous work (Kocabas & Soyata, 2014), we will use a long-term ECG recording data set, spanning 
approximately 24 hours. This dataset contains 87,896 heart beats (i.e., QT and RR values). Therefore, 
87,896 comparisons will be necessary to determine any existing cardiac hazard conditions.

FULLY HOMOMORPHIC ENCRYPTION (FHE)

Homomorphic Encryption schemes provide a mechanism to compute over encrypted data. The first 
homomorphic encryption schemes supported adding or multiplying of the values encrypted but not both 
operations at the same time. The Goldwasser-Micali scheme (Goldwasser & Micali, 1982) and Paillier 
(Paillier, 1999) schemes supported Modulo N addition operations, making them additively homomor-

Figure 3. Sample patient ECG data obtained from the THEW library
(Couderc, 2010).



123

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

phic; while the ElGamal scheme (El Gamal, 1985) was multiplicatively homomorphic. None of these 
techniques could support simultaneous addition and multiplication operations. Boneh, Goh, and Nissim 
(Boneh, Goh, & Nissim, 2005) was the first scheme to support multiple operations, allowing arbitrary 
homomorphic additions operations along with a single homomorphic multiplication operation. As an 
example, a vector dot product operation could be performed homomorphically using the (Boneh, Goh, 
& Nissim, 2005) scheme. Sander, Young, Yung (Sander, Young, & Yung, 1999) showed how to compute 
any shallow-depth circuit (NC1) but their construction required a significant blow-up in the ciphertext 
size. The Dåmgard-Jurik scheme (Damgard, Jurik, & Nielsen, 2010) was additively homomorphic and 
could offer an efficiency guarantee: For a fixed public key, it can encrypt plaintexts of any size, and 
the ciphertext associated with a plaintext is only additively larger than the plaintext. Ishai and Paskin 
(Ishai & Paskin, 2007) showed how to use this property to construct a homomorphic encryption scheme 
that could evaluate a branching program over encrypted data. Constructing a homomorphic encryption 
scheme that could perform arbitrary computations over encrypted data was a long-standing open problem.

Constructed on lattice-based cryptography, Craig Gentry (Gentry, 2009) achieved a major breakthrough by 
introducing the first provably secure fully-homomorphic encryption scheme in 2009. Much like other public-
key cryptosystems (Rivest, Adleman, & Shamir, 1978; Diffie & Hellman, 1976), lattice-based cryptography is 
based on an intractable Closest Vector Problem (CVP): a lattice could have an infinite number of base vectors 
and it is computationally hard to find the closest vector unless a proper set of basis vectors are known associated 
with the lattice. Based on this Closest Vector Problem (CVP), Gentry scheme can support arbitrary number of 
addition and multiplication operations on encrypted ciphertexts. Since his work, there has been tremendous 
progress in Gentry’s work by reducing the necessary hardness assumptions to just the Learning with Errors 
problem on lattices (LWE) and improving the efficiency of the construction (Brakerski & Vaikuntanathan, 
2011; Brakerski, Gentry, & Vaikuntanathan, 2012; Dijk, Gentry, Halevi, & Vaikuntanathan, 2010). HElib 
(HElib, 2014) is an open source library implementing the best known (leveled) fully-homomorphic encryption 
system due to Brakerski, Gentry and Vaikuntanathan, which we will refer to as BGV in the rest of the chapter.

HElib LIBRARY

The HElib library that we will use in our analysis relies on the BGV FHE encryption scheme (Braker-
ski, Gentry, & Vaikuntanathan, 2012) and is an open source implementation (HElib, 2014) by Halevi 
and Shoup (Halevi & Shoup, 2014). To gain insight into the internal operation of this library, certain 
implementation concepts must be understood. For example, since HElib uses a leveled FHE scheme, 
this concept of the computation level will be explained in detail shortly.

•	 The “Level” Concept: One of the major improvements in the FHE schemes that were introduced 
after Gentry’s original scheme is the concept of computation level. All FHE schemes introduced 
up to date rely on a small noise that is incorporated into the ciphertext during encryption. When 
the decryption key is not known, this noise makes decryption intractable, since it makes the de-
cryption problem substantially harder than the case where there is no noise. While this intentional 
noise helps the security of the FHE scheme, it comes at a steep price: Each FHE operation per-
formed on this noisy ciphertext makes this ciphertext noisier after each operation. While the effect 
of this growing noise is much smaller for addition operations, multiplication makes the noise grow 
exponentially. While evaluating a function homomorphically, a chain of addition and multiplica-
tion operations are performed, each contributing to the noise partially.



124

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

At some point during these chains of operations, the noise reaches a threshold, where decryption of 
the ciphertext no longer yields the correct plaintext. This threshold of the noise must never be exceeded 
to ensure correct decryption. Noise Management, i.e., guessing and controlling the amount of noise 
is, therefore, one of the most important aspects of any lattice-based FHE scheme. For example, for a 
threshold parameter of 40, a maximum of 40 multiplications can be performed, which can be intermixed 
with a much higher number of additions. Once this point has been reached (i.e., 40 multiplications), 
a decryption must be performed to reset the noise. Clearly, this implies switching to the unencrypted 
domain. Therefore, only 40 multiplications can be done in encrypted domain, after which the results 
must be transferred to the “friendly” source and decrypted. An important contribution by Gentry was 
to provide a special bootstrapping procedure that allows re-encrypting and resetting the noise without 
explicitly decrypting. Thereafter, 40 more multiplications can be performed before invoking the boot-
strapping procedure again.

More recent FHE schemes are leveled-FHE schemes where there is a control parameter known as the 
level. In most constructions, this level is the maximum number of cascading multiplication operations 
that can be performed in a sequence of computations. If for a particular application this level can be 
estimated a priori, then the leveled-FHE scheme can be instantiated at the right level.

•	 Plaintext and Ciphertext Spaces: A “message” is defined as a string of bits to communicate 
between two parties. In the case of conventional cryptography, a message is encrypted with a 
public key and can only be decrypted when a private key is known. Therefore, in a communica-
tion system, the transmitter encrypts a message of M-bit length, and the receiver decrypts this 
message to obtain the original M-bits consisting of the message. In the case of the BGV scheme, 
the goal of the receiver is not to observe the message, but, rather, to perform computations on it. 
Therefore, the encryption operation should simply convert the message into a form, which can be 
later used for computation. In the case of BGV, messages are encoded as polynomial rings in the 
GF(pd), where p is a prime number, and d is the degree of the polynomial that is representing the 
message. With this definition, homomorphic addition of a plaintext corresponds to the addition 
of the ciphertext. Furthermore, homomorphic multiplication of the plaintext polynomial ring cor-
responds to the multiplication of its ciphertext.

In the simplest case, where p=2 and d=1, each message is in GF(2) and the multiplication operation 
reduces to logical AND. Alternatively, addition operation reduces to XOR. These two operations are a 
functionally complete set, i.e., any operation can be represented as a combination of these two opera-
tions. An extension of the BGV scheme pursued by Smart and Vercauteren (Smart & Vercauteren, 2014) 
allows “packing” of multiple messages into a plaintext. Each packed message occupies a “slot” of the 
plaintext and corresponding ciphertext using their terminology. Any homomorphic operation performed 
on a packed ciphertext has the effect of applying the same operation on every slot. In essence, packed 
ciphertexts allow SIMD-like operations to be performed on an encrypted vector of data. The HElib 
implementation, in fact, considers this extension. For example, in our experiments, we were able to 
pack 682 bits into plaintext slot, which can hold floor(682/16)=42 messages (i.e., ECG values). If we 
take the homomorphic addition operation, then each operation is applied to the previously mentioned 
42 messages in a bitwise manner. Unfortunately, this leaves 10 message slots wasted, however, this is 
the artifact of the BGV scheme.



125

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

Each packed plaintext will be encrypted into a single ciphertext, on which the aforementioned XOR 
and AND (i.e., homomorphic addition and multiplication, respectively) operations can be performed. To 
store the 87,896 ECG recordings that we previously mentioned, we would need ceil(87896/42)=2093 
ciphertexts. Our goal is to perform the comparison operation on these ciphertexts, where each QTc 
value stored in a message can be compared against the “danger threshold” of 500 ms. that we previously 
described. This will allow us to detect the Long-QT syndrome (LQTS) on a beat-by-beat basis.

•	 Available Operations in HElib: In the BGV library, a rich set of operations exists. Within this 
set, we picked a functionally-orthogonal set to perform the LQTS comparison function. As men-
tioned above the extended BGV scheme allows operations to be applied to a set of messages 
packed in a ciphertext. While this results in significant performance improvements, it requires 
careful formulation of the functions that are being evaluated. Furthermore, it makes certain op-
erations, such as, rotation and selection necessary to cope with the complexities arising from the 
“packing” concept. Details of the operations are as follows:

•	 Encryption: This operation converts a plaintext into a ciphertext. Since each plaintext contains 
multiple “slots,” the encrypted ciphertext is the representation of every slot in the plaintext, stored 
in encrypted form. Let Enc() denote the encryption operation. Also, let A and B denote two plain-
texts with 682 slots in GF(2) each. We will denote the encrypted ciphertexts Enc(A) and Enc(B). 
Indeed, the size of the ciphertexts Enc(A) and Enc(B) are significantly larger then the correspond-
ing plaintext sizes, A and B. Furthermore, the ciphertext sizes for Enc(A) and Enc(B) depend on 
the level at which A and B are being stored.

The dependence of the ciphertext sizes on the “BGV level” is an extremely important concept, which 
is the dominating factor in determining the speed and storage requirements of FHE. For example, take a 
plaintext A containing 682 slots in GF(2). Based on our experiments, storing the corresponding ciphertext, 
i.e., Enc (A), requires 1MB at Level=10. In other words, to store 682 bits worth of data, 1MB must be 
used in the encrypted domain, translating to a storage expansion of 1024*1024*8/682=12,000x. This 
four-order-of-magnitude storage expansion might not sound incredibly bad when we take a look at what 
happens when the BGV level goes up to 20. At this Level=20, the same plaintext requires 10MB of 
storage, corresponding to a 120,000x expansion. This explosive growth eventually makes the ciphertext 
size go up to 100MB at Level=100, corresponding to a 1,200,000x expansion at level 100.

•	 Homomorphic Evaluation: The primary reason for the storage expansion is the fact that, a lot 
more information has to be stored to represent the same encrypted number at higher levels. The 
intuition behind this is as follows: As we described before, the “level” indicates the “multiplica-
tive depth,” i.e., the maximum number of multiplications that can be performed using a cipher-
text before the noise becomes too high. Assume a plaintext A, whose Level=1 representation is 
a ciphertext Enc(A) of size 200KB. This means that, 682 slots (bits in GF(2)) require 200KB of 
storage, i.e., 300B for each bit at Level=1 (i.e., a 2,400x storage expansion). This size goes up to 
300KB for the ciphertext, translating to 450B for each bit when the Level=2 (i.e., 3,600x storage 
expansion). The intriguing questions are: 1) what is being stored in 300B ? and, 2) why is the stor-
age growing so fast when the level increases.



126

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

To answer the first question, we need to understand what is needed for evaluating a ciphertext. While 
addition operations are not as computationally-intensive, multiplication operations increase the noise 
exponentially, and requires a noise-reduction procedure. This procedure is computationally expensive 
and dominates the runtime of homomorphic evaluation. Performing evaluation on ciphertexts involves a 
massive amount of bitwise multiplications of the ciphertext bits with the appropriate public key bits. In 
FHE, a public key is composed of many parts (thousands or millions). Each part is needed to be stored 
within the public-key array for runtime evaluation, which increases the storage required.

•	 Decryption: Homomorphic Decryption operation, denoted as Dec(), that on input a ciphertext 
and the private key, turns a ciphertext back to its corresponding plaintext. Note that, both for the 
Enc() and Dec() operations, the level is known a priori.

•	 Homomorphic Addition: While the GF(pd) implementation of homomorphic addition is capable 
of adding packed integers in the corresponding ring, we prefer GF(2) due to the nature of the 
problems we are applying FHE to. In GF(2), homomorphic addition operation simply turns into 
the bitwise XOR operation. Assume that, two plaintexts A and B contain 682 slots each in GF(2). 
Also assume that, our messages are 16 bits each. As previously mentioned, this will allow us to 
store floor(682/16)=42 messages in each plaintext. The corresponding ciphertexts are Enc(A) 
and Enc(B), which will be 100’s of KB, or even MB depending on the BGV level. Now assume 
that, we are interested in performing a homomorphic addition on Enc(A) and Enc(B). The result 
is Enc(C)=Enc(A)+Enc(B). This assumes that, the result is being stored in a ciphertext whose 
decrypted version is C which also contains 682 slots, just like A and B. Since we performed a 
GF(2) addition (i.e., XOR) operation on A and B, what we did corresponds to performing C =A 
XOR B in the un-encrypted domain, which is bitwise XOR or every plaintext slot (bit) individually. 
More specifically, we performed C[n]=A[n] XOR B[n], where A[n], B[n], and C[n] are the nth 
individual slot (i.e., nth bit in GF(2)) of A, B, and C plaintexts.

As previously discussed, our messages are 16 bits each, which occupy 16 slots of plaintext space. 
Since we have 682 slots in each plaintext in the example described earlier, only 42*16=672 slots are 
meaningful to us, leaving 10 slots unused (wasted). Regardless of this waste, the homomorphic opera-
tion still performs bitwise XOR operations on all 682 slots of the plaintext, 10 results of which will be 
ignored as an artifact of the “packing” concept. This highlights some important points: 1) Continuous 
additions on the same plaintext will eventually cause carry on 16-bit messages, which is something 
that our algorithm has to deal with by manually accounting with the carry results of the messages, 2) 
clearly, this can be prevented if a string of additions will never cause the message to exceed 16 bits, 3) 
more importantly, even the carry from one bit to the other has to be accounted for, since bitwise-XOR 
works only on individual bits.

•	 Homomorphic Multiplication: Homomorphic multiplication performs bitwise AND operations 
on every plaintext slot. Following the same example as before, assume that, A and B are plain-
texts with 682 slots each, and Enc(A) and Enc(B) are their corresponding ciphertexts. Therefore, 
Enc(C)=Enc(A)*Enc(B) operation on ciphertexts corresponds to the C =A AND B in the un-
encrypted domain, which is bitwise AND or every plaintext slot (bit) individually. More specifi-
cally, we performed C[n]=A[n] AND B[n], where A[n], B[n], and C[n] are the nth individual slot 
(i.e., nth bit in GF(2)) of A, B, and C plaintexts. Exactly like the homomorphic addition operation, 



127

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

this operation will perform 10 multiplications that we will ignore. By properly choosing BGV pa-
rameters, the number of plaintext slots can be somehow manipulated to partially (or completely) 
avoid this waste.

•	 Rotation: As can be observed from the description of the homomorphic addition and multiplica-
tion operations, it is very difficult to define the evaluation function in terms of just these two op-
erations. Since these two operations work in GF(2), the carry functionality must be taken care of 
by using other operations: Both the Rotation or Shift operations can be used to take care of carry 
propagation and are both available in HElib. Out of these two operations, we found the Rotation to 
be slightly less computationally intensive and will be using it in our implementation.

The Rotation operation, when applied to a ciphertext, rotates all of the messages in the plaintext 
slots. More specifically, assume that A is a plaintext and Enc(A) is its encrypted version. RotL(Enc(A)) 
operation on the ciphertext Enc(A) is equivalent to RotL(A) in the unencrypted domain. This has the 
effect of converting the original 682 bit plaintext A[681 680 679 ... 2 1 0] to A[680 679 678 ... 2 1 681], 
where 681, 680, ... 0 indicate the slot number of the plaintext. A few important notes to make about 
this operation are: 1) An “undesired” data element from slot 681 “diffuses” into slot 0 in the example 
above, which must be eliminated later, after the Rotation operation, 2) Since the value of the diffused 
undesired bit is not known, the only way to eliminate it involves setting it to a known value, 3) while a 
Left Rotation is described above, a Right rotation also available.

•	 Bit Selection: Let A, and B be two plaintexts and S be a selection mask. This operation chooses 
specific slots from A and B according to the selection masks. For example, assume that, S=[0 1 0 
0 0 1 ...]. In the selection operation C=Select(A, B, S), where A and B are 682 slot plaintexts as 
described before, C would end up including a C=[ A[681] B[680] A[679] A[678] A[677] B[676] 
...], which is a masked selection of bits from either plaintext A or B. While applicable to many 
useful functions, one immediate use of this is in eliminating the undesired diffused message bits 
after a rotation. For this, if a fixed value (i.e., all ones) is stored in plaintext B, selecting bits from 
B by using C=Select(A, B, S) will guarantee a known value in C in every slot that is specific as 
“1” in the selection mask.

•	 Performance Characteristics of the Available HElib Operations: Figure 4 shows the runtime 
of the homomorphic multiplication, addition, and rotation operations, denoted as HMul, HAdd, 
and HRotate. As can be clearly observed from this plot, homomorphic addition operations require 
a negligible runtime as compared to multiplication and rotation operations. Therefore, the goal of 
an evaluation function is to avoid the homomorphic multiplication operations as much as possible. 
Additionally, since rotation is performed in terms of computationally-expensive operations, they 
should be avoided too. Also note that, only multiplications are considered when determining the 
level, whereas rotation and addition operations do not affect the level. This is the reason behind 
the “multiplicative depth” terminology, which implies that, any number of select, add, and rotate 
operations can be performed on ciphertexts without worrying about the BGV level, however, 
multiplications take away from the maximum-available-level which was determined at the very 
beginning of a sequence of homomorphic operations.



128

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

PROPOSED SOLUTION: OVERVIEW

In our motivating case study, we are interested in performing a simple computational task on encrypted 
data. More generally, in the context of cloud computing, our mechanism will be useful for securely 
implementing a streaming algorithm in the cloud. Informally, streaming algorithms involve performing 
the same simple operation on a stream of data arriving at a processing center, and then somehow ag-
gregating the results. Examples include searching a database, indexing or collecting statistics.

More formally, in a streaming algorithm, we have a stream of data x1,x2,x3 … arriving at the process-
ing center and the goal is to compute a function of the stream. In our motivating case study, we want to 
detect if there exists an element xi such that f(xi) = 1 for the simple function f described in Equation (1), 
where xi=f(QTi, RRi). Concisely, we wish to compute

∨ ( )f QT RR
i i
, 	

Since FHE allows for computing over encrypted data, the obvious approach is to send encryptions of 
the data elements to the cloud, homomorphically evaluate f on each element in the incoming stream, and 
then compute the “OR” of the result of the computations (again, homomorphically). As we show in our 
experimental results, this solution is computationally costly. This is because homomorphic operations 
are inherently expensive. As pointed out earlier, the BGV scheme or for that matter most known FHE 
schemes have a different cost model where performing a multiplication operation homomorphically is 
typically far more expensive than an addition operation and the cost of multiplication grows signifi-
cantly (Goldreich, 2008) with the multiplication depth (i.e., a cascaded set of multiplications). A simple 

Figure 4. Available operations in HElib and their runtimes. HAdd, HMul, and HRotate are the addition, 
multiplication, and rotation operations



129

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

calculation will show that in order to do this following the naïve approach we need a depth d = depthf 
+logn to process n data elements (each∨requires 1-depth), where depthf is the multiplication depth of 
f. The main contribution of our work is to show how we can significantly improve the computational 
efficiency by relying on an alternative representation of the computation that will significantly reduce 
the depth of the overall computation, i.e. function evaluation and aggregation. In addition, our method 
will be easily parallelizable and have small input locality, i.e. our sequence of homomorphic operations 
can be broken down to smaller sets each only dependent on a few ciphertexts. Most FHE implementa-
tions show how to compute any circuit C over encrypted data. Our starting point deviates from this by 
first representing the function f as a branching program instead of a circuit. A branching program is a 
directed acyclic graph with a special start node s and final node t where each edge is labeled with either 
an input bit or its negation, in a sense, a form of combinatorial optimization (Soyata, Friedman, & Mul-
ligan, 1997; Soyata & Friedman, 1994). The result of the computation is true if there is a path from the 
start to the final node traversing only edges for which the assignment sets the value on the edge true. 
Next, we show how to use an FHE scheme to evaluate a branching program and aggregate the results 
of the computation over streaming data. Using elementary linear algebra we first show that evaluating 
a branching program is equivalent to evaluating the determinant of a particular matrix. More precisely, 
the determinant will be f(x) for the matrix corresponding to input x. Given the matrix representation 
of two inputs x1 and x2, computing the “AND” of f(x1) and f(x2) now reduces to simply multiplying the 
matrices corresponding to the inputs, since

det(AB) = det(A)det(B)	

On a high level, our idea is to obtain encryption of the elements in the matrix from encrypted inputs 
via homomorphic evaluation and then multiply the matrices corresponding to all elements in the data 
stream. We can already see the benefit of our approach from observing that matrix multiplication is 
easily parallelizable. The main benefit, however, will result from the low multiplicative depth of our 
computation. In fact, the depth of our computation will be logn. An overview of the process we’ve just 
described is shown in Figure 5. We will now explain our approach in detail.

Figure 5. Converting a circuit (representing a function, which is a part of an algorithm) into matrix form.



130

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

COMPUTATIONAL MODELS

Oded Goldreich (Goldreich, 2008) defines computation as “a process that modifies an environment 
via repeated applications of a predetermined rule”. In the context of computers, this refers to defining 
artificial rules in an artificial environment towards achieving a precise and specific side effect. In order 
to formally model computation, we need to mathematically model the environment and the “transi-
tion” rules. Such a model will additionally provide a platform to understand the intrinsic complexity 
of computing any task in that environment. Turing machine is the simplest and most powerful model 
of computation that allows us to study this complexity as it can simulate most physical environments. 
While the goal of complexity theory is to understand the limits of computation, our focus is to identify 
the best computational model that can represent our computational task and the best environment to 
securely evaluate it. Towards this, we first discuss the computational models relevant to our discussion. 
We assume familiarity with Turing Machines and polynomial-time computation.

Circuit Model

The circuit model is the most popular model of computation to represent processes in electronic circuits 
and is more commonly referred to as “digital logic”. It is a generalization of Boolean formulas and can 
be defined via directed acyclic graphs where each vertex has the effect of applying a certain Boolean 
operator on the values from incoming vertices and delivering the result of the computation to an output 
vertex. Now, we turn our focus on providing a formal framework for our circuit model.

Figure 6. The circuit for the comparison of two 4-bit numbers, denoted as X and Y.



131

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

Definition 1: A circuit C is a 6-tuple (n, G, S, φ, θ, v*) where n∈N, G=(V,E) is a directed acyclic graph 
where each vertex has in-degree zero or two, S S V, ⊆ is the set of vertices with in degree zero, 
ϕ : { }S i

i n
→ ≤ ≤1

 labels vertices in S with an input bit, θ : \ { , }V S → ∨ ⊕  labels the rest of the 
vertices with a Boolean operation, and v*∈V is the output vertex. In the context of circuits, we use 
the terms “vertex” and “gate” interchangeably. The gates in S are input gates, and the rest of the 
gates are work gates. For any string x∈{0,1}n, the output of any input gate is equal to x

sθ( )
, and the 

output of any work gate v∈V\S is the result of the Boolean operation θ(v) when applied to the 
output of the two parent gates of v. The output of the circuit on input x∈{0,1}n is the output of v* 
on input x. The input size of the circuit is n.

An important parameter of the circuit that will be of particular interest in this work will be the depth 
of the circuit. The depth of any input gate s∈S is zero, and the depth of any work gate v∈V\S is one plus 
the larger of the depths of its two parent gates. The depth of a circuit is the depth of its output gate v*. 
We denote this number by Depth(C). We define Depth C∨( )  similarly, except that ⊕  gates do not in-
crease ∨ -depth: the ∨ -depth of a ⊕  work gate is defined as the maximum of the ∨ -depth of its two 
parent gates.

Definition 2: A family of circuits { }C
i i N∈  is a sequence of circuits such that for all i∈N, circuit Ci has 

input size i. The family is uniform if and only if there is a polynomial time Turing Machine such 
that for any n∈N, M(1n) outputs the description of Ci. The family is polynomial-sized if there exists 
a polynomial p such that for all n∈N, the number of gates in Cn is at most p(n). We note that uniform 
families are always polynomial-sized because polynomial time Turing machines can only output 
polynomially many bits.

NC or Nick’s Class is family of circuits that are polynomial-size and have poly-logarithmic depth. 
The motivation of considering this particular subclass is that these circuits can be evaluated in poly-
logarithmic time on parallel computer with polynomially many processors.

Definition 3: NCi is the set of languages accepted by a uniform, polynomial-sized family of circuits 
{ }Cj j N∈  such that Depth(Cn)≤O(login). We call any such family an NCi circuit family.

The class of NCi circuits is already a rich class which can compute basic arithmetic operations such 
as addition, multiplication and division on n-bit integers. In particular, we this model will allow com-
putation of our function f Equation.

Branching Programs Model

Another natural model of computation that can represent Boolean formulas are Boolean branching 
programs. These are represented via directed acyclic graphs but have a different mode of operation 
compared to circuits.



132

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

Definition 4: A branching program is a tuple (V, E, φ, s, t, n), where (V,E) is a directed acyclic graph, 
ϕ : { } { , }E T x x

i i i V
→ ∪ ∈  maps edges to labels, s∈V is the start vertex, t∈V is the end vertex, and 

n is the input length. The size of the program is the number of vertices in V. For a string x∈{0,1}
n, we define the graph Gx as (V,E0) where E E0 ⊆  is the set of edges which are labeled with T, or 
x1 such that xi=1 or x

i
 such that xi=0. In other words, E0 is the set of edges labeled as always pres-

ent or are labeled with a corresponding input bit. The branching program accepts input x if and 
only if there is a path from s to t in Gx, and we say it outputs 1 if it accepts, and outputs 0 otherwise. 
A branching program has width k∈N if and only if for all i∈N, the set of vertices reachable from 
s in G in exactly i steps has cardinality at most k. The labels of the edges in E do not affect the 
width: any outgoing edge of a vertex can be traversed, regardless of label.

We show below a branching program for the comparison operator on 2-bit inputs X and Y. In order 
to compare two numbers, first, we compare the most significant bits in X and Y and then work down to 
the least significant digit. If the most significant bit of X is larger than the most significant bit of Y, then 
X>Y. If the most significant bit of X is smaller than we know X>Y is false. If they are equal then we 
move onto the next significant bit. Once we find a position where the bits in X>Y are, we don’t have to 
look further. We implement this idea as a simple directed (acyclic) graph as shown in Figure 7.

The problem of determining whether X>Y is equivalent to determining whether there exists a path 
from the vertex s to the vertex t in the incident graph. In Figure 8, the example on the left considers 
X>Y and the incident graph has a path from s and t. The other example considers X<Y which results in 
no path from s to t.

A branching program can compute any function with one bit of output by completely branching on 
all n input bits in sequence so that each of the 2n inputs x results in a unique path from s in Gx. The 
paths associated with strings such that f(x)=1 are attached to the terminal vertex t. This sort of method 

Figure 7. A Branching Program for Comparison.



133

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

is impractical, since for large n it would require too much space to store the branching program itself. 
We are primarily interested in what branching programs with a small number of vertices can do. By 
Barrington’s theorem, any circuit can be converted into an equivalent branching program.

Theorem 1 (Barrington’s Theorem): For any circuit of depth d, there is an equivalent branching pro-
gram with width 5 and at most 5×4d vertices.

This means that branching program families of polynomial size and constant width can compute 
anything that can be computed by circuit families of logarithmic depth. We state without proof that 
NC1 circuits can simulate branching programs with constant width. However, with polynomial width, 
branching programs can also do any computation that a logspace Turing machine can do.

Definition 5: A logspace Turing machine is a deterministic Turing machine that has a read only input 
tape and a small work tape. For all n∈N, and for any string of length n, the machine must use at 
most O(logn) cells of its work tape.

Lemma 1: Any logspace Turing machine can be uniformly converted into an equivalent branching 
program family of polynomial size.

Proof: We present a polynomial time algorithm to produce the branching program with input size n . 
First, we form the graph of the branching program as rows of vertices representing possible con-
figurations of the machine. There are polynomially-many configurations of the logspace machine, 
and it can only take a polynomial maximum number of steps. Except in the last row, we give each 
vertex the appropriately-labeled outgoing edge to two others in the next row, one for each possible 
value of the current cell of the simulated input tape. Vertices in the final row connect to a termi-
nal vertex t if and only if the vertex represents an accepting configuration. This program can be 
outputted in polynomial time, it has polynomial size, and it is equivalent to the logspace machine 
on inputs of the desired length.

Figure 8. Evaluation of a Branching Program.



134

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

METHODOLOGY

Our proposed system has three phases: pre-computation, cloud computation, and post computation. In 
the pre-computation phase, input data elements are encrypted under FHE scheme and streamed to the 
cloud. In the cloud-computation phase, for each data element, the cloud generates a matrix representing 
the computation and aggregates the values via matrix multiplication. In the post-computation phase, the 
final matrix, that is the product of all matrices, is downloaded and decrypted at the client. To compute 
the final outcome of the computation in the post-computation phase, the client simply evaluates the 
determinant of the decrypted matrix.

Pre-Computation Phase

Recall that the QT and RR values from the ECG signals are computed in the ECG patch. Since encrypt-
ing and transmitting is computationally expensive, the data is transferred to a nearby computationally 
capable device. The values received at the edge device is first encrypted and then transmitted to the 
cloud. Typically, QT and RR are 16-bit values. Since we will be employing the BGV encryption scheme 
to manipulate the data in the cloud, these values will be encrypted using the same scheme at the device. 
Towards this a public-key/private-key is generated for the appropriate level, which in turn depends on 
the multiplicative depth of the computation performed at the cloud. Only the public-key is stored at the 
edge device, since it is sufficient to encrypt the data. The private-key is maintained by the doctor and is 
used only to decrypt the final result of the computation. Using the public-key, the device encrypts the 
QT and RR values and transmits to the cloud. Since the extended BGV scheme allows multiple slots, 
we encrypt as many of the values in a single ciphertext. As mentioned before, we will use the scheme 
with 682 slots it can pack 21(x32) samples of QT and RR with 10 slots of wastage.

Cloud Computation Phase

As the encrypted inputs arrive at the cloud, they will be first encoded into a matrix via the branching 
program. This matrix will have the property that its determinant will be exactly the output of f on that 
sample. The benefit of this approach will be that the matrices corresponding to different inputs can be ag-
gregated easily in encrypted form. We first explain the matrix encoding and then the aggregation process.

•	 Input/Computation Encoding: From the definition of branching programs, we know that it is 
represented via a directed acyclic graph G=(V,E) with an edge label function
ϕ : { / } { , }E True False x x

i i i V
→ ∪ ∈ . We will associate True with the value 1 and False with 0. 

Given such a graph G, we will consider the adjacency matrix A(G) where the (i,j) entry of A(G) is 
φ(i,j). The matrix representation of an input x=b1b2…bn will be the adjacency matrix will be the 
matrix M obtained from A(G) by replacing the variables xi with their respective values bi.

We explain below how the adjacency matrix will help encode the computation of f(x). Suppose we 
have a direct acyclic graph G=(V,E) with n vertices. First, we show that the number of paths of length 
t from i to j is equal toAG

i j
t( )
,

.



135

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

Lemma 2: Let A be the adjacency matrix of a direct acyclic graph G=(V,E). Then for any t∈N, and for 
any vertices i,j∈V, the number of paths of length t from i to j is equal to AG

i j
t( )
,

.
Proof: We will prove this by induction. As a base case, we note that A0=I is the matrix of length zero 

paths, where I is the identity matrix of the appropriate size. There is a path from i to j of length 0 
if and only if i=j. This is equivalent to saying that there is a path from i to j if and only if Ii,j=1. As 
another base case, we note that by definition, Ai j,

1 1=  if and only if there is a path of length 1 from 
i to j. We now prove the inductive case. By inductive hypothesis, A

i j
t
,
−1  is the number of paths from 

i to j of lengtht-1. Every path of length t from i to j can be decomposed into a path from i to k of 
length t-1 and a path from k to j of length 1. Therefore the number of paths of length t from i to j 
is the sum over all k of A Ai k

t
k j, ,

−1 1 . We observe that this is equal to ( )
, ,

A A At
i j i j

t− =1 1 . Therefore A
i j
t
,

 
is the number of paths of length t from i to j.

Now we define the path counting matrix P to be (I-A)-1. We prove that Pi,j is the number of paths 
from i to j.

Corollary 1: For any directed acyclic graph G=(V,E), and for any vertices i j V, ⊆ , the total number 
of paths from i to j in G is ( ( ))

,
I AG

i j
− −1 .

Proof: Applying this lemma, we can see that the total number of paths from i to j is

A
i j
t

t

n

,
=

−

∑
0

1

	

We claim that I-A(G) is full rank. The matrix A(G) is the adjacency matrix of a directed acyclic 
graph. Without loss of generality, a DAG never has an edge from i to j if j<i. Therefore, A(G) is a strict 
upper-triangular matrix with zeroes on its diagonal. This means that I-A(G) has ones all the way along 
its diagonal, so its determinant is one, proving that I-A(G) is full rank. By observation,

I I AG AG
t

n
t= −

=

−

∑( ( )) ( )
0

1

	

which is equivalent to

( ( )) ( )I AG AG
t

n
t− =−

=

−

∑1

0

1

	

Let P(G) = (I-A(G))-1 be the path counting matrix of G. To determine P(G)i,j we have to find a particu-
lar element of the inverse of I-A. By applying some elementary linear algebra, we know that solving the 
linear system (I-A)x=I_,j gives the column j of P, where I_,j is column j of the identity matrix. Cramer’s 
rule says that if Bx=b and det(B)≠0 then



136

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

x
det B
det Bi

=
( ')
( )

	

where B ' is B, except its ith column is replaced with b. Therefore if we replace the ith column of I-A with 
the jth column of the identity matrix and call the result then

P
det A
det I Ai j,

( )
( )

=
′
−

.	

By inspection, det(I-A)=1 so this simplifies toP det A
i j,

( )= ′ . We observe that this reasoning applies 
to finite fields as well. If we only want to know whether the number of paths from i to j is a multiple of 
p, then this expression simplifies to just

P det A modp
i j,

( )( )= ′ .	

If we know for a fact that there are either zero paths or exactly one path, then it is sufficient to com-
pute this determinant modulo two.

Once we know the branching program we want to evaluate, we can compute (I-A(G))-1 as defined in 
Corollary 1 to get a matrix such that its determinant is equal to f(x). We compute this matrix symboli-
cally for all x then plug in the values of the bits of x according to the formula to get the “literal” matrix. 
However, the server only gets the encrypted input bits, i.e. it receives the encryption of each bit of the 
input. The server can construct the matrix by replacing literal zero and one elements with encryptions of 
zero and one and replacing elements labeled with input bit indices with the appropriate input ciphertext, 
negating the ciphertext if the matrix calls for it. Negation of a ciphertext can be performed by adding 
1 (modulo 2) and is an efficient homomorphic operation. Hence the matrix in encrypted form can be 
efficiently computed from the encrypted input using homomorphic operations.

Recall our comparison example from Figure 9. We apply the preceding idea to obtain the corresponding 
matrix where the rank of the matrix will determine the output of the function. This matrix corresponding 
to the graph for 2-bit comparison is also displayed in Figure 9. We remark that this idea is inspired by 
the work of Ishai and Kushilevitz (Kushilevitz & Ishai, 2000).

Figure 9. Matrix representation of the Comparison Function.



137

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

Aggregation

Given the matrix representation of two inputs x1 and x2, computing the “AND” of f(x1) and f(x2) reduces 
to multiplying the matrices corresponding to the inputs, since

det(AB) = det(A)det(B)	

Recall that multiple data elements can be encrypted in a single ciphertext and SIMD-like operations 
can be performed homomorphically on the ciphertext. It would be highly desirable to pack multiple 
elements of the matrix in such a manner that would facilitate matrix multiplication.

A first approach would be to pack the elements of the matrix row-wise or column-wise. Consider 
the following two 3×3 matrices.

A

a a a

a a a

a a a

=













1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

, , ,

, , ,

, , ,


=











,
, , ,

, , ,

, , ,

B

b b b

b b b

b b b

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3



	

The product of these two matrices will be

C

a b a b a b a b a b a b a

=
+ + + +

1 1 1 1 1 2 2 1 1 3 3 1 1 1 1 2 1 2 2 2 1 3 3 2 1 1, , , , , , , , , , , , ,
bb a b a b

a b a b a b a b
1 3 1 2 2 3 1 3 3 3

2 1 1 1 2 2 2 1 2 3 3 1 2 1 1 2

, , , , ,

, , , , , , , ,

+ +
+ + +aa b a b a b a b a b

a b a b
2 2 2 2 2 3 3 2 2 1 1 3 2 2 2 3 2 3 3 3

3 1 1 1 3 2

, , , , , , , , , ,

, , ,

+ + +
+

22 1 3 3 3 1 3 1 1 2 3 2 2 2 3 3 3 2 3 1 1 3 3 2 2 3, , , , , , , , , , , , ,
+ + + + +a b a b a b a b a b a b a

33 3 3 3, ,
b













	

Suppose we packed the elements of A row-wise and B column-wise in the following manner.

Row a a a Col b b b

Row a

[ ] ( ) [ ] ( )

[ ] (
, , , , , ,

,

1 1

2
1 1 1 2 1 3 1 1 2 1 3 1

2 1

= =
= �� � ) [ ] ( � � )

[ ] ( � � )
, , , , ,

, , ,

a a Col b b b

Row a a a
2 2 2 3 1 2 2 2 3 2

3 1 3 2 3 3

2

3

=
= CCol b b b[ ] ( � � )

, , ,
3

1 3 2 3 3 3
=

	

Then using a single operation of Row[1]×Col[1] = (a1,1b1,1 a1,2b2,1 a1,3b3,1) which looks promising as 
they are required to compute C[1,1]. However HElib does not provide operations to directly sum the ele-
ments of a packed ciphertext. It is possible to use rotate and select operations to compute the first entry 
of the product matrix. However, this still does not give the product matrix in the same form directly as 
A or B so that we can continue multiplying with C to aggregate the next matrix. More homomorphic 
operations needs to be performed to bring C to that form. We instead propose a new representation that 
will allow easy multiplication of matrices and yields the product matrix in the same form.

We represent matrices as a list of vectors representing “diagonals” in the original matrix. More pre-
cisely, given a n×n matrix, we pack the elements into n ciphertexts, where the ith diagonal contains the 
elements (1,1 +(imodn)), (2,1 +(i+modn)), …, (n,1 +(i+n-1modn)). For any matrix A, let A{i} denote 
the ith diagonal. We only consider square matrices, so an n×n matrix has n diagonals.



138

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

In our 3×3 matrix A, the diagonals will be

A a a a

A a a a

A a a a

{ } ( )

{ } ( )

{ } ( )

, , ,

, , ,

, , ,

0

1

2

1 1 2 2 3 3

1 2 2 3 3 1

1 3 2 1 3 2

=
=
=

	

Given this representation, the matrix product C can be computed as follows

C A B A B A B

C A B A B

{ } { } { } { } { } { } { }

{ } { } { } { } { }

1 1 1 2 3 3 2

2 1 2 2 1

0 1 2

0 1

= + +

= + ++

= + +

A B

C A B A B A B

{ } { }

{ } { } { } { } { } { } { }

3 3

3 1 3 2 2 3 1

2

0 1 2

	

In this notation, concatenation indicates element-by-element multiplication, + indicates element-by-
element addition, and vi indicates the rotation of vector v by i elements, namely the sequence

[vi, vi+1, …, v1, …, vi-1}.	

We extend this formula to say that when C=AB and A and B are n×n matrices, then

C i A j B i j n
j

n
j{ } { } { ( mod )}= + −

=

−∑
1

11 	

HElib supports all of these operations efficiently, so this algorithm is much more efficient for com-
puting the product of matrices homomorphically. In more detail, each of the diagonals are encrypted 
into packed ciphertexts. Given two matrices encrypted in diagonal format, we can compute the product 
in diagonal format using HElib operations. An apparent disadvantage of this method is that while ho-
momorphic matrix multiplication has ∧ -depth 1 and its operations can be bundled together efficiently, 
it still requires many homomorphic multiplications. However, these can be done in parallel. Furthermore, 
if the matrices are of a special sparse form, we can multiply them more efficiently.

Post-Computation Phase

Recall that at the end of the Cloud Computation phase, after all the encrypted matrices are aggregated, 
the Cloud possesses a single matrix that contains the value of the aggregated output. This matrix is 
downloaded by the health provider, such as the doctor. Since the doctor has the private-key associated 
with the encryption scheme, it can decrypt the matrix. Finally, to compute the answer, the determinant 
of this matrix needs to be evaluated. The multiplication evaluates an AND operation, while we need the 
OR. Hence we consider the branching program for the function whose output is the negated output of 
the function f. This is denoted by¬f . Now we recast the original problem with f using¬f . More pre-
cisely,



139

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

ˆ ( , ) ( , )e f QT RR ì f QT RR
i i i i i i

= ¬ ¬( ) 	

A branching program for ¬f  is considered. This means upon receiving the final matrix, the deter-
minant is evaluated and the output is negated to obtain the precise answer to the computation.

OPTIMIZATIONS AND SCALABILITY

Our proposed approach works for any Boolean function that can be represented as a branching program. 
A branching program can compute any Boolean function by simply branching on all n input bits so that 
each of 2n inputs result in a unique path. The size of this program is exponential in n. However, we are 
interested in what functions are representable by polynomial-size branching programs. As we have already 
seen from Lemma 1, any logspace computations can be represented as a branching program and can 
encompass a wide variety of problems. Therefore, this approach can be used for any logspace comput-
able Boolean functions. The size of the matrix corresponds to the size of the graph. For the equation in 
our case study, we construct a branching program of size 600.

If A is a band matrix, then there is a small w such that all nonzero entries are within w diagonals of 
the main diagonal, and we can multiply matrices much more efficiently using operations on bundled 
plaintexts. This w corresponds to the width of the branching program. By Barrington’s theorem, any 
NC1 circuit can be converted into an equivalent branching program of polynomial size and width 5. For 
any such circuit, we can convert it into a band matrix with band width 10. If we pack each entire diago-
nal into one ciphertext, then we can represent matrices of arbitrary size with just 21 ciphertexts. After 
multiplying two matrices with band width 10, we get a matrix with band width 11, and after we multiply 
two matrices with band width 11, we get a matrix with band width 12, and so on. Therefore the resulting 
matrices remain extremely sparse, even when iteratively multiplying many matrices together. This means 
that we get the advantage of sparseness for every round of matrix multiplications, not just the first one.

We note that homomorphic evaluation and combining of branching programs can be supported for 
any branching program using only homomorphic matrix multiplication. It is therefore effective for the 
server to use highly-optimized software or even special hardware to enhance the efficiency of this op-
eration. The branching program we construct for our case study has width 10, and the corresponding 
band matrix has width 9.

PERFORMANCE EVALUATION

In this section, we will provide simulated results for our proposed method and will compare them to 
the circuit-based method, which will be referred to as the “naïve method.” Note that, while the circuit 
method allows a significantly more generalized application domain, we will demonstrate in this section 
that, once the function to achieve is very well defined (i.e., a Yes/No answer to a pre-determined ques-
tion), the branching-programs method (which will be referred to as the “matrix method” provides much 
more improved performance results.



140

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

Experimental Setup

In the previous section, we described our methodology. We compare the performance of our method with 
the naïve method of implementing the circuit that computes the function in entirety. We first describe 
the naïve method and how the two methods were compared.

Naïve Method

First, we explain how we use the SIMD-like operations in HElib. An example operation is shown in 
Figure 10, where two 4-bit numbers, A1=13 and B1=17 are compared. Simultaneously, two other 4-bit 
numbers A0=9 and B0=11 are compared. These two simultaneous comparisons are an example of how 
multiple identical operations can be performed in a SIMD environment as a benefit of the “packing” 
concept introduced previously.

Each individual operation, applied to Ai and Bi is a 4-bit SIMD addition, for which the circuit in 
Figure 6 can be used. Note that, this circuit is composed of only XOR and AND gates, since the NOT 
gates (i.e., inverters) can be implemented by XOR gates. The reason for restricting the set of available 
gates to only these two is previously mentioned: We are only using the GF(2) homomorphic addition and 
homomorphic multiplication operations, which correspond to bitwise XOR and bitwise AND operations, 
respectively. Therefore, drawing the circuit for any function we are trying to implement allows us to use 
two of the four previously mentioned HElib primitives.

A close observation of Figure 6 reveals that, just the bitwise XOR and AND operations will not be 
sufficient to perform the 4-bit comparison function, which can be denoted as

X Y x y x y e x y e e x y e e e> = ⊕ ⊕ ⊕( )3 3 2 2 3 1 1 3 2 0 0 3 2 1
	

In this formulation of the comparison of X and Y (i.e., computation of X>Y), when “slot indices” 
match for the bits of two numbers (e.g., x3 and y3), no rotation is necessary, however, we will use the 
previously mentioned second set of HElib operations, namely Rotate and Select) to perform alignment 
operations on the bits. In Figure 6, the output of the bottom inverter has no connection. The XOR and 
NOT gates connected to the Y0 node symbolically depict how SIMD operations actually perform these 

Figure 10. An example comparison of two 4-bit numbers.



141

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

extraneous operations, even though the result will not be used for anything useful. As shown in Figure 11, 
if we define an intermediate value M as the rotated versions of the E, where E is the equality. Therefore, 
E=XNOR(X,Y) and M=(1e3 e3e2 e3e2e1), where ei is the ith bit of E.

As can be intuitively visualized from Figure 11, the four operations we are using from HElib will be 
sufficient to calculate the M and E values, and, therefore the Boolean value of (X>Y).

To compute Equation (1), we need to compute QT3-RR and check whether it is positive or negative. 
We evaluate QT3 as follows. We first compute the n addends in computing QT2. This can be done by 
computing

Qi = (QT×QTi) ≪ i for i = 1,…,n	

where ≪ is the left-shift operator. This is the first step in the long-multiplication form of multiplication. 
Next we multiply each of these n addends by QT to obtain n2 addends required to compute QT3. More 
precisely,

Aj×n+i = (Qj×Qi) ≪ i for i = 1,…,n and j = 1,…,n	

Next we add the value ¬RR  and 1 as addends, i.e. A
n2 1+

 is set to the bitwise negation of RR. In 
two’s complement, these two final summands add up to -RR (the additive inverse of RR, not to be con-
fused with the bitwise negation of RR), so it is appropriate to include them as summands in order to 
subtract RR from QT3. To sum the n2+2 addends, we first reduce the number of addends by using a 3-2 
compressor. In more detail, this method replaces 3 addends with 2 addends using the following approach. 
Let a,b,c be three n-bit addends. We replace them by d and e where

d a b c

e a b b c c a

= ⊕ ⊕
= ∧ ⊕ ∧ ⊕ ∧ <<( ) 1

	

where each of the operations are done bitwise. The result of this computation reduces the problem of 
adding three n-bit numbers a,b,c to adding two n+1-bit numbers d and e. Given than we have n2+2 n-bit 
addends, we divide them into groups of 3 and perform this operation to get a total of 2 2 32



 +( )n p/  

addends, each n+1-bits long. We now repeat this process to get

Figure 11. Reformulating the X>Y operation in terms of an intermediate variable M



142

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

2
2 2 3

3

2








 +( ) /n p

p 	

addends where each addend is now n+2-bits long. We continue this process until we only have two 
n+O(log3/2n) -bit addends remaining. We then add them using a standard carry-look ahead adder which 
we describe next.

Let a and b be two m-bit numbers. In the ripple-carry adder, we first compute the propogate and 
generator bits

p a b= ∧ and g a b= ⊕ 	

where the operations are performed bit-wise. Next the carry bits c are computed bitwise

c g p c
i i i i+ = + ∧
1

	

where c1 is set to 0 and i=1,…,m. Finally the sum is calculated as

s p c
i i i
= ⊕ for i=1,…, m+1	

where pi+1 is set to 0. Computed this way, will lead to m cascading multiplications. However, by appro-
priately computing products of pi efficiently we can bring it down to logm cascading multiplications. In 
fact, this is what is done in a carry look-ahead adder.

Given this final sum s, to obtain the bit that represents whether QT3>RR is obtained by selecting the 
most significant bit of the s.

Matrix Method

For the ith input sample QTi and RRi that is provided in encrypted form, we first generate the matrix en-
coding in encrypted form. Given then matrices for all the samples, the aggregated output is simply the 
product of these matrices. To generate a matrix encoding, we need a branching program to computeQT3>R. 
Towards this we pursue the following approach:

We now describe how to construct the branching program and the ideas behind it. Suppose that the 
jth bit of QT is 1. Then we know that QT3≥23i. Therefore if any of the first 2n/3 bits of QT are set then 
the equation will be true, because the lowest value QT3 can take will be bigger than the largest value 
RR can take. By checking through the first 2n/3 bits sequentially we can determine whether this is the 
case. Now it remains to verify the equation when this is not the case. Here we need to compare the cube 
of the low order bits of QT with RR. Next we observe in a branching program consider a sequence of 
vertices reachable from the start vertex through exactly one path. This path can effectively “remember” 
the path that led up to them and therefore all the bits that were tested along that path in the sequence of 
vertices. This allows a branching program to simulate a table lookup. By branching on each of the 2n/3 
least-significant bits, we get a path for each value of QT below 2n/3. Once we have this there is a vertex 



143

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

for each possible value which remembers its associated QT value (and therefore know its associated QT3 
value). Next from each such vertex we scan through the bits of RR to determine which is larger. Next 
we explain how the comparison is performed in the last step.

Before we explain how to compare numbers in a branching program we will briefly recall how to 
compare numbers in plaintext, such as 254 and 249. Start from the most significant digit and look for 
the first difference in the digits of the two numbers. The result is determined by the first place where the 
digits differ, and if the digits never differ then the two numbers are equal. The first digits are the same 
so we look at the second digit. Five is more than four, so 254 > 249.

The diagram in Figure 12 contains an abbreviated form of the branching program x3<y for 9-bit in-
puts x and y. We use x and y to emphasize the fact that this is not the same circuit because we ignore the 
constant multiplicative factor to the right-hand side of the equation in the original formula. The leftmost 
vertex is the start vertex and the rightmost vertex is the end vertex. After traversing the edges labelled 
with x3=1, x2=0, and x1=1 (in that order) we know that x=5, so x3=125. We compare the bits of y with 
the bits of 125 from the most significant bit to the least significant bit. At the first difference in the bits 
of y and 125 we can determine the result, so if we’re comparing a particular bit we know that the higher 
order bits of y were the same as those in 125 (the two bit strings are equal so far). If a bit j is the first bit 
where y and 216 differ then we can determine which one is bigger: if yj=1 then x3>y, otherwise x3≤y. 
If the two bits are the same then we continue comparing them until we get to a difference, or until we 
get to the end. If the last bits are the same and none of the earlier bits are then x3=y, otherwise x3>y.

Similarly, after traversing the edges labeled with x3=1, x2=1, and x1=1 (in that order) we know that 
x=7, so x3=343. We can proceed in the same way with the different value of x3. Each path will compare 
y with a value of x3 “known” to that path.

Since we know the symbolic matrix, we can generate the packed ciphertexts homomorphically. This 
simply uses the rotate and select operations, and we need to generate only 10 packed ciphertexts for our 
branching program. We evaluate the product of the matrices using Equation. Computing each diagonal 
of the resulting matrix requires at most 10 rotate and 10 multiply operations and 10 additions.

Figure 12. Diagram of the Branching Program for computing 254 > 249 ?



144

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

Time Estimation via Simulation

Since the HElib library is not thread-safe, to compare the performance of the two approaches we simulated 
the computation to estimate the time taken on parallel machines. To accomplish this, we first performed 
real benchmarks of each individual operation on a single thread, and then used that time to estimate the 
computational costs for our parallel experiments. We set the length of QT and RR to be 16-bit.

Depth Calculation

In order to use HElib, we need to generate keys for the BGV encryption scheme for a particular level. 
The level determines the number of sequential multiplications we can perform.

In the naïve method, since we need to both calculate and aggregate the overall depth and for 16-bit 
inputs, the depth is 44. Aggregation requires logT multiplications for aggregating T samples. We per-
formed the experiment for T=1, 50, 100, 500, and 1000. Depending on the value of T we instantiated 
the BGV scheme appropriately.

In the matrix method, there is no multiplication involved in setting up the matrix and only the ag-
gregation involves multiplication. Since every matrix multiplication involves only one sequential mul-
tiplication, the overall depth to aggregate and compute is simply logT = 12.

Then we wrote a compiler that took a sequence of operations to be performed on the samples and 
used a greedy heuristic to assign the computations to the different parallel processors taking into ac-
count the dependencies. The greedy heuristic maintains a list of free processors and assigns the next 
computation to the first available processor in the list. A clock was simulated to determine when the 
next processor will be available and accordingly the list was updated. In our estimate we assumed that 
each parallel machine had instantaneous access to the input encryptions and results of computations 
from other machines. We deliberately ignored the data transfer and sharing costs since it would be hard 
to assess and incorporate. Nevertheless, we argue that the estimates are conservative in the sense that 
the naïve method requires a lot of data transfers since it involves more dependencies, while the proposed 
approach will have significantly less and taking into account the data transfer costs will only improve 
the relative timing of our approach.

Results

To evaluate our approach we considered processing and aggregating several different numbers of 
samples. In Figure 13, we provide our results for processing 10 and 10240 samples. We can see that 
both approaches improve with the number of processors. However, the matrix approach is consistently 
better than the naïve approach by a factor of 20. The main reason for this is that the cost of computa-
tion increases exponentially with the depth of the computation and the depth of the naïve approach is 
significantly higher than that of the matrix approach. One tradeoff that is not represented in the graph 
is the amount of network bandwidth used. The communication from the patient’s end will be the same 
for both approaches, but at the doctor’s end, an entire matrix (i.e. roughly 20 ciphertexts will have to be 
downloaded in our approach while only 1 ciphertext will need to be downloaded in the naïve approach. 
However, in our application, this will only be done once every day (or few hours), so this should not be 
a significant problem. Another difference with the matrix approach is that the doctor’s computer must 
compute the determinant of the decrypted matrix in order to get the result; in the naïve approach, the 
result will be directly available (or be a simple “OR” of the decrypted bits).



145

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

CONCLUSION AND FUTURE WORK

Medical cloud computing is the unstoppable next revolution in healthcare. However, its widespread 
adoption depends on addressing Protected Health Information (PHI) privacy issues during its acquisi-
tion, storage and processing. The system described by the authors before and expanded in this paper 
provides a way to completely solve data privacy issues while the patient medical data is being stored and 
processed in the cloud. The enabling component of this system, Fully Homomorphic Encryption (FHE), 
creates a computational environment, where it is possible to compute on encrypted data. Data privacy 
issues are automatically eliminated when the only information that is available during transmission and 
processing is encrypted by a provably secure encryption mechanism.

Despite this unparalleled advantage of FHE, its intense computational requirements make it appli-
cable to only a limited set of medical applications. While extensive research is underway to speed up 
generalized FHE, in this chapter, we focused on a specific cloud computing scenario, where the goal of 
computation is to detect a set of known cardiac hazard conditions from streamed ECG data. This ECG 
data, streamed from the patient’s house through ECG patches into the cloud, allows long term health 
monitoring for certain cardiac conditions that are very hard (if not impossible) to detect at a healthcare 
organization (HCO). Additionally, allowing monitoring outside the HCO has a significant cost-saving 
and improved diagnosis potential due to the additional information that is being provided to the health-
care professionals.

Figure 13. Simulated computation time for matrix method vs. naïve method of Long QT detection. The 
matrix method is consistently about 20x faster.



146

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

In this chapter, an extensive analysis and evaluation of the application of FHE into long term healthcare 
monitoring is presented. Rather than using a circuit-based approach to evaluate the required functions for 
monitoring, a Branching Programs (BP) based approach is investigated. While the BP approach narrows 
the application area of FHE, it is shown that it promises a significant speed up for detection applications, 
where the required result is a Yes/No Boolean value. A Branching Program model is developed in this 
chapter which detects the Long-QT Syndrome (LQTS) from a set of streamed ECG interval data. A 20x 
speed-up is observed as compared to the circuit-based methods. This is a promising step towards improv-
ing the speed of FHE, which can eventually become a key ingredient of future medical applications.

The solution presented in this chapter detects LQTS by using a formula QT RR
c
3 2> , which is re-

stricted to the QTc value of 0.5 (i.e., 500 ms). Research is underway to generalize this to a broad set of 
potential QTc values that are of clinical relevance, such as 450 ms or 470 ms. Although it looks like a 
simple extension of the existing work, arbitrarily changing the comparison value requires the re-con-
struction of the Branching Program, and, therefore, is the focus of our future work.

ACKNOWLEDGMENT

This work was supported in part by the National Science Foundation grant CNS-1239423 and a gift 
from Nvidia Corporation.

REFERENCES

Alling, A., Powers, N., & Soyata, T. (2015). Face Recognition: A Tutorial on Computational Aspects. 
In Emerging Research Surrounding Power Consumption and Performance Issues in Utility Computing. 
Hershey, PA: IGI.

Badilini, F. (1998). The ISHNE Holter Standard Output File Format. Annals of Noninvasive Cardiol-
ogy, 263-266.

Barrington, D. (1989). Bounded-Width Polynomial Size Brancing Programs Recognized Exactly Those 
Languages in NC1. Journal of Computer and System Sciences, 38(1), 150–164. doi:10.1016/0022-
0000(89)90037-8

Boneh, D., Goh, E.-J., & Nissim, K. (2005). Evaluating 2-DNF Formulas on Ciphertexts. Proceedings 
of the 2nd International Conference on Theory of Cryptography, (pp. 325-341). doi:10.1007/978-3-
540-30576-7_18

Brakerski, Z., Gentry, C., & Vaikuntanathan, V. (2012). Leveled Fully Homomorphic Encryption without 
Bootstrapping. Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, (pp. 
309-325). doi:10.1145/2090236.2090262

Brakerski, Z., & Vaikuntanathan, V. (2011). Efficient Fully Homomorphic Encryption from Standard 
LWE. Foundations of Computer Science, 97-106.

CR2032. (n.d.). Retrieved from http://en.wikipedia.org/wiki/CR2032_battery



147

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

CardioLeaf-Pro. (n.d.). Retrieved from http://www.clearbridgevitalsigns.com/

Couderc, J. (2010). The telemetric and holter ECG warehouse initiative (THEW). A data repository 
for the design, implementation and validation of ECG-related technologies. Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society (EMBC), 6252-6255. doi:10.1109/
IEMBS.2010.5628067

Damgard, I., Jurik, M., & Nielsen, J. B. (2010). A Generalization of Paillie’s Public Key System with 
Applications to Electronic Voting. International Journal of Information Security, 9(6), 371–385. 
doi:10.1007/s10207-010-0119-9

DARPA-PROCEED. (n.d.). Retrieved from DARPA-PROCEED: http://www.darpa.mil/Our_Work/I2O/
Programs/PROgramming_Computation_on_EncryptEd_Data_(PROCEED).aspx

Diffie, W., & Hellman, M. (1976). New directions in cryptography. IEEE Transactions on Information 
Theory, 22(6), 644–654. doi:10.1109/TIT.1976.1055638

Dijk, M., Gentry, C., Halevi, S., & Vaikuntanathan, V. (2010). Fully Homomorphic Encryption over the 
Integers. Advances in Cryptology (EUROCRYPT), 24-43.

El Gamal, T. (1985). A Public Key Cryptosystem and a Signature Scheme based on Discrete Logarithms. 
IEEE Transactions on Information Theory, 31(4), 469–472. doi:10.1109/TIT.1985.1057074

Fridericia, L. S. (1920). Die Systolendauer im Elektrokardiogramm bei normalen Menschen und bei 
Herzkranken. Acta Medica Scandinavica, 53(1), 469–486. doi:10.1111/j.0954-6820.1920.tb18266.x

Gentry, C. (2009). A Fully Homomorphic Encryption Scheme. Stanford University.

Gentry, C., Halevi, S., & Smart, N. (2012). Homomorphic Evaluation of the AES Circuit. In R. Safavi-
Naini & R. Canetti (Eds.), Advances in Cryptology – CRYPTO 2012 (Vol. 7417, pp. 850–867). Springer 
Berlin Heidelberg. doi:10.1007/978-3-642-32009-5_49

Goldreich, O. (2008). Computational complexity - a conceptual perspective. London: Cambridge Uni-
versity Press. doi:10.1017/CBO9780511804106

Goldwasser, S., & Micali, S. (1982). Probabilistic Encryption - How to Play Mental Poker Keeping Secret 
all Partial Information. Proceedings of the 14th Annual ACM Symposium on Theory of Computing, (pp. 
365-377). doi:10.1145/800070.802212

Good, S. (2013). Why Healthcare Must Embrace Cloud Computing. Forbes.

Halevi, S., & Shoup, V. (2014). Algorithms in HElib. Proceedings, Part I, Advanced in Cryptology - 
CRYPTO 2014 - 34th Annual Cryptology Conference, (pp. 554-571). Santa Barbara, CA. doi:10.1007/978-
3-662-44371-2_31

HElib. (2014). HElib Fully Homomorphic Encryption Library. Retrieved from http://www.github.com/
shaih/HElib

HIPAA. (2014). Retrieved from http://www.hhs.gov/ocr/privacy/

iPhone5s. (n.d.). Retrieved from http://www.anandtech.com/print/7335/the-iphone5s-review



148

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

Ishai, Y., & Paskin, A. (2007). Evaluating Branching Programs on Encrypted Data. Theory of Cryptog-
raphy, 4th Theory of Cryptography Conference, (TCC) 2007, (pp. 575-594). Amsterdam.

Kocabas, O., & Soyata, T. (2014). Medical Data Analytics in the cloud using Homomorphic Encryp-
tion. In P. R. Deka (Ed.), Handbook of Research on Cloud Infrastructures for Big Data Analytics (pp. 
471–488). Hershey, PA: IGI Global; doi:10.4018/978-1-4666-5864-6.ch019

Kocabas, O., Soyata, T., Couderc, J.-P., Aktas, M., Xia, J., & Huang, M. (2013). Assessment of Cloud-based 
Health Monitoring using Homomorphic Encryption. Proceedings of the 31st IEEE International Confer-
ence on Computer Design (ICCD), (pp. 443-446). Ashville, VA, USA. doi:10.1109/ICCD.2013.6657078

Kushilevitz, E., & Ishai, Y. (2000). Randomizing Polynomials: A New Representation with Applications 
to Round-Efficient Secure Computation. 41st Annual Symposium on Foundations of Computer Science 
(pp. 294-304). Redondo Beach: ACM.

Kwon, M. (2015). A Tutorial on Network Latency and its Measurements. IGI Global.

Kwon, M., Dou, Z., Heinzelman, W., Soyata, T., Ba, H., & Shi, J. (2014). Use of Network Latency Profil-
ing and Redundancy for Cloud Server Selection. Proceedings of the 7th IEEE International Conference 
on Cloud Computing (IEEE CLOUD 2014), (pp. 826-832). Alaska. doi:10.1109/CLOUD.2014.114

NIST-AES. (2001). Advanced encryption standard. AES.

Page, A., Kocabas, O., Ames, S., Venkitasubramaniam, M., & Soyata, T. (2014). Cloud-based Secure 
Health Monitoring: Optimizing Fully-Homomorphic Encryption for Streaming Algorithms. IEEE Glo-
becom 2014 Workshop on Cloud Computing Systems, Networks, and Applications (CCSNA). Austin, TX.

Page, A., Kocabas, O., Soyata, T., Aktas, M., & Couderc, J.-P. (2014). Cloud-Based Privacy-Preserving 
Remote ECG Monitoring and Surveillance. Annals of Noninvasive Electrocardiology. doi:10.1111/
anec.12204 PMID:25510621

Paillier, P. (1999). Public Key Cryptosystems Based on Composite Degree Residuosity Classes (pp. 
223–238). Advances in Cryptology. doi:10.1007/3-540-48910-X_16

Patel, C. D., & Shah, A. J. (2005, June). Cost Model for Planning, Development and Operation of a Data 
Center. Retrieved from http://www.hpl.hp.com/techreports/2005/HPL-2005-107R1.pdf

Powers, N., Alling, A., Gyampoh-Vidogah, R., & Soyata, T. (2014, Dec). AXaaS: Case for Acceleration 
as a Service. IEEE Globecom 2014 Workshop on Cloud Computing Systems, Networks, and Applications 
(CCSNA). Austin, TX.

Priori, S. G., Bloise, R., & Crotti, L. (2001). The long QT syndrome. Europace, 3(1), 16–27. doi:10.1053/
eupc.2000.0141 PMID:11271945

Reichman, A. (2011). File storage costs less in the cloud than in-house. Forrester.

Rivest, R., Adleman, L., & Shamir, A. (1978). A method for obtaining digital signatures and public-key 
cryptosystems. Communications of the ACM, 21(2), 120–126. doi:10.1145/359340.359342

SalesForce.com. (2014). Retrieved from http://www.salesforce.com



149

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

Sander, T., Young, A. L., & Yung, M. (1999). Non-Interactive CryptoComputing For NC1. 40th An-
nual Symposium on Foundations of Computer Science (pp. 554-567). New York: ACM. doi:10.1109/
SFFCS.1999.814630

Shah, R. (2004). Drug-induced QT interval prolongation: Regulatory perspectives and drug development. 
Annals of Medicine, 36(S1), 47–52. doi:10.1080/17431380410032445 PMID:15176424

Smart, N. P., & Vercauteren, F. (2014). Fully homomorphic SIMD operations. Designs, Codes and 
Cryptography, 71(1), 57–81. doi:10.1007/s10623-012-9720-4

Soyata, T., Ba, H., Heinzelman, W., Kwon, M., & Shi, J. (2013, Sep). Accelerating Mobile Cloud Com-
puting: A Survey. In H. T. Mouftah & B. Kantarci (Eds.), Communication Infrastructures for Cloud 
Computing (pp. 175–197). Hershey, PA: IGI Global.

Soyata, T., & Friedman, E. G. (1994). Retiming with Non-Zero Clock Skew, Variable Register and Inter-
connect Delay. Proceedings of the IEEE Conference on Computer-Aided Design (ICCAD), (pp. 234-241).

Soyata, T., Friedman, E. G., & Mulligan, J. H. (1997, January). Incorporating Interconnect, Register, and 
Clock Distribution Delays into the Retiming Process. IEEE Transactions on Computer-Aided Design of 
Integrated Circuits and Systems, 16(1), 105–120. doi:10.1109/43.559335

Soyata, T., Muraleedharan, R., Ames, S., Langdon, J. H., Funai, C., Kwon, M., & Heinzelman, W. B. 
(2012, May). COMBAT: Mobile Cloud-based cOmpute/coMmunications infrastructure for BATtlefield 
applications. Proceedings of the Society for Photo-Instrumentation Engineers, 8403, 84030K–84030K, 
84030K-13. doi:10.1117/12.919146

Soyata, T., Muraleedharan, R., Funai, C., Kwon, M., & Heinzelman, W. (2012, Jul). Cloud-Vision: Real-
Time Face Recognition Using a Mobile-Cloudlet-Cloud Acceleration Architecture. Proceedings of the 
17th IEEE Symposium on Computers and Communications (IEEE ISCC 2012), (pp. 59-66). Cappadocia, 
Turkey. doi:10.1109/ISCC.2012.6249269

TI-MSP430. (n.d.). Overview for MSP430F1x. Retrieved from http://www.ti.com/lsds/ti/
microcontrollers_16-bit_32-bit/msp/ultra-low_power/msp430f1x/overview.page

Wang, H., Liu, W., & Soyata, T. (2014, Mar). Accessing Big Data in the Cloud Using Mobile Devices. In 
P. R. Chelliah & G. Deka (Eds.), Handbook of Research on Cloud Infrastructures for Big Data Analytics 
(pp. 444–470). Hershey, PA: IGI Global. doi:10.4018/978-1-4666-5864-6.ch018

KEY TERMS AND DEFINITIONS

Additive Homomorphism: A type of homomorphism, where addition operations on unencrypted 
data correspond to the same addition operations in the encrypted version. There are many encryption 
mechanisms which are additively homomorphic, but not multiplicatively homomorphic.

Band Matrix: A type of matrix where only the main diagonal and a band of “d” additional diago-
nals above and below the main diagonal are non-zero. The rest of the matrix is made up of zeros. For 
example, assume an NxN matrix consisting of N2 elements, where only the diagonal is non-zero. Then, 
N elements are non-zero and N2-N elements are zero. If the “band” extends one diagonal above and 



150

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

below the main diagonal, then, N+2*(N-1) = 3N-2 elements will be non-zero, and N2-(3N-2) elements 
will be zero. One can extend the band to the point, where there are N-1 bands, at which point the entire 
matrix is non-zero (i.e., N2 elements), and it is no longer a band matrix.

BGV Scheme: An FHE scheme that was introduced by three researchers, Brakerski, Gentry, and 
Vainkuntanathan, which introduces many optimizations to the original Gentry FHE scheme. One of the 
most important optimizations is the adoption of a SIMD-like processing structure.

Branching Program: A branching program is a computational model, where the decisions that start 
from a starting node “s” and end up at a terminal node “t” are modeled as branches.

Ciphertext: The encrypted message. In the case of FHE, a plaintext has multiple slots, corresponding 
to multiple messages, however, the encrypted message (i.e., the ciphertext) bits or the locations of the 
encrypted bits are no longer recognizable due to the way FHE encrypts each slot.

Circuit Model: A computational model, where each operation performed on data elements is repre-
sented as one of the circuit elements, such as, XOR gates, AND, OR, NOT gates.

Cramer’s Rule: This rule can be used to determine the value of a specific a variable Xi in the systems 
of equations AX=B, where A is an NxN square matrix, and XT and B are column vectors. To calculate 
Xi, it suffices to calculate det(Ai)/det(A), where det(A) is the determinant of the entire A matrix, and 
det(Ai) is the determinant of the same A matrix where the ith column is replaced with the B matrix.

Determinant of a Matrix: Denoted as det(A) which is the determinant of an NxN square matrix A, 
det(A) contains crucial information about a matrix. For example, if det(A) is zero, this matrix is singular, 
i.e., it does not represent a solution that is unique for the underlying system of linear equations. Addition-
ally, the determinant can be used to calculate the value of a vector using the Cramer’s rule.

Directed Acyclic Graph (DAG): A type of graph which does not contain any cycles (i.e., nodes that 
start and terminate at the same vertex). Each edge in this graph is directed, i.e., it goes from one specific 
vertex into another specific vertex.

ECG Patch: A sensor attached to the patient to collect ECG data. This device attaches to the body, 
typically close to the heart, and provides data to a recorder and/or monitoring device.

Electrocardiogram (ECG): The diagram produced by an ECG machine by turning the voltages in 
the body, produced by heartbeats, into sketches on an ECG paper. This provides quick visual information 
for the operation of the patient’s heart.

Fully Homomorphic Encryption (FHE): The encryption mechanism that achieve both additive 
and multiplicative homomorphism. With this type of encryption, it is possible to perform an arbitrary 
sequence of operations, since addition and multiplication operations are sufficient to represent any form 
of computation which can be written in terms of these two fundamental operations. Therefore, FHE 
can be used to perform operations at an arbitrary complexity on encrypted data, without observing the 
underlying data.

Galois Field 2-GF(2): The field of integer numbers, containing only 2 numbers, 0 and 1. Any 
operation performed in this field can only produce one of two values, 0 and 1. For more sophisticated 
computations spanning far beyond a single bit, a careful planning of the operations is necessary to route 
the carry from one bit to the neighboring bits.

HElib: An FHE library based on the BGV scheme which introduces SIMD type operation on en-
crypted data. These operations are ADD, MULTIPLY, SHIFT, and BIT SELECT. By using these SIMD 
operations, a more generalized set of operations can be performed. SIMD nature was introduced to 
HElib to drastically speed up the FHE execution, since the original version was too slow to be practical.



151

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

Homomorphic Encryption (HE): A public key encryption algorithm where addition or multiplication 
operations in the “unencrypted domain” correspond to the identical addition or multiplication operations 
in the “encrypted” domain, thereby making it possible to compute on encrypted data. However, in HE, 
both addition and multiplication operations do not necessarily correspond to the same operations in their 
encrypted version simultaneously.

Log-Space Computation: In computational complexity, Log-space class constitutes a class of prob-
lems requiring log(N) space for N entries.

Long QT Syndrome (LQTS): The symptom of prolonged QT interval. This is an indicator of incor-
rect heart operation. When corrected QTc values are used, the variation among different people should 
be small. This allows the definition of “safe” QTc values. Typically, values under 500 ms are acceptable, 
although 440 ms is typically considered a good QTc value. Patients with values over 500 ms are under 
risk of serious cardiac hazards.

Message: A string of bits constituting a certain amount of information to send. Depending on the 
type of encryption, bit of this message could have different locations in its encrypted version. A message 
gets encrypted and decrypted during secure transportation.

Multiplicative Homomorphism: A type of homomorphism, where multiplication operations on 
unencrypted data correspond to the same multiplication operations in the encrypted version. There are 
many encryption mechanisms which are multiplicatively homomorphic, but not additively homomorphic.

NC1 Circuits: In complexity theory, NC class (Nick’s class) is a class of problems which can be 
solved in poly-logarithmic time, O(logcN) by using polynomial computational elements, O(Nk). NC1 
specifically implies that, a circuit of depth log(N) can be solved in O(Nk) time.

Plaintext: The bit stream containing the unencrypted message. In the case of FHE, a plaintext has 
multiple slots, which correspond to multiple messages, not necessarily the same quantity.

Public-Key Encryption: An encryption type, where a public key and private key pair are required 
for the encryption and decryption to work. Public key is known to everyone, whereas the private key 
is only known to parties that are receiving secret messages through encryption. While encryption is 
possible by anyone by using the public key, decryption is only possible when the private key is known.

QT Interval: The QT interval of each heartbeat delineates the ventricular recovery phase of the heart.
QTc Value: A corrected version of the QT interval, which adjusts for heart rate. Bazett suggested 

almost 100 years ago to use QTc=QT/√RR . This is known as Bazett’s formula. However, an alterna-
tive suggestion from Fridericia proved to be more accurate for a wider range of heart rates. Fridericia’s 
equation has the same form as Bazett’s, but replaces the square root of RR with the cube root. These 
two formulas can be written as: QTcB = QT/(RR/sec)½ QTcF = QT/(RR/sec)⅓. The divisions of RR by 
1 second are in place to preserve units between QT and QTc.

RR Interval: The interval between two adjacent R points in an ECG waveform. Since the heart beat 
is periodic, 60/RR gives the heart rate in beats per minute.

Single Instruction Multiple Data (SIMD): A computational mechanism, where a single instruc-
tion (e.g., ADD) is applied to a set of data, (e.g., 128). This type of computation requires an underlying 
computer architecture that is suitable for executing such SIMD instructions. Also, the type of problems 
that are suitable to this type of computation are limited. Image Processing operations fit perfectly to 
this model.



152

Secure Health Monitoring in the Cloud Using Homomorphic Encryption
﻿

Telemetric and Holter ECG Warehouse (THEW): A warehouse of ECG data from healthy patients 
and patients with various cardiac conditions, such as Long QT Syndrome, LQTS1, LQTS2. This data 
consists of 24 to 48 hour Holter monitoring. In this chapter, ECG data from THEW is used as simulated 
patient data.

Torsades de Pointes (TdP): A heart failure (arrhythmia) that can cause death. The risk of TdP 
increases with LQTS.


