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ABSTRACT

Face recognition is a sophisticated problem requiring a significant commitment of computer resources. 
A modern GPU architecture provides a practical platform for performing face recognition in real time. 
The majority of the calculations of an eigenpicture implementation of face recognition are matrix mul-
tiplications. For this type of computation, a conventional computer GPU is capable of computing in 
tens of milliseconds data that a CPU requires thousands of milliseconds to process. In this chapter, we 
outline and examine the different components and computational requirements of a face recognition 
scheme implementing the Viola-Jones Face Detection Framework and an eigenpicture face recognition 
model. Face recognition can be separated into three distinct parts: face detection, eigenvector projec-
tion, and database search. For each, we provide a detailed explanation of the exact process along with 
an analysis of the computational requirements and scalability of the operation.

INTRODUCTION

The ability of human beings to detect and recognize objects in our surroundings is currently unmatched 
by even the most powerful computer. We are able to nearly instantly and effortlessly recognize objects, 
even if we have only seen them once, or only heard a description, beforehand. We can tell the difference 
between very similar objects, and determine what we are looking at when it is rotated, or even partially 
obscured. Perhaps most impressively, we can pick out the subtle differences required to recognize other 
humans with only a quick glance.
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A computer is far less capable of the same feats of object recognition. Where man can instinctively 
learn to recognize new objects and people, a computer must complete a much more arduous process. A 
computer must be explicitly taught exactly what it is looking for. Generally, this requires many images 
of an object to be compiled and analyzed. After that, new instances of the object can be found by the 
computer. For complex objects (such as a human face) this is far easier said than done. There are tens or 
hundreds of small details that make up the visual identity of an object. Figuring out which ones to focus 
on and analyze is not always straightforward. Actually picking them out of a sample image can be very 
computationally demanding for complex objects.

There are two separate, but related parts of this problem: face detection and face recognition. Detec-
tion is finding any and all human faces in an image. Exactly whose face it is doesn’t matter. Recognition, 
conversely, is connecting a specific name to a specific face. These two operations together are what allow 
a computer to pick a face out of an image and identify them.

FACE RECOGNITION PROBLEM

A facial recognition application is a computer program that identifies faces in a scene presented to it 
and matches them to its own database of people. This type of application was once considered one of 
the most difficult to achieve goals in the field of computing, though significant strides have been made 
since the early days of computer vision. There are many different schemes available for computer object 
recognition. There are two broad categories of objection recognition methods, which have some overlap. 
They are photometric (appearance) based methods and geometric (feature) based methods. Photometric 
applications use things like skin color and a person’s contrast with the image background to aid in face 
recognition. A simple method based on features is edge-detection, finding discontinuities in image 
brightness or color and comparing them to a database. Many other recognition algorithms are based on 
this same idea: finding regularities (or irregularities) in an image, and comparing them to a database. 
Many different types of features can be picked out and compared. Edges, corners, and ‘blobs’ are the 
three main types. The most diverse type is blob detection, where a blob is a region of a picture with a 
consistent property (color, intensity, etc.) that differs from the surrounding regions (Lindeberg, 1991).

In the mid 1960’s, the first successful face recognition system was developed by Woodrow Wilson 
Bledsoe. It was almost entirely a manual operation where a worker would have to record the coordinates 
of facial features such as the center of each eye, the tip of the nose, and so on. On average, each face’s 
dataset could be recorded in about 90 seconds (FBI, 2011). A computer was then used to determine 
which face from the database most closely matched the new face. In the 1970’s, Goldstein, Harmon, 
and Lesk created a similar system based on features such as hair color and lip thickness (Goldstein, 
Harmon, & Lesk, 1987). Truly autonomous face recognition quickly gained steam after that. In 1988, 
the eigenface method was developed by Lawrence Sirovich and Michael Kirby. Their algorithm using 
Principle Component Analysis is still one of the primary methods for real time face recognition (Sirovich 
& Kirby, 1987). In recent years its accuracy in varied lighting and angle settings has been surpassed; but 
it is still one of the best freely available algorithms capable of running in real time.

Recognizing faces in real time is a difficult task because of the complexity of categorizing the fea-
tures of a human face. Detecting those faces in large images is difficult because of the large amount of 
background data that has to be sifted through. The first face detection algorithm capable of operating 
in real time was developed in 2001 by Paul Viola and Michael Jones. The Viola-Jones object detection 
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framework is still today considered both the fastest and most accurate face detection algorithm. It is the 
algorithm in use on nearly every smart phone and camera capable of detecting faces.

The structure of the complete face recognition application contains three steps, and utilizes two of 
the aforementioned methods. The first being face detection, followed by the related operations of projec-
tion and database search. The Viola-Jones detection method is capable of quickly locating the general 
features in an image (such as eyes and a nose), but is not able to match these features to a specific per-
son. As such, it is capable of finding the faces present in an image, but it is not capable of recognizing 
a specific person (Viola & Jones, 2001). Conversely, the eigenface recognition method is specifically 
made to compare and contrast individual faces. However, it requires these faces in a consistent format, 
and is not able to work with a face before it has been cropped from a complex scene. As such, these two 
methods complement each other and are used together.

The initial face detection is therefore done with the Viola-Jones object detection framework. The 
detected faces are cropped from the image, and handed off to the eigenface framework. The eigenface 
work done can be split into two operations. The first is projecting the detected faces into an eigenvector. 
This is done with a computationally intensive set of matrix multiplication. The final step is to compare 
the eigenvector with the precompiled database of eigenfaces, and determine which original face the new 
image most closely resembles. When the complete face recognition application is split up like this, the 
three components can be referred to as Face Detection (FD), Projection (PJ), and Search (S).

FACE DETECTION (FD)

The Viola-Jones object detection framework was proposed in 2001 by Paul Viola and Michael Jones, and 
is the first object recognition algorithm considered capable of operating in real time. It is, essentially, 
a type of blob detection algorithm. This implementation of blob detection utilizes Haar-like features, 
which are pixel intensity sums and differences between rectangular sections of an image (named for their 
similarity to Haar wavelets). More simply, objects have consistent areas where color intensity changes 
by a known amount. By finding these same changes in a sample image, an object can be recognized 
(Papageorgiou, Oren, & Poggio, 1998). The Viola-Jones framework operates on this same principle, in 
a slightly more complex form. The features are combinations of multiple rectangular sections. Known 
patterns of features can be found in the image and be identified as known pieces of the image database 
(such as eyes, cheeks, etc.).

The framework has three key features that allow it detect faces with a high success rate in real time, 
as follows:

•	 Integral Image: A method for representing the sum intensity of subsets and features of an image 
in an efficient format.

•	 Face Feature Classifiers: A strong classifier is constructed from multiple weak classifiers that 
recognize Haar-like features.

•	 Cascade Classifiers: Negative areas are ruled out quickly while possible faces are more rigor-
ously tested.

Another name for an integral image is a summed area table. It is a data representation that allows 
values of a rectangular subset of an image or grid to be summed efficiently (Crow, 1984). In the context 
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of face detection, the value of a given point is the sum of all the pixel intensity values above and to the 
left of the point. The entire summed area table can be computed easily, as each point can be found by 
adding its value to the summed areas of the points directly above it and to the left of it, and subtracting 
their overlap. Once the table is complete, any rectangle’s sum can be found with just four values. The 
shaded rectangle in the image below can be summed by adding the area value of point C to point A, and 
subtracting both B and D, as shown in Figure 1. This operation takes a constant amount of time regard-
less of the size of the area summed.

As the Haar-like features used by the Viola-Jones algorithm are all combinations of two, three, or four 
equally sized rectangles sharing edges together, their intensity sums and differences can be calculated 
very quickly (Yang, Kriegman, & Ahuja, 2002) . The main mechanism by which the framework functions 
is the use of classifiers and Haar like features. To detect a face in a sample image, simple rectangular 
features characterizing a face are located. There are many tens of thousands of possible Haar features, 
but a much smaller number are useful in detecting a face. To determine which features are used, a variant 
of the machine learning algorithm AdaBoost (Adaptive Boosting) is used. It combines multiple weak 
classifiers and iterates through them, forming a single strong classifier by creating a weighted average 
(Freund, Schapire, & Abe, 1999). Once classifiers are trained, a small set of Haar features can be located 
in a sample image. Shown in Figure 2 are two of the best face identification features, recognizing that 
eyes are darker than the cheeks below them or the bridge of the nose between them. These two features 
can successfully identify almost 100% of faces in images. Unfortunately, they are broad enough to apply 
to many images that don’t have any faces to detect; upwards of 40% (Viola & Jones, 2001).

The key feature of the Viola-Jones object detection framework is the Classifier Cascade (Cho, Mirzae, 
Oberg, & Kastner, 2009). Further performance improvements are realized by using an attentional cas-
cade algorithm which orders many classifiers by increasing complexity. After the first wave of facial 
feature detections, the possible faces are handed to the next set of Haar feature classifiers. Windows 
from the picture that are determined not to contain a face are discarded, and those that may contain a 
face are passed to the next stage of the pipeline. This allows the framework to operate in real time via 
early rejection of non-objects and the focusing of more complex classifiers on only relevant data. Each 
classifier is more sophisticated than the last, but has to operate on less and less of the data. The number 
of stages required in the pipeline is determined by the required false positive and false negative ratings. 
Thirty or so stages are sufficient to reduce false positives to less than 1% of images while maintaining 

Figure 1. The sum pixel intensity of the shaded rectangle can be computed with only 4 stored values
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around a 99% detection rating (Soyata T., Muraleedharan, Funai, Kwon, & Heinzelman, 2012). Upon 
completion, the detection function forms an indexed list of rectangles containing each face in a given 
source frame and returns the number of faces detected in the frame (if there are any).

PROJECTION (PJ)

Complementing the face detection algorithm is the eigenface recognition algorithm. It is an appearance 
based face recognition method, and was first developed in 1987 by Lawrence Sirovich and Michael 
Kirby and expanded upon by Matthew Turk and Alex Pentland (Turk & Pentland, 1991). The eigenface 
method works by reducing a set of database images into a set of basis images. These images (known as 
eigen-images or eigen-faces) can be combined linearly in order to recreate an image of a human face. 
New images can be projected into the same eigen-space. It is this which allows faces to be recognized 
by this method.

There is a large amount of information in a picture of a human face, even after it has been cropped 
by a face detection algorithm. Much of the information encoded in the picture is useless or redundant 
for recognizing a face. To reduce an image down to what is required to recognize the face, the eigenface 
recognition model is used. The database of training images of people that the system is meant to know 
are turned into eigenfaces, as are any test images the user wants recognized. The operation that creates 
these eigenfaces is Principle Component Analysis (PCA) (Kim, Jung, & Kim, 2002), and is referred to 
as Projection.

Figure 2. Two Haar features that recognize the eyes and the nose, respectively
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PCA is a statistical operation that converts a conventional dataset into a dataset of variables that are 
linearly uncorrelated (Pearson, 1901). When used to create a low dimensional representation of a set 
of faces, the basis vectors formed are called eigenfaces. After PCA is done on the training images, the 
resulting eigenfaces can be linearly combined to recreate any of the original images, and (theoretically) 
any other human face. A face can therefore be represented by an array of values (which are eigenvalues) 
that represent the weight each eigenface holds when combining them into the face. For example, a given 
set of faces might be re-represented using the near-orthogonal Eigenfaces as follows:

Face1: 0 25 1 0 12 2 0 15 3. . .∗( )+ ∗( )− ∗( )+…Eigenface Eigenface Eigenface

Face2: 0 18 1 0 22 2 0 45 3. . .∗( )+ ∗( )− ∗( )+…Eigenface Eigenface Eigenface

Face3: 0 36 1 0 13 2 0 35 3. . .∗( )+ ∗( )− ∗( )+…Eigenface Eigenface Eigenface

Figure 3 depicts a set of 29 eigenfaces that were computed to re-represent an initial set of 500 frontal-
face images (Soyata T., Muraleedharan, Funai, Kwon, & Heinzelman, 2012). At the maximum, there 
are a number of eigenfaces equal to the number of training images. For even a small 100 x 100 image, 
there are far too many eigenfaces for most computers to hold in their memory, let alone utilize them in 
real time. Fortunately, a small portion of the eigenfaces can represent enough of the set of sample images 
to provide accurate face recognition. Most of the eigenpictures can be discarded without a large loss of 
precision (Sirovich & Kirby, 1987). Each eigenfaces has an eigenvalue associated with it that represents 
how much the eigenface differs from the average face from the training set. A small eigenvalue indicates 

Figure 3. A set of 29 Eigenfaces to represent a database of 500 images
Reprinted with the permission of the authors in (Soyata T., Muraleedharan, Funai, Kwon, & Heinzelman, 2012).
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that eigenface represents less significant details or smaller changes. The percentage of information cov-
ered by the first k eigenfaces P(k) can be calculated with the following equation:
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where Ωi:j is the ith component (eigenvalue) of the eigenvector for the jth image in the database and n is 
the total number of images in the database. The more vectors retained, the more precise the algorithm 
can be. One consequence of the equation is that the smaller the databases size, the larger the required 
ratio of eigenfaces to training images to retain the same portion of information. This is counteracted by 
the fact that less information is required to accurately recognize faces from a smaller set (as fewer faces 
will have fewer people with similar facial features). Generated along with the eigenface database is a 
mean-image face, which is a pixel average of every image in the training set.

The actual projection step occurs during program runtime, after the eigenface database has be precom-
piled. Detected faces do not necessarily occupy a constant number of pixels in the source frame. They also 
may be subject to lighting conditions and irregular coloring. Therefore, each face is pre-processed which 
first involves resizing of the face to that of the training images in the database. This is a requirement in 
the eigenfaces method which preserves a consistent dimensionality for every calculation. Eigenvectors 
of different dimensions cannot be added together or compared. Next, the image is converted to gray-
scale and histogram equalization is applied which enhances the contrast of the image and maximizes 
the pronouncement of discernible features. The test face is subtracted by the mean and reshaped into a 
single row. Subtracting the mean allows a comparison done on the aspects that most differentiate each 
face from one another.

The image is run through the same Principle Component Analysis algorithm used train the data-
base, projecting the new face it into the same space as the database of eigenfaces. The new image can 
be formed from a weighted average of eigenvectors from the eigenface database. These weights are the 
values used in the search portion of the algorithm to determine which person from the training images 
is the closest match.

SEARCH (S)

The search algorithm is quite simple in comparison to the previous operations. At this point in the 
overall recognition process, the test face is represented by an array of values. Each of these values is an 
eigenvalue paired with one of the eigenfaces from the database. Each eigenface is a different dimension 
in the eigenspace representing possible human faces. The eigenfaces can be linearly combined with 
weights corresponding to the person’s eigenvalues in order to recreate their face. The vast amount of 
data required to describe a human face is reduced to a small array of values.

This allows two different faces to be compared is a simple and objective way. Since each face is a single 
point in a many dimensional space, the degree of similarity between any two faces can be determined 
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quickly by finding the distance between these two point. The standard method for finding the distance 
between points in an arbitrarily many dimensional space is the Euclidean distance metric.

The distance dE (k) between the test face projection and that of the kth face in the database is shown 
below,

d k
E

i

n

i testface i k( ) = −( )
=
∑
1

2
Ω Ω
, ,

	

where Ωi is the ith component of the projection vector for the test face and the kth face in the 
database and n is the number of components (dimensions) defining the eigenspace. The face 
residing the shortest distance away is matched to a name by using a reference index correspond-
ing to name data contained in a separate file. It is possible that the test face does not match any 
of the faces inside the database. To account for this possibility, a threshold is set. Any match 
whose distance is greater than this limit is rejected, and the test face is considered to be a new 
person. Additionally, a second threshold can be used. If this distance is surpassed, the test face 
is considered to be not a face at all. Of course, images that are not faces should not make it to 
projection or search, but a simple double check doesn’t negatively affect the face recognition 
application in any way.

If neither type of threshold is needed (such as for a use case where only faces in the database 
are tested), then the squared Euclidean distance can be used instead of the normal Euclidean met-
ric. The squared Euclidean distance simply does not apply the square root operation. The relative 
distances can still be compared and the shortest one can still be found, so the exact distances 
are not needed. This optimization is mostly unnecessary, as the computational complexity of a 
single square root operation is insignificant in comparison to the rest of the face detection and 
recognition operations.

One implication of the eigenface search routine is that a database with m images, and an eigenspace 
of n dimensions requires (m x n) multiplications (square operations) in order to search the entire database 
for the nearest neighbor. Consequently, searching times show a non-linear relationship to database size. 
For eigenspaces formed with a dimensionality equal to the image number, the relationship is essentially 
quadratic, implying search times will increase dramatically as the database set grows large.

A rejoinder of this concern is that a higher dimension eigenspace will provide a greater 
degree of precision when defining eigenfaces. If more components are used to describe a 
unique face, there is a reduced chance of a test face residing in a neighborhood of eigenfaces 
in which a false positive is possible. This is demonstrated as simply as possible in the figure 
below, where projections are first described in a one-dimensional space. The projection of 
Subject A’ (the test face) is found to be nearest to the projection of Subject B, which would 
result in a false prediction. By introducing another component and describing projections in a 
two-dimensional space, the contribution of the component in the y-direction results in a more 
accurate prediction. It follows, therefore, that a higher dimensionality will reduce the potential 
for erroneous results. This comes at costs impacting computation time and storage requirements 
for the database proper, thus considerations must be made during the PCA in order to balance 
performance with accuracy.
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IMPLEMENTATION

When put together, the FD, PJ, and S algorithms can create a functional facial recognition program ca-
pable of detecting and identifying people in real time on regular consumer grade hardware. The entire 
process is computation and memory intensive, and the performance is heavily dependent on a number 
of factors. Most of the intensive work is done by the GPU. Both Face Detection and Projection utilize 
CUDA (Nvidia CUDA) to accelerate the maximum theoretical frame rate of the face recognition pro-
gram. In this section we detail the computational and memory requirements and the inner-workings of 
the complete program.

Face Detection Algorithm Implementation

The Viola-Jones object detection framework is a well-studied algorithm. It is considered capable of real 
time detection even running on hardware from 2001. While even weak CPUs are capable of detecting 
faces in under a second, modern GPUs push computation times into the tens of milliseconds range. 
Detection time decreases as a power of the floating point operations per second of the processor. At a 
image resolution of 800x480, we observed that the average relation is as follows:

T GFLOPS
FD
= ∗ −5172 7 0 622726. . 	

where TFD is the detection time in milliseconds. Figure 5 depicts the trend with example processors from 
low end CPUs to high-end consumer GPUs.

The computational complexity of the FD operation is dependant almost entirely on a single variable: 
the resolution of the image. The cascade classifier method looks at each sub-window of the image, and 

Figure 4. One and two dimensional representations of Euclidean distance
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determines if it is a candidate for containing a face. Sub-windows that are candidates are passed to the 
next stage of the pipeline. The nature of this method means that most of the analysis goes into the first 
stages of the pipeline and that most of the computational power of the early stages of the pipeline is used 
for analyzing sections of the image that don’t contain faces.

Table 1 tabulates the number of operations needed for the first stage of the classifier cascade. Included 
are separate operations of Multiplication (MUL), Addition (ADD), and Multiply-Add (MAD) operations 
both for integer and floating-point data types. These values scale linearly with the total pixel count of 
the image. As such, the detection time scales linearly with the number of pixels. Combining this with 
the Detection Time vs. GFLOPS equation on the previous page gives the following equation:

T n GFLOPS
FD pixels
= ∗ ∗ −0 01347 0 622726. . 	

Figure 5. Face detection time on different CPU and GPU architectures

Table 1. Number of million Integer and Floating Point Operations (MIOP and MFLOP) to perform face 
detection on an 800x480 image

Operations Total ADD MUL MAD

MIOP Count 508 286 40 183

MFLOP Count 75.8 12.1 12.5 51.2
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where TFD is the detection time, npixels is the pixel count of the images, and GFLOPS is the peak number 
of floating point operations per second of the processor.

Somewhat counter-intuitively, the number of faces in an image has a very small effect on the total 
detection time as shown in Figure 6. This is owed to the high false positive rate of each stage of the 
cascaded classifier. Sub-windows that do contain a face must go through every stage of the pipeline, 
which does introduce waste computation time. Still, the computational requirements of false positives 
and areas rejected at the first stage are much larger, meaning the time difference between detecting one 
face and sixty faces is less than 6 milliseconds for a 800x480 image, when executed on a GTX760 GPU.

Eigenvector Projection Algorithm Implementation

Projection has shown to be the most computation centric component in the Face Recognition applica-
tion. Both the creation of the eigenface database and performing principle component analysis during 
runtime require a significant amount of computational power. The time required to compile the eigenfaces 
for the database grows exponentially with the number of pictures in the database. As the compile time 
is directly dependent on the number of operations that must be performed, a more powerful processor 
reduces the time in a linear fashion.

Table 2 illustrates a significant limitation to the eigenface method. The time required to form the 
initial database set quickly grows to be unmanageable. The computational complexity of additional 
faces outpaces the reduction in compute time from using a processor with more peak GFLOPS. Even 

Figure 6. Face detection time as a function of the number of faces in an image; the result is almost in-
dependent of the number of faces due to the high false positive rate of the cascaded classifiers.
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using the best supercomputers of today, building a database from 50,000 images takes weeks. This lim-
its potential applications to some degree. Additionally, application run-time requires the entirety of the 
database to be loaded into the local RAM of the platform running the application. This will somewhat 
restrict the feasible size of the database. Most modern consumer grade computers contain 4 or 8 GB of 
RAM today (VALVe, 2014).

While prepping the database does require a large commitment of resources, it only needs to be done 
once. After that, performing PCA during runtime is the most intensive portion of the face recognition 
algorithm. The primary component of PCA is matrix multiplication. The standard for implementing 
matrix multiplication is to use Basic Linear Algebra Subprograms (BLAS), a set of low-level operations 
established in 1979, and still used today. A modern implementation on a GPU is to use the CUDA 
level-3 BLAS function GEMM (General Matrix Multiply) (Dongarra, Du Croz, Hammarling, & Duff, 
1990). There are two Nvidia libraries that help develop face recognition code significantly: CUBLAS 
(Nvidia CUBLAS) for BLAS acceleration including GEMM, and CUFFT (Nvidia CUFFT) for accel-
eration FFT-b ased operations. Each call to GEMM involves uploading the test face (8 ∗n

pixels
 bytes in 

size and the eigenvector array ( 8 ∗ ∗n n
pixels components

 bytes) to device (i.e., GPU) memory. A multi-
threaded kernel is then launched which computes the multiplication. Kernel execution of the matrix 
multiplication consists of billions of both integer and double-precision floating-point operations. Table 
3 shows the number of operations done for a single invocation of GEMM on a 5000 image database 
(with one eigenvector per image, and 180x180 images).

A number of factors affect the projection speed. The obvious one is the power of processor used to 
perform PCA. The factor that is perhaps the most important is the number of images used to create the 
database. These two factors can be seen in Figure 7.

Table 2. Computational complexity of building the Eigenface database, along with the time required to 
build on a GX760 GPU

Number of Images in 
Database

Floating Point Operations Required 
(Billions) Computation Time Eigenface Database Size (GB)

1,000 90,700 8.5 Minutes 1.1

2,000 616,000 57 Minutes 2.2

3,000 5,530,000 8.7 Hours 3.4

4,000 31,300,000 49 Hours 4.5

5,000 116,000,000 182 Hours 5.6

10,000 5,240,000,000 342 Days 11.4

50,000 6,230,000,000,000 1,115 Years 57.9

Table 3. Integer and floating point operation counts for a single GEMM (Generalized Matrix-matrix 
operation) function call

Integer Total ADD MUL MAD SCADD dFMA

MIOP Count 2457 701 375 588 671 -

MFLOP Count - - - - - 5200
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Since the number of eigenvectors is proportional to the number of images in the training database 
(equivalent in our case), it clearly follows that the number of operations (FLOPs) necessary to carry out 
the multiplication will have a linear relationship to the database size. The number of components (which 
explicitly expresses the dimensionality of the eigenspace) can be selected to balance performance with 
the representational accuracy of eigenface vectors. The relationship between the number of eigenvectors 
used and the projection speed is therefore linear. Also visible in Figure 7 is the dependence of projec-
tion speed on processing power. Performing projection with a GPU approach in lieu of CPU results in a 
reduction of processing time in excess of 50% with some devices. The peak GFLOPS of the processor, 
in most cases, is related to the projection time by the following equation:

T
n

GFLOPSPJ
db

device

= ∗
∗









1000
0 16004.

	

where TPJ is projection time in milliseconds, and ndb is the number of images in the database. This equa-
tion assumes that the application is using 200x200 pixel images, and one eigenface is formed per image 
in the database. Modifying these two variables affects the accuracy of the face recognition application 
to some degree. Larger images and more eigenvectors both cause the application to be more accurate, 
with diminishing returns. 200x200 images and an eigenvector per face already capture enough informa-
tion for an accurate face recognition application. The performance effects of these operations are quite 
straightforward. The projection time is linearly related to both the pixel count and the number of eigen-

Figure 7. Projection time as a function of the number of training images in the database



418

Face Recognition
﻿

faces used. The main operation of PCA is simply matrix multiplication of an 1×p  array by a p n×  
matrix, where p is the pixel count of the database images and n is the number of eigenfaces. Increasing 
either parameter increases the total number of calculations performed proportionally. A projection time 
equation including these variables looks like this:

T
p n r

GFLOPSPJ
db db eigenfaces

device

=
∗ ∗ ∗








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0 004001.
	

where TPJ is projection time in milliseconds, pdb is the pixel count of an image in the database, ndb is the 
number of images in the database, and reigenfaces is the ratio of eigenfaces to database images.

There are two cases where this equation is not quite accurate. With a database size of less than around 
500 images, memory transfer speeds become dominant. While all processors perform PJ in under 100 
ms in this case, it is difficult to predict the exact time required. CPUs are generally faster in this range, 
as they don’t have the same memory transfer overhead that GPUs do. Another inconsistency in this 
formula is related to the omission of the execution patterns of a thread block in a GPU. For example, 
while the GTX780 is listed to be a higher-performance GPU as compared to the GTX760, its visible 
performance is worse according to Figure 7. This is due to the kernel call that is used by the Open CV 
library (Bradski & Kaehler, 2008) to execute the GPU code. When improperly used, these inconsistencies 
arise in GPU hardware, since GPUs leave a significant portion of the runtime execution responsibility 
to the programmer, whereas CPU architecture has advanced over the past four decades to push almost 
all of the runtime execution responsibility to the CPU hardware.

Indeed, the consistency of the process data (test face and eigenvectors) has a direct impact on the 
number of computations that must be performed, as well as the amount of data that must be transferred 
across memory pipelines. The poor relative performance of the GTX 780 in Figure 7 as compared to GTX 
760 is due to the suboptimum performance of certain library APIs. Specifically, the GPU occupancy is 
very low during kernel calls (approximately 33%), starving the GTX 780 threads of useful work, thereby 
lowering its performance. These APIs will be optimized in the future, but for now may be a limitation 
to some face recognition systems.

There are a few more concerns related to the performance of PJ. The above data comes from a process 
that is entirely sequential; only one test face is uploaded, projected and downloaded at a time on a single 
synchronous CUDA stream. This approach severely limits the performance potential of the application. 
A real world face recognition application could benefit from improvements that may be found by invok-
ing kernels into different streams, allowing for concurrent processing of multiple test faces. The use of 
Kepler-based GPUs in most professional computing clusters most certainly presents this possibility, as 
they are increasingly designed with concurrency in mind (Nvidia Corporation, 2014).

Database Search Algorithm Implementation

The final step in the recognition process is to search the database formed during the PCA and return 
information corresponding to the entry with the highest degree of similarity to the face under test. The 
database consists of projections for each image formed during the PCA. The database is first stored in a 
file on local media (hard drive). The values contained therein are loaded into referenced objects in host 
memory (RAM) during the application run-time. Each projection in the database expresses a point in 
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the multidimensional eigenspace corresponding to each training image and is considered unique. The 
image with the greatest likeness to the test face is determined using the Euclidean distance between the 
point expressed by the test face projection and the points expressed by the database projections.

In most instances, the time required to perform a search is much less significant than the time required 
to do face detection and projection.. The only operation done in the search stage of a face recognition 
application is a least Euclidean distance comparison between two arrays of data. The process time of 
the routine increases approximately linearly with the number of images in the database. This is simply 
because an additional comparison must be made for each additional image. Search time also increases 
fairly linearly with the number of components (dimensions) of the eigenspace. As the number of dimen-
sions of the eigenspace is equal to the number of eigenfaces used to represent the database (which is 
itself dependant on the number of images in the database), the process time in effect scales quadratically 
with the size of the of the database.

T
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where Tsearch is search time in milliseconds, and ndb is the number of images in the database. The device 
in question is a CPU, rather than a GPU, and generally has a much lower floating point performance. 
The resolution of the images forming the database is not relevant to the search operation. The search 
algorithm compares the weights which describe how much of each eigenface a person’s face is made 
from. The actual eigenfaces are not analyzed during this step.

While search time does scale faster with database size than projection time does, it is initially much 
smaller. Below a thousand images, the search time is almost entirely negligible. It doesn’t become a 
particularly demanding process until around ten thousand images or so. That is reaching the limits of the 
maximum practical size of an eigenvector face recognition anyway. Search doesn’t overtake projection 
until the database is over 30,000 images in size, out of the practical ranges of the recognition algorithm.

The search portion of the eigenface algorithm can be implemented on a CPU without worry of bottle-
necking performance. This may not hold true in the future; as GPUs have matured faster than CPUs and 
may continue to do so, they may reach a point where they can project face data faster than a CPU can 
perform a search on those projections.

Table 4. Projection and search times on a workstation with a GTX760 GPU and an Intel i7-4770K CPU

Database Size Projection Time (ms) Search Time (ms)

1,000 70.88 2.647

2,000 141.8 9.272

3,000 212.6 19.93

4,000 283.5 34.62

5,000 354.4 53.35

10,000 708.8 207.5

20,000 1418 818.3

50,000 3544 5071
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CLOUD-BASED PERFORMANCE AUGMENTATION AND OTHER APPLICATIONS

Performing Face (or object) Recognition over the internet using cloud resources is an interesting appli-
cation (Keller, 2011) (Soyata T., Muraleedharan, Funai, Kwon, & Heinzelman, 2012) (Soyata T., et al., 
2012). Due to the incredible amount of computation required for this operation, it is natural to access 
the cloud resources (Kwon, et al., 2014) (Soyata, Ba, Heinzelman, Kwon, & Shi, 2013) (Wang, Liu, & 
Soyata, 2014). There is typically a 10,000x to 1,000,000x disparity between the computational capabili-
ties of mobile devices and the cloud (Soyata, Ba, Heinzelman, Kwon, & Shi, 2013), cloud resources can 
be accessed to take advantage of specialized accelerator hardware (Guo, Ipek, & Soyata, 2010) (Kirk & 
Hwu, 2010) (Li, Ding, Hu, & Soyata, 2014) (Soyata, Friedman, & Mulligan, 1997) (Soyata & Liobe, 
2012). Additionally, the path from the mobile phones to potentially multiple different cloud servers 
can be modeled as a graph (Soyata & Friedman, 1994) (Soyata, Friedman, & Mulligan, 1993) (Soyata, 
Friedman, & Mulligan, 1995), where edges represent the links between the mobile phone and the cloud 
servers, or, between cloud servers. This allows combinatorial optimization algorithms to optimally re-
route (i.e., retime) the data to achieve optimum overall algorithmic performance (Soyata & Friedman, 
1994) (Soyata T., 2000).

Open CV based object detection (Bradski & Kaehler, 2008) is not only used in face recognition, but 
also many field systems, where animals in the field are detected using supercapacitor-powered field 
systems (Fahad, et al., 2012) (Hassanalieragh, Soyata, Nadeau, & Sharma, 2014) (Nadeau, Sharma, & 
Soyata, 2014). Additionally, in tele-health monitoring, Open CV can be used to monitor a patient re-
motely (Kocabas & Soyata, 2014) (Kocabas, et al., 2013) (Page, Kocabas, Soyata, Aktas, & Couderc). In 
general, Open CV is one of the most commonly used programs, and it is under continuous development, 
with new versions released on an ongoing basis. GPU-acceleration just became available for Open CV, 
albeit with some implementation inefficiencies as we mentioned previously. The version that is being 
used should be checked for compatibility for the GPU compute capability. In general, a conservative 
approach should be taken, as we did. We opted to use a little less up to date version of Open CV, since 
the most recent version had issues with CUDA 6.0.

CONCLUSION AND FUTURE WORK

While once considered a pipe dream and placed in the same difficulty category as artificial intelligence, 
computer vision and face recognition have made great strides since the early days of manually mark-
ing up paper cards. Both face detection and face recognition have been implemented in real time with 
creative algorithms. The industry standards (Viola-Jones Object Detection Framework and Eigenface 
Recognition Method) are open source and freely available through libraries like OpenCV.

With the powerful graphics processing units produced in recent years, face recognition can now, for 
the first time, be implemented in real time on non specialized consumer grade hardware. High perfor-
mance GPUs are able to detect and recognize many faces. Top of the line and specialized processors 
are able to deal with frames as fast as regular cameras can spit them out. It is not a stretch to think that 
within a few years, large crowds of people could be scanned in real time with a high resolution camera.

As it stands, face recognition is not perfect. The fastest algorithms have significant restrictions. 
Non-uniform lighting significantly reduces the accuracy. The two algorithms discussed in this chapter 
require the face to be facing almost directly at the camera, ideally without any rotation about any axis. 
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Things like classes and certain hairstyles can obscure important details. Some of these flaws are already 
solved by systems that do not operate in real time. New modifications and optimizations are constantly 
in development in the field of computer vision.
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KEY TERMS AND DEFINITIONS

AdaBoost (Adaptive Boosting): A machine learning algorithm. Used by the Viola-Jones object 
detection framework to select the most important features and train the Face Detection program.

Classifier Cascade: A system for testing possibly detected faces with increasing stricter classifiers.
Compute-Unified Device Architecture (CUDA): The programming language of the GPUs intro-

duced by Nvidia Corporation. This language includes almost full functionality of the C++ programming 
language, and has extensions to allow GPU kernel execution.

Eigenface: An eigenvector representing a portion of a human face. Its eigenvalue is the weight it 
holds when combining eigenfaces to create a single face.

Euclidean Distance: The distance between two nodes in an N-dimensional space. For example, in 
a single dimensional space, the Euclidean distance is identical to the linear distance between any two 
nodes. For a two dimensional vector, Euclidean distance is the square root of the sum of the distance-
squares of each dimension.

Face Detection: A specific case of object detection, where the object is a human face. For this specific 
case, there are much better established algorithms, such as Viola-Jones, as compared to the generalized 
object detection algorithm. Face Detection is also the very first step of face recognition.

Face Recognition: The process of determining the identity of a face (i.e., recognizing it) by com-
paring it against a set of known faces. These set of known faces are typically stored in a database in a 
pre-processed format.

GEMM (General Matrix Multiply): One of the most common operations in any image processing 
algorithm. Since images can be represented as matrices, and the image processing algorithms almost 
always define the performed operations as matrix multiplications and additions, GEMM is at the heart 
of many image processing algorithms. Most GPU manufacturers, such as Nvidia Corp., provide GEMM 
subroutines for free with their GPUs to allow the efficient implementation of image processing algorithms.

Graphics Processing Unit (GPU): A massively parallel computational device, generally used as 
an accelerator to a CPU. While a CPU contains 2 to 6 cores, a GPU might contains 100’s of 1000’s of 
cores. However, each core has much lower operating frequencies, and much less control, making them 
simpler. The primary advantage of a GPU is that, each core contains a floating point unit, which makes 
GPUs perfect candidates for massively parallel computations that require floating point operations.

Haar-Like Feature: A feature composed of intensity sums that represent human facial components, 
such as cheeks or eyes.

Image Processing: The process of applying one of the existing algorithms to an input image. Since 
the pixels (picture elements) in an image can be operated on simultaneously by many image processing 
algorithms, these algorithms are generally massively parallel in nature, thereby benefitting significantly 
from GPUs for acceleration.
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Integral Image: A system for representing sums of subsets of data in a matrix. It is used to perform 
face detection efficiently.

Object Detection: In the field of computer vision, object detection is the process of locating an object 
in an image. For example, in a military application scenario, a harmful object in the battlefield can be 
detected using one of the established object detection algorithms.

Principal Component Analysis (PCA): A statistical procedure to reduce the dimensionality of a 
set of data elements by re-representing them in terms of a different set of orthogonal components. For 
example, in the Projection phase of the face recognition, PCA can be used to represent a set of 500 im-
ages in terms of a set of 30 orthogonal face vectors, called eigenfaces.

Projection: The second phase of the face recognition algorithm, and first phase of an eigenface-based 
face recognition system. An image of a face is projected into the same eigenspace as the database it is 
being compared to. This allows significant reduction in the amount of data being operated on, thereby 
drastically speeding up the overall face recognition algorithm.

Search: The second portion of an eigenface-based face recognition system. The projected data is 
compared to the database and a specific name is associated with the face being recognized. This is done 
by computing the Euclidean distance of the source face’s projection vectors and the ones in the database.


