INFORMATION TO USERS

This manuscript has been reproduced from the microfim master. UMI fims
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the uniikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright materiai had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9° black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0800

UMI

Incorporating Circuit Level

Information into the Retiming Process
by
Tolga Soyata

Submitted in Partial Fulfillment
of the
Requirements for the Degree
Doctor of Philosophy

Supervised by
Professor Eby G. Friedman

Department of Electrical and Computer Engineering
The College
School of Engineering and Applied Sciences

University of Rochester
Rochester, New York

1999

UMI Number; 9961367

Copyright 2000 by
Soyata, Tolga

All rights reserved.

UMI

UMI Microform9961367
Copyright 2000 by Bell & Howell Information and Leaming Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

Bell & Howell information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, MI 48106-1346

Dedicatidn

This dissertation is dedicated to my country Turkey, where my soul belongs to.
Currently, the sumn of the market capitalizations of all Turkish companies in the [stanbul

bourse is less than Intel’s market cap. My goal is to see many Intel’s in the Istanbul

bourse before my last breath.

Curriculum Vitae

The author was born in Istanbul, Turkey on January 23, 1967. He attended Istanbul
Technical University from 1984 to 1988 and graduated with a Bachelor of Science
degree in Electrical Engineering. He received his Master of Science degree in Electrical
and Computer Engineering from Johns Hopkins University, Baltimore, Maryland in
1992. He began further graduate studies in the Electrical and Computer Engineering
field at the University of Rochester in 1992. His research interests include sequential
circuit optimization by using pipelining, retiming, and clock scheduling techniques. He
implemented a retiming algorithm that incorporates low-level circuit issues such as clock
delays, variable register delays, and interconnect delays into the retiming process. He
has published four conference papers and one journal paper. He pursued his research
in the field of high performance VLSI design under the direction of Professor Eby G.

Friedman.

Acknowledgements

[thank the Turkish government for sponsoring me throughout my Master’s studies
at Johns Hopkins University. I also thank the University of Rochester for sponsoring

me during the early phase of my Ph.D. degree.

[am very thankful to the government of the United States for providing the
infrastructure for my business. Without such an infrastructure, [would not be able to
start my business and/or make such progress. Although I am a successful entrepreneur,
[am very well aware that [would not be able to efficiently start and grow a business if
the infrastructure was not there. It is clear to me that Soyata Computers is not only the

success story of Tolga Soyata, but also just another success story of the United States.

Between 1981 and 1984, I was at Ankara Fen Lisesi (Ankara Scientific High School)
— AFL. [owe a very strong math and science background to AFL and my teachers
at AFL. The foundation [built up at AFL will be with me for the rest of my life. [

cannot thank my teachers at AFL enough.

Between 1984 and 1988, [built up a very strong background at Istanbul Tech Uni-
versity (ITU). I cannot thank my professors enough since I owe the strong fundamental
knowledge base in Electrical and Computer Engineering to them. I thank my advisor
Prof. Hakan Kuntman, who always encouraged me. Prof. Ahmet Dervisoglu and Prof.
Ahmet Kayran have always been great role models for me. I thank the Computer Sci-

ence Department, especially Prof. Esref Adali, for encouraging me to get involved in

Computer Science.

Between 1990 and 1992, I further strengthened my Electrical and Computer Engi-
neering background at the Johns Hopkins University (JHU). JHU is where I developed
a strong practical knowledge base. Prof. Andrew Goldfinger taught me how to apply
theoretical DSP knowledge to real life. Prof. Andreas Andreou interested his entire
class in silicon retinas and analog VLSI. Professors at the Computer Science Department

helped me build an invaluable computer science background.

The seven years [spent at the University of Rochester taught me both research and
business. The company I started seven years ago became a success story in Rochester.
[thank all of my employees for making it possible for me to continue to study for my
Ph.D. while I was running the company. [also thank my lab mates, Brian Cherkauer,

Victor Adler, and Ivan Kourtev, for sharing their valuable views with me.

[thank Prof. Kevin Parker for always believing in my business and supporting me. [
also thank him for recommending me to the e-commerce committee and to the scientific
editor of the UR newspaper, Tom Trickey. I thought I would fail my Ph.D. many times
due to my decision of starting a business. [might not be leaving the University of
Rochester with an exceptional Ph.D. that Prof. Friedman initially expected from me,
however, it is an honor to see that both Prof. Friedman and Prof. Kevin Parker support

my decision of choosing the business world over the academic world.

[thank Professor Eby G. Friedman for being a father, a friend, and a mentor for me.

vi

[also thank him for being very patient with me. The lessons he taught me will help me
for the rest of my life. I already started using his soft-but-hard approach towards my
own employees. Although I disagreed with Prof. Friedman at times, [am amazed with
the same response I am getting from my employees. [will always use his bottom-line
oriented approach and zero tolerance for mistakes during my career. Prof. Friedman

went far beyond teaching me academics, but changed my life once and forever.

vii

Abstract

The advances in CMOS technology over the past decades have created the need
for the design of extremely complex Very Large Scale Integration (VLSI) Integrated
Circuits (IC)s. The simultaneous progress in Computer-Aided Design (CAD) tools
enable large design teams to work independently on sophisticated VLSI projects. The
pipelining process is widely utilized in VLSI ICs as a performance enhancement tool.
Efficient automated pipelining algorithms have been developed to permit the application
of pipelining to large integrated circuits. The emerging technique of retiming, on
the other hand, has not found its way into the VLSI circuit design process due to
complex and non-practical algorithms. Therefore, algorithms and/or methodologies to
help achieve retiming with simpler and practical algorithms can significantly improve

the acceptance of retiming techniques in standard VLSI design methodologies.

A retiming methodology is presented in this dissertation to model low-level circuit
characteristics in VLSI ICs. This objective is achieved by modeling low level circuit
parameters using the Register Electrical Characteristic (REC) model. The path delays
in a VLSI IC are defined from register-to-register based on this REC model. The REC
model forms the core of the retiming algorithms introduced in this dissertation. The REC
model, for the first time, permits incorporating low-level circuit issues into the retiming
process, thereby yielding significantly more accurate retiming results than the existing

retiming algorithms currently described in the literature. Path monotonicity constraints

viii
have been developed to permit the application of standard Linear Programming (LP)
based techniques to the general retiming process. These monotonicity constraints permit
circuits to be retimed with low-level characteristics with significantly less CPU time
complexity.

Although the application of retiming to practical circuits has not as yet become
common place, the research described in this dissertation is a significant improvement
in making retiming into a practical and useful design methodology. The relationship
between clock scheduling and retiming is also discussed in this dissertation where it
is shown that the two processes are inextricably intertwined. The results of applying
retiming to benchmark circuits have demonstrated performance improvements of up to
50%. When clock scheduling techniques are combined with retiming techniques while
including low-level circuit characteristics, retiming can significantly improve the design

efficiency and performance of the next generation VLSI circuits.

Chapter 1
Chapter 2

ix

Table of Contents

Introduction l

Theoretical Background 6

2.1 Terms Related to Synchronous Circuits 7

2.2 Representing Synchronous Circuits Using Graphs 12

2.2.1 Background Information on Graph Theory 12

2.2.2 Synchronous Circuits Represented as Graphs 13

2.3 Clocking of the Synchronous Circuits 15
24 Formulation of the Synchronous Circuit Optimization

Problem 17

24.] Timing Constraints 18

2.4.1.1 Edge Weight Constraints 19

2.4.1.2 Long Path Constraints 20

2.4.1.3 Short Path Constraints 21

2414 VertexLags 21

2.4.2 Linear Programming 23

2.5 Algorithms for Synchronous Circuit Optimization 24

2.5.1 Notation for Algorithmic Complexity 24

2,52 Topological Sort. 25

253 ShortestPaths 28

2.5.3.1 Single Source Shortest Paths 29

2.53.2 All Pairs Shortest Paths 29

2.53.3 Floyd-Warshall Method 30

2.5.3.4 The Bellman-Ford Algorithm 33

25341 Relaxation.............. 34

2.53.4.2 Using Bellman-Ford to Solve the
Single-Source Shortest Paths

Problem 36
2.5.3.43 Using Bellman-Ford to Solve
Linear Programs 39

2.54 Branch and Bound Algorithms 40

Chapter 3

Chapter 4

Synchronous VLSI Circuit Optimization Techniques 43
3.1 Pipelining of Synchronous Digital Systems 44
3.1.1 Pipelining of Combinatorial Circuits 44
3.1.2 Pipelining of Microprocessors 47
3.1.3 Pipeliningof DSPs 49
3.14 Wave-Pipelining 50
3.2 Retiming Techniques for Sequential Circuit Optimization . . 5l
3.2.1 Overview of the Retiming Process 52
3.2.2 More Recent Work in the Field of Retiming 57
Register Electrical Characteristics (RECs) 60
4.1 The Importance of an Effective Timing Model 61
42 RegisterDelays 63
4.2.1 Tsetups THoid» Tc—»Q.andTep . o oo o oot w 63
4.2.2 Estimating Tset.up, THoid» and Te—q - - - - - -+ -+ . 66
4.2.3 Estimating Tcp from the Layout 69
43 InterconnectDelays 72
431 Tpunand T - . . o o 0 0 o o oo oo 72
4.3.2 Tiy Calculated from the Layout. 73
4.3.3 Load-Dependant Model for Interconnect Delays . .. 76
44 Non-Ideal Logic and Register Delays 7
44.1 Model of LogicDelay 79
4.4.2 Model of Non-Uniform Logic Element Delays 80
45 Modelingthe RECs, 83
4.5.1 Basic REC Model (Level 1) 83
4.5.2 The Enhanced REC Model (Level 2) 86
46 PathDelays.............. 89
4.6.1 Path Delays using REC Level 1 Model 91
4.6.2 Path Delays using REC Level 2 Model 94
463 ShortPaths. 97

464 Internal Shortand LongPaths 97

Chapter 5

Retiming with RECs

5.1
5.2
5.3

54

5.5

5.6

5.7

Incorporating REC’s into the Retiming Process
Sequential Adjacency Matrix (SAM)
Timing Constraints
5.3.1 Negative edge weight constraints
53.2 Longpathconstraints
533 Shortpathconstraints.
534 Internal path constraints
5.3.5 Constraints due to vertex lags
Retiming Algorithm

5.4.1 RETSAM: Retiming Algori\thm for Synchronous
Circuits with Attached Electrical Information . .

5.4.2 CHECKCP: Clock Period Feasibility Check

5.4.3 SOLVELAGS: Determination of the Vertex Lags
Using a Branch and Bound Approach.

Path Delay Monotonicity Constraints
5.5.1 [Intuition for the Monotonicity Constraints
5.5.2 Designing the Clock Distribution Network

5.5.3 Feasibility Check for the Clock Distribution
Network

5.5.4 Derivation of the Monotonicity Constraints
Experimental Results

5.6.1 Application of RETSAM to Modified MCNC
Benchmark Circuits

5.6.2 The Impact of Latency on the Retimed Clock Period

Conclusions v i it it e e e e e

Chapter 6
Chapter 7

Bibliography
Appendix A

Conmclusions 150

Fuwre Work 154
7.1 Studying the Impact of Pipelining Depth on Retimed

Minimum Clock Period 156

7.2 Pipelining Recursive DSP Circuit Architectures 159

7.2.1 Theoretical Background on [IR Filter

Characterization 160

2.2 Clustered Look-Ahead Pipelining 161

.2.3 Scattered Look-Ahead Pipelining 162

.2.4 Minimum Denominator Multiplier (MDM) 164

.. 166

Publications 175

Table

xiii

LIST OF TABLES

Title Page

(L8]

Delay of a 1 bit adder for different input and output pairs using a 0.8 um
5 V CMOS technology. Note the non-uniformity due to asymmetry in the
logic paths within theadder. 81

Delay of a 4-bit adder for different input and output pairs using a 0.8 pm, 5
V CMOS technology. “x” denotes the delays that cannot be measured since
a change at the specified input is not propagated to the specified output. 82

The SAM for the graph of Figure 33. Light shaded entries represent short
paths, whereas dark shaded entries represent long paths for ¢ = 37 tu.
Unshaded entries denote permissible paths. 109

Example solution for ¢ = 24. A single value is shown for equal lower and
upperbounds. 124

Results of the application of the retiming algorithm to MCNC benchmark
CITCUILS . . . o o i it it e e e e e e e e e e e e e e e e 145

[§8]

10
11

Xiv

LIST OF FIGURES

Title Page

A synchronous circuit with three registers. Data signals are moved from
the input to the output at a constant rate (the clock period). Registers are
indicated as “R,” and the logic elements are indicated as “L.” 8

Two sequentially adjacent registers (initial register R; and final register
Ry) together with the logic elements between the two registers. This path
formsalocaldatapath.. 10

A synchronous circuit with two inputs and a single output. Some local
data paths (LDP) and global data paths (GDP) are indicated on the

circuit. Registers are indicated with a vertical bar along the edges. . . . 1l
A synchronous circuit with four logic gates (gl through g4) and five

synchronizing registers (rO throughrd).. 11
A simple graph with an edge set £ and a vertexset V. 13

The graph representation of Figure 4. Vertices are used to represent the
logic elements and edges are used to represent the connection between

the logic elements. Note the use of zero delay vertices to model the

inputs and outputs of the circuit. 15

Due to the difference between the arrival time of the clock signal at the
initial register (C;) and at the final register (C's), negative and positive
clock skew is created between the registers depending on the lead/lag
relationship between C;and Cy..o et 17
Pseudocode of the Algorithm TS for the topological sort of a graph G. . 26

Pseudocode of the algorithm VISIT for coloring every vertex in G
recursively. o e e e e e e e e 27

Pseudocode of the Floyd-Warshall algorithm. 32

The relaxation procedure. (a) a tighter bound is found after relaxation,
(b) relaxation hasnoeffect. 35

I3
14

15
16

17

18

19

[X°]
(38]

Xv

Pseudocode of RELAX (e). d[v] is updated according to the
aforementioned procedure. L 35

An example graph which does not contain a negative cycle. 37

Graph of Figure 13 with a negative cycle along the path vg — vy — v3 —
vg. Note that the negative edge weight of eg causes the negative cycle. . 37

Pseudocode of the Bellman-Ford algorithm. 38

Pipelining breaks global data paths into local data paths with smaller
delay so as to increase the data flowrate. 45

Pipelining of microprocessors: five primary operations of the
microprocessor are pipelined to increase computational speed. 48

In wave-pipelining, successive data waves propagate through the logic
elements, forming an effective pipeline. 51

a) The original graph introduced in and b) its retimed version. Note that
the sequential latency is four clock periods in both cases. r(v,) denotes
the lag of vertex n afterretiming. 54

The lag function changes the edge weights while preserving the circuit
function. Increasing the lag of a vertex by one has the effect of increasing
the weights of all edges by one connected in front of this vertex and
decreasing the weights of all edges by one connected behind this vertex. . 56

A typical edge-triggered master-slave flip flop is composed of two

latches. The set-up time is the time required for the data to successfully
latch into the first latch. The hold time is the duration during which the
data at the input of the register must be stable after the arrival of the clock
signal. The clock-to-Q time is the time required for the data to appear at
the output of the flip flop upon arrival of the incoming clock signal. . . . 64

Timing diagrams of the flip-flop shown in Figure 21. The data signal

must be stable for T's..,p, before and T,y after the arrival of the clock
signal. The valid data signal appears at the output of the flip flop
TcClock—to—q after the clock signal arrives. 65

A block diagram of an example integrated circuit layout. The chip area is
assumed to be partitioned into regions of similar clock delay.. 71

30

31

33

34

xvi

The pre-register and post-register interconnect delays are caused by the
distributed RC impedance of the connections between the register and the
logicelements. e 73

A logic stage (or a register) connected to another logic stage or register
through an interconnect. The 50% interconnect delay T, caused by the
RC impedance of the interconnect and the load capacitance is calculated
based on physical parameters of the interconnect 74

A CMOS NAND gate. Note that the delay of this element is dependent
on the output load. The element has an output slope m characterizing
this load dependence. 78

A path containing two edges and a vertex between the two edges. The
REC values are attached to each edge to characterize the registers,
interconnect, and the clock delays located along the edges. 85

The graph of Figure 27 with attached load dependent parameters. The
values in the brackets are the enhanced REC values mandc. 87

C'rne2 and Cp are the loads at the output of the initial register. The circle
is the logic element (or vertex) with a delay of 4 tu, and load dependent
m and c values of 0.5 and [, respectively. 88

The path shown in Figure 27. The minimum and maximum path delays,
Tpp.,,.. and Tpp,,.. between the two edges are calculated using (4.27). . 93

The path shown in Figure 28. The path delay Tpp between the two
edges is calculated from (4.30). 95

Graph of the digital correlator in . The edges that are not labeled are
assumed to have zero weight. 104

Graph of the digital correlator with added REC values. The edges that
do not have [m, c] values assigned are assumed to have values m = 0 and
=0, . e e e e e 104

The internal path delay between registers located on the same edge,
TPD nternaing,» 1 €qual due to the definition of the RECs. This example
demonstrates the case where w(e3)=3. 114

35

36
37
38

39

40

41
42

43

xvii

An example graph in which the internal path delay on edge e2 exceeds the
path delay between e; and e3. This graph exemplifies the importance of
considering internal long paths before the retiming process is initiated. . 114

Pseudo-code for RETSAM 118
Pseudo-code for clock period feasibility test, CHECKCP 119
Pseudo-code for the branch and bound algorithm SOLVELAGS that

calculates the vertex lags. 123

An example graph in which the path delays do not monotonically
increase. The sub-path p; has a delay greater than its original path p.
The cause of this non-monotonic behavior is due to the negative clock
skew between edges e; and e2. Note that only the maximum path delay,
Tpp.,,... is considered and the load-dependence of the delays is assumed

to be negligible for simplicity.o 0L 127
Pseudo-code version of algorithm for designing the clock distribution

NEIWOTK o o o e e e e 131
A path p with 3 registers and 2 vertices. 134

A path containing two registers and a vertex between the two registers.
The path delay Tpp contains components related to the register delays.
If all registers in the circuit are similar, the register delay components

wouldbeequal. 144
Effect of the pipelining depth on the clock period on C17. The initial
clock period is 112 tu which is shown as a solid line. 147

The theoretical limit from Figure 43. Note that the effect of negative
clock skew isignored. 159

Chapter 1. Introduction

Digital circuits perform tasks by logical functions. The speed at which these logical
operations can be completed is defined by the delays of the logic elements used in the
digital circuits such as inverters, OR gates, and AND gates. A digital circuit containing
one or multiple levels of logic elements is called a combinational circuit. Alternatively,
in a synchronous circuit, synchronizing elements called flip flops or registers are
used to ensure that data signals reach specified destinations at specified times. These
synchronizing elements permit the realization of complex digital functions which are
sequentially ordered.

The concept of inserting flip flops into a circuit in order to divide the main circuit
function into isolated sub-functions was first proposed by Cotten in [1]. The sub-
functions are performed independently of each other by placing the logic elements
between the flip flops. The result of one sub-function is held at the input of the
corresponding register and upon arrival of the next clock signal, transferred to the
output of that register. Therefore, provided that a certain function can be divided into n
independent sub-functions, the overall processing speed of the system can be increased
by a factor of n by using n — 1 flip flops. This technique is called pipelining.

A revised version of the same technique called maximume-rate pipelining was
first proposed in [2], also by Cotten. In this technique, multiple data signals are fed

into the input of a circuit during the same clock cycle such that these signals travel

2

simultaneously from one register to the next without overriding each other. This process
of transmitting multiple waves of data signals permits operating at a higher data rate than
is possible with conventional pipelining. This technique requires careful consideration of
the data skew, specifically the difference between the minimum delays and the maximum
delays between the registers, since data-overwriting could occur. This technique is
called wave pipelining [3, 4]. In wave pipelining, the capacitance in the logic elements
is used to temporarily store the values of the data waves. Typically, wave-pipelined
systems can operate at three to seven times the frequency of a similar pipelined system.
The limiting factor for the speed of a wave pipelined system is the differences between
the different path delays, since the number of waves that are possible is limited by the

uncertainities in the path delays [3] caused by process parameter variations [4].

Pipelining of recursive structures such as digital [IR filters has been studied in
[5-9]. The inherent difficulty in pipelining recursive digital filters is due to the delay
of the feedback loop built into these architectures [10]. Three different compensation
techniques are introduced to handle the feedback [9-11]. The primary goal of pipelining
a synchronous system is to increase the operation speed of the system. Similarly, the
purpose of pipelining a recursive digital filter is to increase the sampling frequency of
the filter. The application of algorithms to increase the sampling frequency of a digital

filter is discussed in this dissertation.

Although pipelining offers significant performance advantages, this technique in-

creases the latency of the synchronous circuit (the number of clock cycles required for

3

a data signal to reach the output of the circuit). A technique to increase the speed of a
synchronous circuit without changing the latency was first proposed by Leiserson and
Saxe in [12]. This technique, called retiming, relocates the flip flops in a synchronous
circuit so as to increase the speed of the synchronous circuit by changing the relative
location of the registers. The number of clock periods required to traverse every path
between the input and the output is preserved, i.e., the overall input-to-output latency
of the synchronous circuit remains the same once this operation is compieted [13, 14].
This technique therefore improves the synchronous speed without changing the latency
while preserving the system function. Advanced techniques to increase the accuracy of
retiming by incorporating low-level circuit issues are proposed in [15-17].

The aforementioned techniques exploit parallelism both in rime and in space. In
pipelining, parallelism in time is exploited by inserting the pipelining registers so as to
permit parallel execution of multiple functions at the same time. Since each register is
responsible for completing an independent subtask of a larger task, the results can be
accomplished in parallel. This concept is similar to using multiple functional elements
to perform multiple operations at the same time, thereby exploiting parallelism in
space. Although early work in both pipelining and retiming permits automating the
pipelining of VLSI circuits, accurate application of these techniques is not possible
without considering low-level circuit details.

Incorporating low-level circuit parameters such as clock skew, interconnect delay,

and variable register delays has been the focus of recent research. Early researchers [12]

have assumed equal register delays to model the effects of the registers. Equal register
delays, however, have no impact on the optimization process since simple biasing of
the clock period by the register delay value is sufficient to calculate the new clock
period of the synchronous circuit [18]. Incorporating variable register delays, however,
requires the redesign of existing algorithms and was first introduced in [19] along with
variable interconnect delays. This approach was also extended by adding the effects of
load-dependent delay [20, 21]. Incorporating clock skew is the first attempt to make
retiming into a more practical optimization technique [19, 22-25]. Proposed research
in this field includes optimizing multi-phase synchronous circuits [17, 26-29] as well
as combining retiming with clock scheduling [30, 31]. Research in this field later has
evolved to include the effects of precharged gate delays [32], multiplexers [33, 34],
and relocating the registers so as to reduce the switching activity, thereby resulting in
lower power consumption [35].

Automating the pipelining and retiming of VLSI circuits by considering the afore-
mentioned low-level circuit details forms the basis of this dissertation. Without con-
sidering these low-level circuit characteristics, a useful optimization of a synchronous
circuit is not feasible. The results obtained by omitting these effects may make the
circuit implementation completely invalid. Therefore, this dissertation focuses on accu-
rately automating the VLSI synchronous circuit optimization process without neglecting

these crucially important circuit parameters.

This dissertation is organized as follows: In Chapter 2, background information

5

pertaining to the later chapters is provided. Terms that are used throughout this
dissertation are introduced, and some common algorithms that form the basis of the
algorithms that are developed in the following chapters are described. In Chapter 3,
the aforementioned synchronous optimization techniques are introduced. A review of
pipelining and retiming techniques is provided in this chapter. The model developed
to include low-level circuit issues in synchronous optimization algorithms is introduced
and described in Chapter 4. Based on the algorithms introduced in Chapter 2 and the
timing model introduced in Chapter 4, new algorithms are developed that utilize this
improved timing model. These retiming algorithms based on the enhanced timing model
in Chapter 4 are described in Chapter 5. Some conclusions pertaining to the algorithms
and techniques introduced in this research are drawn in Chapter 6. A discusion related

to open-ended future research is provided in Chapter 7.

Chapter 2. Theoretical Background

The primary objective of this dissertation is to introduce algorithms and design
techniques that both consider and exploit low-level circuit information, such as the
delays of the circuit building blocks including the effects of interconnect impedances.
A synchronous circuit can be represented by a graph. The primary building blocks of
a synchronous circuit are therefore represented by the vertices and edges of the graph.
Values are assigned to the vertices and edges of the graph to characterize the components
of the synchronous circuit being modeled by the graph. Using this modeling, existing
graph-theoretical algorithms can be used for synchronous circuit optimization. Low-
level circuit characteristics are integrated into a circuit model and previously developed

algorithms to increase the accuracy of these existing algorithms.

In this chapter, a theoretical background is provided to introduce the key elements
of this research. In Section 2.1, the terms related to synchronous circuits and used
throughout this dissertation are introduced. The process of representing a synchronous
circuit by a graph and some background information related to graph theory is described
in Section 2.2. Due to its importance to this research, Section 2.3 is devoted to issues
associated with the clocking of synchronous circuits. In Section 2.4, key issues related
to converting a graph representation to a set of mathematical inequalities is described.
Finally, the algorithms that are used to optimize the synchronous circuit are reviewed

in Section 2.5.

2.1. Terms Related to Synchronous Circuits

A synchronous digital circuit consists of logic elements and storage elements
(also called registers or memory elements) between these logic elements as shown
in Figure 1. Synchronous circuits typically operate by clocking all registers in a circuit
simultaneously. The logic elements located between the registers perform subtasks of
the main system function. At the beginning of each clock interval, a different subtask
1s initiated by the logic subcircuit located at the output of each register. Each sub-
operation must be completed before the next clock signal is applied [1]. The temporal
distance between the adjacent clock signals (called the clock period of the synchronous
circuit) defines the rate at which new operations are performed. At each clock signal,
the results of the completed subtasks are transferred to the next logic operation, and
the following subtask is initiated. A synchronous circuit containing three registers is
shown in Figure 1. Data signals are moved from the input of the circuit to its output at
a rate defined by the clock frequency of the circuit. With this strategy, logic elements
located at the output of different registers can work on different subtasks at the same
time, thereby permitting a significant enhancement of the amount of information that

can be processed concurrently by a synchronous circuit [1, 36].

Input ——» R | ' R * R Output

Figure 1. A synchronous circuit with three registers. Data signals are moved from the input to the output at a

constant rate (the clock period). Registers are indicated as “R.” and the logic elements are indicated as “L.”

The latency of a circuit is broadly defined within the literature. For a combinatorial
circuit, the latency of the circuit is defined as the time required for a signal to reach the
system output after arriving at the system input. For synchronous systems, however,
this definition may be extended. For a synchronous system, two different latencies may
be defined: temporal latency, the time required for a signal to reach the system output
after arriving at the system input, and sequential latency, the number of clock periods
required for a data signal to reach the system output upon the data signal arriving at
the system input. The difference between these two definitions can be significant, since
sequential optimization operations often do not change the sequential latency, but do
change the temporal latency. These definitions of latency are used herein in order to

provide insight into different effects of sequential optimization on system latency [37].

The clock frequency of a sequential circuit is the rate at which new data flow into
the system and appear at the output. The primary goal of sequential optimization is to
increase the clock frequency or equivalently decrease the clock period, the reciprocal of
the clock frequency. The relationship between clock period and latency depends upon

the degree of pipelining as described in [38, 39].

9

In a synchronous digital circuit, clock signals are distributed across an integrated
circuit over conducting wires, typically composed of metal. These metal wires have a
distributed RC impedance which degrade the shape of the clock signals. Depending on
the thickness and width of the wires and the distance of the connections distributing the
clock signal, clock delays may vary throughout the circuit. Since the RC impedance
cannot be made zero in practical circuits, differences among the delays from the global
clock source to different points in the circuit cannot be eliminated, unless specific
design techniques are utilized. Due to this attribute of clock distribution networks in
sequential circuits [40], clock signals typically reach different points in the circuit at
different times. Therefore, differences in delay exist between the arrival times of the

clock signals at different registers.

The absolute delay of the clock signal from the global clock source to a specific
register (or memory element) is the clock delay and is denoted as T¢p. The difference
between the clock delay of any two registers is the clock skew between these registers,
denoted as Tsk..,- The notion of localized clock skew and its application to increasing
the clock frequency within pipelined systems was first introduced by Friedman and
Mulligan in [38]. They show that only clock skew between sequentially adjacent
registers (registers that receive information at successive clock intervals and are either

directly connected or connected by logic elements) is significant in pipelined systems.

Sequentially adjacent registers form a local data path (LDP). A local data path

consists of two sequentially adjacent registers and logic elements between these registers,

10

——-Ri e 'Rf ——

Figure 2. Two sequentially adjacent registers (initial register R, and final register R;) together

with the logic elements between the two registers. This path forms a local data path.

as shown in Figure 2. R; and Ry are the initial and final registers, respectively. The
local data paths with the greatest delay are the critical data paths, whose delay defines
the minimum clock period (and therefore the maximum clock frequency) of the circuit.
To permit a sequential circuit to operate faster, the amount of logic placed between
these registers must be decreased. However, the cost (in area) of the sequential circuit
increases in this case due to the added overhead caused by the additional registers in
the circuit. This trade-off between circuit area and circuit speed has been previously
investigated in [41]. Global data paths (GDP) are those paths between any input and
any output of a pipelined circuit. A synchronous circuit with two inputs and a single

output is shown in Figure 3.

Note the aforementioned concept of adjacency between any two registers. The term
that is defined here and plays a crucially important role in the following chapters is the
sequential adjacency of a pair of registers. These two registers receive successive clock
signals. Therefore, if a register receives a data signal at clock signal n, a sequentially
adjacent register receives the processed data signal at a clock signal n + 1. For example,

as shown in Figure 4, register pairs (rg,r1), (r1,72), (4, 71), and (r2, r3) are sequentially

19

GDP

vw ~ 0~ Q

Local and Global Data Paths

Figure 3. A synchronous circuit with two inputs and a single output. Some local data paths (LDP) and global

data paths (GDP) are indicated on the circuit. Registers are indicated with a vertical bar along the edges.

adjacent, whereas register pairs (rg, r2), (r4,r2), (ro,r3), (r4,r3), and (r1,r3) are not

sequentially-adjacent.

nl & 2 1 2 3
i ' r
all _% g & 272 8 o
La | | ; — out
L Al al |
r4 | k
in2 | in3 |
—_—
A

Figure 4. A synchronous circuit with four logic gates (gl through g4) and five synchronizing registers (r0 through r4).

12

2.2. Representing Synchronous Circuits Using Graphs

Synchronous circuits can be represented by graphs to permit the utilization of graph-
theoretical approaches for synchronous optimization. In subsection 2.2.1, keywords that
are borrowed from graph theory and used in this dissertation are introduced. The process
of representing synchronous circuits using graphs is described in subsection 2.2.2. The
material presented in this section permits using algorithms from graph theory to solve

synchronous circuit optimization problems.

2.2.1. Background Information on Graph Theory

A graph is a representation of a circuit, machine, or an event chain and is composed
of an edge set £ and a vertex set V'. Cardinalities of these sets, |V'| and |E], denote
the number of edges and vertices in the graph, respectively. A simple graph with seven
vertices and seven edges is shown in Figure 5. The numbers inside the vertices and
above the edges represent the vertex or edge weight, respectively. Depending on the
application, this weight can be used to represent time, physical weight, length, etc. If,
for example, the vertices are used to represent cities and the edges are used to represent
highways between the cities, the edge weights can be used to represent the travel times
along the highways and the cities can be used to represent the layover times inside the
city terminals. A classical application of this type of representation is determining the

shortest transition times between any pair of cities.

13

Figure 5. A simple graph with an edge set £ and a vertex set V.

Every edge e has an initiating vertex and a terminating vertex. An edge that is
initiated at vertex u and terminated at vertex v is represented as ¢ : u — v. To refer
to these vertices without having to use different letters, the notations e.start and e.end
are used in place of u and v.

A path is a route between any pair of vertices or edges. A vertex-to-vertex path is
a path that starts at a vertex u and ends at a vertex v and includes edges eg through e;.
Such a path pisrepresentedas p:u —eg — vg — €} — ... — €p_| — Uk—| — €k,
or simply p: u ~ v. An edge-to-edge path is represented in the same manner. For

example, a path that starts at edge ej and ends at edge e, is represented as p : eg ~ €.

2.2.2. Synchronous Circuits Represented as Graphs

Synchronous circuits can be represented as graphs by using the vertices to represent

the logic elements and the edges to represent the connection between a pair of logic

14

elements. The edge weight is used to denote the number of registers between the logic
elements and the numbers assigned to the vertices are used to denote the delay of the
logic elements. The weight function w : £ — Z is defined to denote the weight of
the edges. In the same manner, the delay function, d : V — Z denotes the delay of
the logic elements. For simplicity, it is assumed that the delay function is an integer,
although the algorithms developed herein can be used with non-integer delays. The
path weight, w(p), is defined as the sum of the weights of the edges along the path
p. The path delay, d(p), is similarly defined as the sum of the delays of the logic
elements along a path p.

Let p be a path with weight w(p) and delay d(p). The clock period of a synchronous
circuit T p can be calculated as the greatest delay of any zero weight path in the circuit,

as follows:

Tep = max {d(p) : w(p) = 0}. (2.1

The path that has the greatest delay is called the critical path of the circuit. The rationale
behind (2.1) and synchronous data flow in general is as follows: In a synchronous
circuit, a data signal departing from a register must be provided sufficient time to arrive
at the temporally farthest sequentially adjacent register. Otherwise the following clock
signal will be applied before the data signal reaches the temporally farthest sequentially
adjacent destination and is successfully latched, possibly overwriting an earlier data

signal. Therefore, the temporal distance between the clock signals must be greater than

15

g4
vl v4
inl r, 1 -~
[e3 /
\ ' v7
vS 0 vé
in2 in3 out

Figure 6. The graph representation of Figure 4. Vertices are used to represent the logic
elements and edges are used to represent the connection between the logic elements.

Note the use of zero delay vertices to model the inputs and outputs of the circuit.

the longest delay between any sequentially adjacent register pair. Therefore, balancing
the delays in a synchronous circuit yields a very efficient circuit since the number of
logic blocks that are idle waiting for the next clock signal to arrive is minimized.

The graph representation of the synchronous circuit shown in Figure 4 is depicted
in Figure 6. In Figure 6, the connections between the logic elements with no registers
are modeled as zero weight edges and connections between the logic elements with
registers are modeled as weighted edges. Zero delay vertices are used to represent the

input and output nodes of the circuit.

2.3. Clocking of the Synchronous Circuits

The notion of sequential adjacency can be extended to edges. Sequentially adjacent

16

edges are those edges that receive data signals at successive clock signals. Only the last
register of the initial edge and the first register of the terminating edge are sequentially
adjacent. In Figure 6, the edge pairs (e1,e2) and (e3,eq) are sequentially adjacent,

whereas the edge pairs (e, es) and (e2,e3) are not sequentially adjacent.

The clock skew Tsi.. between two sequentially adjacent edges : and j is defined as

Tskew(t,j) = Tep(i) = Tep(y), (2.2)

where Tep(i) and Tep(y) are the clock delays from the global clock source to nodes
iand j. If Tep(j) > Tepl(i), the clock skew between registers : and j is defined as
being negative. Negative clock skew occurs if the initial clock signal leads the final
clock signal of a local data path. If Tcp(j) < Tep(i), the clock skew between registers
i and j is positive. Positive clock skew occurs if the initial clock signal lags the final
clock signal of a local data path. In the case that Tcp(j) equals T¢p(z), ie., the clock
signal reaches the clock input of the two registers at precisely the same time, the clock
skew is zero [42]. In Figure 7, it is shown how negative and positive clock skew can
be created depending on the lead/lag relationship between the clock signals arriving at

the initial and final registers of a local data path.

17

G e et
TskEw <0 ———| Tskew™?

[4— ——
Negative Clock Skew Positive Clock Skew

Figure 7. Due to the difference between the arrival time of the clock signal at the
initial register (C,) and at the final register (C;). negative and positive clock skew is

created between the registers depending on the lead/lag relationship between C, and Cy.

Positive clock skew increases the path delay of a local data path, potentially making
its local data path a critical path, whereas negative clock skew may improve circuit speed
in critical paths [42, 43]. However, negative clock skew may also create negative path
delays, resulting in race conditions. Race conditions are caused by early-clocking, i.e.,
clocking of registers before the relevant data is successfully latched. A race condition
occurs if the skew is negative and greater in magnitude than the total local data path
delay [38, 42, 43]. Those paths with negative delay are called short paths [44].
Similarly, a long path designates those paths with a delay greater than the desired

clock period of the circuit.

2.4. Formulation of the Synchronous Circuit
Optimization Problem

For a synchronous circuit to function properly, the clock period of the synchronous

circuit must be greater than the delay of the critical data path of the circuit. Synchronous

18

optimization techniques permit the relocation or insertion of registers in the synchronous
circuit so as to reduce the effective clock period. The critical path delay of the circuit
may be reduced by placing a register within the critical path of the circuit. However,
after inserting a register, one additional clock period is required to traverse the critical
path, i.e., the critical path is broken into two separate local data paths, each with smaller
delay. Due to this added register, other registers may have to be removed from a related
path so as not to increase the latency of the overall circuit. Removing registers from
related paths may further change the latency and delay of these paths. Therefore,
changing the location of one register may require a change in the entire circuit structure

so as to preserve the original circuit function.

This complicated synchronous circuit optimization problem may be solved by
applying linear programming methods. Local timing constraints are derived to ensure
proper circuit operation. These constraints are converted to a set of linear inequalities
permitting the application of standard linear programming techniques. These timing
constraints are written to achieve a certain clock period by either keeping the latency
constant or by increasing the latency. In the event that no satisfactory solution for the

constraints is possible, the specified clock period cannot be achieved [14, 45].

2.4.1. Timing Constraints

Utilizing linear programming techniques for solving the synchronous circuit opti-

mization problem is accomplished by formulating the synchronous optimization problem

19

as a linear program. The linear program consists of a set of timing constraints derived
from each local data path of the synchronous circuit while achieving a specific clock
period. The timing constraints are represented as the weight of the edges and the delay
of the paths. The first set of constraints, the edge weight constraints [13, 23], is used
to ensure that the weight of the edges are nonnegative after the optimization process
has been completed. A second set of constraints, the long path constraints [14] and
the short path constraints [23, 37], is used to ensure that the delay of each path in
the circuit remains within a specified range. Vertex lags are introduced and used in this

section to improve computational efficiency.

2.4.1.1. Edge Weight Constraints

In the algorithms introduced in this dissertation, negative edge weights are not
permitted. Negative edge weights are permitted temporarily for peripheral edges in
[46] in order to shift the registers to the periphery of a synchronous circuit. This
approach permits combinatorial optimization to be performed on the circuitry placed
between the peripheral edges. However, since the algorithms described in this paper do
not utilize this logic optimization feature, negative edge weights are disallowed. The

negative edge weight constraint can be written as
w(e)>0,VeeE. 2.3)

According to (2.3), all edge weights must have a zero or higher integer value. Edge

weights are not permitted to be negative, even temporarily. This constraint ensures that

20

the edge weights are non-negative after completion of the synchronous optimization

process without requiring additional optimization steps.

2.4.1.2. Long Path Constraints

If a clock period (' is desired, none ot the zero weight paths in the synchronous
circuit are permitted to have a delay that is more than C time units. Therefore, to
ensure that a synchronous circuit has a clock period Tep < C, paths with a path delay
d(p) > C are disallowed. Assuming that the registers in the circuit have zero delay,
the method used to eliminate an undesired path is to place a register along that path in
order to make the path non-zero weight. Therefore, since the resulting path will have a
higher weight, the path is divided into paths with less delay. For example, in Figure 6,
the clock period is 12 time units (tu), since the critical path v1 — v2 has a delay of 12
tu. If a clock period of C = 10 tu is desired for this circuit, a register can be placed on
edge e, thereby breaking this path into two smaller zero weight paths. This operation
of inserting a register, however, changes the relative temporal nature of the circuit since
the two inputs of v, receive the data signals at different time intervals. To maintain the
original circuit timing characteristics, a register may be placed on e3, thereby delaying
both inputs of v2 by the same number of clock periods. Altough this process decreases
the clock period of the circuit, it increases the sequential latency of the entire circuit
since the global data paths v0 — v7 and v5 — vT have a higher weight due to the

added registers. The sequential optimization techniques presented in this dissertation fall

21

into the two separate categories of pipelining and retiming. Although both techniques
are used to increase the overall system-wide clock frequency, pipelining increases the

latency, whereas retiming preserves the original sequential latency.

For a path p consisting of multiple edges, the long path constraint is in the form of
w(p) >0, Vp: d(p)>ec (2.4)

An interpretation of (2.4) is that a critical path p can be eliminated by making it non-zero
weight, thereby dividing the path into multiple paths with smaller delay. It is important
to note that (2.4) can be used to eliminate any undesired path, i.e., not necessarily a
path with a delay greater than desired. A path with a delay lower than desired can also

be eliminated using the same process as described in the following subsection.
2.4.1.3. Short Path Constraints

Short paths are created when the total delay of a path including the clock skew and
register hold times is a zero or negative, thereby causing race conditions. Short path
constraints can be modeled similarly to long path constraints. The notion of short paths

plays a crucially important role in this dissertation and is investigated in great detail.

2.4.1.4. Vertex Lags

Observe that as the length of a path grows, the family of inequalities represented

by (2.4) takes the form

w(eg) + w(er) + -+ - + w(eg—2) + wlex—1) > 0, (2.5)

2
for a path consisting of k£ edges. However, Leiserson and Saxe show that by assigning
an integer to each vertex, all of the inequalities that are represented by (2.4) can be
transformed into a much simpler form [12-14]. The vertex lag function r : V — Z is

an integer vertex label which is defined as follows:
w'(e) = wle) + r(v) = r(u), (2.6)

where e : u — v is an edge in the circuit with an initial weight of w(e) and a weight of
w'(e) after completion of the synchronous circuit optimization. r(u) and r(v) are the
vertex lags assigned to the vertices u and v. Using vertex lags for any path p: v, ~ vy

in the circuit, the following inequality holds:
w'(p) = w(p) + r(vp) — r(vs), (2.7)

where w(p) and w'(p) are the initial and optimized path lengths and r(vy) and r(v,)

are the vertex lags for the initial and the final vertices of path p.

Assume that path p : v, ~ v, has an initial weight of w(p) = 0 and p has a delay
greater than a desired value c, i.e., d(p) > c. Therefore, path p can be made non-zero
weight to eliminate that path. To make p non-zero weight, the following inequality

is used,
w'(p) > L. (2.8)
or using vertex lags according to (2.7),

w(p) +r(vs) —r(va) 2 1 = r(va) —r(vg) < w(p) - L. 29)

23

The right hand side of this equation (w(p) — 1) consists of constants that are derived
from the circuit, whereas the left hand side (r(vg) — r(vp)) consists of unknowns that
are solved to achieve synchronous circuit optimization. Writing a set of inequalities in
the form of (2.9) and solving for these inequalities using linear programming techniques
[47] forms the basis of most synchronous circuit optimization techniques described in

this dissertation.

2.4.2. Linear Programming

The most common linear programming (LP) problem consists of solving the fol-

lowing set of equations [48]:

rp—r<ap (2.10)

r3 —.ry < ay

Ipel —Ip < Qpin,

where z; through r, are unknowns and a2 through a,-1, are constants.

The family of linear inequalities shown in (2.10) can be solved by a Linear
Program. Standard synchronous optimization techniques consist of converting the
aforementioned timing constraints into a linear program similar to (2.10), and applying
a linear programming method such as the Bellman-Ford method. The Bellman-Ford

method described in [47] is described in detail in the following subsection.

2.5. Algorithms for Synchronous Circuit Optimization

The building blocks for the algorithms introduced in this dissertation are topological
sort, the Floyd-Warshall method, and the Bellman-Ford method. In subsection 2.5.1, the
notation for describing the complexity of the algorithms used throughout the dissertation
is introduced. The topological sort algorithm is introduced in subsection 2.5.2. The
Floyd-Warshall and Beliman-Ford algorithm for determining shortest paths in a graph are
introduced in subsection 2.5.3. These algorithms are used both in standard synchronous
optimization algorithms [12-14] as well as the algorithms described in this dissertation.

In Section 2.5.4, the branch and bound algorithms, used to solve the generalized
retiming problem, are introduced. These algorithms are used in those problems where
the use of linear programming methods are not feasible. Branch-and-bound algorithms
require excessive time, thereby making the application of these algorithms to large
problem sets impractical. However, the properties of branch-and-bound algorithms is
introduced for completeness. Readers with algorithms background can skip over this

section.

2.5.1. Notation for Algorithmic Complexity

One of the more important attributes of an algorithm is its time-complexity, i.e., the
time requirement in relationship to its input size. The time-complexity of an algorithm is
defined in terms of its asymptotic behavior. To clarify this concept, a simple algorithm

that finds the maximum of n numbers can be considered as an example. In this example,

25

n numbers are processed, i.e., the input size is n. If the input size doubles, the amount
of time required for the algorithm to complete its processing is doubled. Thus, the
operation time depends linearly on the input size. In this case the time-complexity of

the algorithm is O(n).

Similarly, an algorithm that has a square time-dependence has a time-complexity
of O(n®). An example is the bubble sort algorithm. Such an algorithm takes four times

as long to complete when the input size doubles.

Although © and () notations of time-complexity exist for asymptotically tight and
asymptotically lower bounds, respectively [49], only the asymptotically upper bound

notation O() is used to denote time complexity in this dissertation.

2.5.2. Topological Sort

Let ¢ be a directed acyclic graph (DAG) whose vertices v, through v, represent the
sub-events of a main event, and whose edges ¢, through e; define the order of occurence
of these events. If event v; occurs before event v;, this behavior is represented by an
edge from v; to v;. Topological sort is the process of ordering the vertices in such a
way that if there is an edge from v; to vj, v; appears before v; [49]. For a topological
sort, G is assumned to be directed and acyclic. In this dissertation, only directed acyclic
graphs are considered since DAGs are the only type of graphs that are encountered for

the specific problems discussed in this dissertation.

1. Let S[] be the array of sorted vertices in G.

[

Let ¢[] be the array that stores the colors of vertices of G, V(G).
3. forVu € V(G) do {
4. c[u] = WHITE
5. S[uj = na
6. }
7. i =1|V|
8. forVu € V(G) do
9. if color[u] = WHITE then VISIT (u)
Figure 8. Pseudocode of the Algorithm TS for the topological sort of a graph G.
Topological sort utilizes a technique called a depth first search (DFS). In this sub-
section, the DFS algorithm is not separated from the topological sort. The pseudocode
of the topological sort algorithm TS is shown in Figure 8. Algorithm TS plays an
important role in the algorithms discussed later in this dissertation since the candidate

paths are sorted using this algorithm, TS.

Algorithm TS uses two arrays S[] (Step 1), and c[] (Step 2) to store the sorted
vertex indices, and the colors of the vertices, respectively. The status of the vertices
are indicated using colors: WHITE indicates an unprocessed vertex, GRAY indicates
a process that is being processed, and BLACK indicates a vertex whose processing
is completed. The initialization phase of the algorithm (the for loop between steps 3

and 6) colors all vertices WHITE (Step 4), and clears the sorted index array S (Step

27

5). The variable i is an index pointer to array S[] which initially points to the end of
the array (Step 7). Every vertex is scanned using a simple for loop (Step 8) by using
the recursive function VISIT (Step 9). The for loop in Step 8 starts by passing the
first vertex in the vertex list V(G) to the function VISIT(). VISIT() scans every vertex
attached to this first vertex recursively. If there are no disjoint vertices, at the first call
to VISIT{(), all vertices will be BLACK and the function will return with the entire 5[]
array filled with the sorted vertex indices. The for loop in Step 8 processes more than
one vertex if and only if there are disjoint vertices. This step is due to the fact that
the disjoint vertices will remain WHITE after the first call to VISIT, since they have no
neighboring vertices close to the first vertex. The pseudocode of Algorithm VISIT{() to

scan and color the adjacent vertices of a given vertex u is shown in Figure 9.

l. c[u] = GRAY

~

forVee E(G) : e:u— vdo
3. if c[v] = WHITE then VISIT(v)
4. c[u] = BLACK

5. s(i] = u

6. 1t =1 -1

Figure 9. Pseudocode of the algorithm VISIT for coloring every vertex in G recursively.

The algorithm initially assigns the color GRAY to the vertex being processed (Step

1) in order to prevent processing the vertex indefinitely. The vertices that are WHITE

28

(not visited already) are recursively scanned (steps 2 and 3). When a vertex and its
neighbors are entirely visited, the vertex is colored BLACK (Step 4). After a vertex
is colored BLACK, the vertex is placed at the end of the sorted list (Step 5). Using
this methodology, the vertex that is terminated last is placed at the end of the list.
The index variable : is decreased in Step 6 so as to store the next vertex before the
vertex is terminated. Since the vertex that is visited first is stored at the beginning of
the array S{], S[] contains the vertex indices sorted by depth at the end of algorithm
VISIT(). Therefore, the array S[] stores a topological sort of vertices of G at the end

of algorithm T§.

2.5.3. Shortest Paths

An important family of algorithms that determine the shortest paths in a given graph
(' are studied in this section. An intuitive example for the application of shortest paths
in synchronous circuit optimization is determining the shortest time along any logic
path between a given pair of registers in a synchronous circuit. The two important
variants of the shortest path problem, single source shortest paths and all pairs shortest

paths, are reviewed below.

On the other hand, all pairs shortest path algorithms determine the shortest paths
between any pair of vertices. The Floyd-Warshall algorithm for the determination of
all pairs shortest paths and the Bellman-Ford method for the determination of single

source shortest paths are discussed in the following subsections.

2.5.3.1. Single Source Shortest Paths

Single source shortest path algorithms determine the shortest paths among a source
vertex s and all other possible destination vertices. Such information is applied in
synchronous circuit optimization to determine the shortest path among a given vertex
and all of the other vertices. An example of applying the single source shortest paths is
determining the shortest transit time between a given point in the synchronous circuit
and any destination point. Among other existing algorithms, the Bellman-Ford method
for determining the single source shortest paths is applied in the research presented in

this dissertation and is explained later in this section.

2.5.3.2. All Pairs Shortest Paths

The algorithms applied in the research described in this dissertation utilize the
all-pairs shortest paths in a given graph (. The result of the all pairs shortest path
algorithms is a matrix of shortest paths. Since there are |V'| vertices in (, there are
|V'|? vertex pairs, and the all pairs shortest path algorithms determine the |V|* shortest
paths between any vertex pairs. If there is no path between any given vertex pair
(u,v), the resulting shortest path is co. d(u,v) = oo designates a non-existent path
p : u — v, i.e, a path having infinite delay between its initiating and terminating
vertices. Although many algorithms exist for determining all pairs shortest paths [47,
49], only the Floyd-Warshall method is used in the algorithms described herein, and

this method is explained in the following subsection.

30

All pairs shortest path algorithms are used to obtain global information about a
graph. By observing the matrix of the shortest paths, a global decision can be made
about a graph. Using the city and highway analogy, the matrix of |V |> numbers can be
thought of as being a road map, where each number represents the minimum possible

transit time between a pair of cities.

2.5.3.3. Floyd-Warshall Method

The Floyd-Warshall algorithm for determining the all-pairs shortest paths is ex-
plained in this subsection. This algorithm determines the vertex-to-vertex shortest path
between every vertex pair in a graph consisting of |V'| vertices. To explain the internal
operation of the algorithm, a matrix D that contains the shortest vertex-to-vertex path
is first created. The D matrix can be thought of as being a roadmap which contains the
shortest distances between any two cities. In terms of synchronous circuit optimization,
each individual element of matrix D, d(i.), is assumed to contain the shortest path

delay between vertices v; and v,.

The Floyd-Warshall algorithm recursively determines the elements of the D matrix

by using the following definition [49]:

Let p:v; = vgy — vga — -+ = v, — vj be this shortest path from vertex v;
to vertex v; going through intermediate vertices vgj, vga, ..., Ugq. Let d®)(i, j) be
the delay of a shortest path with all intermediate vertices in the set {1, 2, ... k}. The

objective of the Floyd-Warshall algorithm is to begin with an infinitely large set and to

31

decrease the cardinality of this set at every iteration step, thereby gradually approaching
the shortest path. Simply, at iteration step 0 (i.e., £ = 0), a path from vertex v; to
vertex v; with no intermediate vertex numbered higher than 0 contains no intermediate
vertices. Therefore, d{°) for any vertex pair is equal to w(i, j), the weight of the edge

between vertices v; and v;. To form the recursive iteration, consider the following:

e Ifkis not an intermediate vertex of path p, then all intermediate vertices of path p are

in the set {1,2, ... k-1}. Thus, a shortest path from v; to v; with all intermediate
vertices in the set {1,2, ... k-1} is also a shortest path from v; to v; with all
intermediate vertices in the set {l,2, ... k}.

o If k is an intermediate vertex of path p, then p can be broken into subpaths p; and
p2, where p; : ¢ ~ k, and p» : k ~» j. Since & is a terminating vertex for p;
and the initiating vertex for pa, the intermediate vertices of both p; and p» are in

the set {1,2, ... k-1}.

Based on this strategy, the following recursive definition can be developed:

[wlind) ;

0
(k)(; ’
dF(i,4) = {min (d(k—l)(i,j), d(k-l>(i,/c)+d<k-l>(k,j)) k21

(2.11)

v

Note that the two operands of the min operation are the d*~!)(i, j), the shortest
path from the previous operation if k£ is not an intermediate vertex at iteration k£ for

d* =1, k) + d*=1(k, j), if k is an intermediate vertex at iteration k, then the new

32

shortest path is the sum of the shortest path weights of the paths p; and p2. Therefore,
(2.11) suggests that at the first iteration (k = 0), d(¢, j) must be initialized to the weight
of the edge e : i — j (no intermediate vertex). A test must be made to determine
whether, at iteration k, adding an intermediate vertex £ along the path p : ¢ — j
decreases or increases the weight of the shortest path p. To perform this test, the current
shortest path weight of path p (d*=1(i, j)) is compared to the sum of the shortest path
weight of paths p; and p» (d¥~1(i. k) and d*~'(k,), respectively). The minimum of

the two values is used as the next shortest path value (d*(i, j)).

Pseudocode of the Floyd-Warshall algorithm based on the recursive relationship

described by (2.11) is shown in Figure 1O.

—
.

fori =11t |V|do

o

for j =1 to |[V]| do

3. dO.j) = wle : i — J)

>

for k = 1 to |V] do
5. fori=11to |V|do
v’

6. for j=1to do

~

A9, j) = min (&40, j), dEDGLE) +dED(k,)
8. Matrix D contains the shortest paths

Figure 10. Pseudocode of the Floyd-Warshall algorithm.

33

After the elements of the D matrix are initialized with the edge weights w(z, j)
(steps 1 through 3), the initial iteration values d‘°)(i, j) are determined. A total of |V/|
iterations are performed (Step 4) on those d(:,j) values. During the iteration (steps
5 and 6), the recursive formula of (2.11) is used (Step 7) to determine the next value
of d(i,j). After |V| iterations are performed, the D matrix contains the shortest path
values between vertex pairs (Step 8). The Floyd-Warshall algorithm is used in the
research described in this dissertation within retiming algorithms to determine all of the

possible delay values between any vertex pair.

2.5.3.4. The Bellman-Ford Algorithm

The Bellman-Ford algorithm is used to solve the single-source shortest paths
problem by employing the technique of successive approximations [47, 49]. The source
vertex is initialized with the value zero, since its distance to itself is always zero. Every
other vertex is initialized with the value infinity. These tentative values are decreased
at every iteration using a method called relaxation. At every iteration step, a tighter
solution, an intermediate solution closer to the final result may be obtained. As proven
in [49], after |V| steps, either a solution is found, or no solution exists. A solution
does not exist in the case where there is a negative weight cycle. An example which

contains a negative cycle is presented later in this section.

In the last subsection, a method is explained for using the Bellman-Ford algorithm

to solve a linear program. Since the synchronous optimization algorithms presented

34

in this dissertation consist of converting timing constraints to a linear program, the
Bellman-Ford method can be used in synchronous optimization algorithms by applying

this technique.

Relaxation The Bellman-Ford algorithm uses the technique of relaxation. An attribute
d[v] is assigned to each vertex. d[v] is the tentative shortest path value from the source
to vertex v. At every iteration of the Bellman-Ford algorithm, this value may possibly
be decreased, thereby yielding a near optimal solution which is closer to the optimal

solution. At the end of

V| iteration steps, either a solution is found, or it is determined
that a solution does not exist. d{v] contains the shortest path value after |V| steps if

a solution exists.

To exemplify the relaxation procedure, consider the edge e : u — v in Figure 11.
Two cases are of interest, the case in which the relaxation yields a smaller d[v] value,
thereby obtaining a value closer to the final result (see Figure 1la), and the case that
relaxation has no effect (see Figure 11b). In Figure lla, the tentative shortest path
values are d[u] = 2, and d[v] = § before relaxation. However, since the weight of the
edge e : u — v is three, there exists a shorter path from vertex u to vertex v along
edge e with a total path weight equal to 2 + 3 = 5. Therefore, applying relaxation to
edge e sets d[v] to 5, thereby yielding an improved shorter path value for vertex v. In
Figure 11b, on the other hand, the d[v] value is 4 before relaxation, therefore, relaxation

has no effect, since 2 +3 = 5 is not an improved alternative to the already existing

35
tentative value of dfv] = 4.

The relaxation procedure is denoted as RELAX(e). RELAX(e) performs relax-
ation on an edge e : u — v, which has a weight of w(e). The d[v] value is updated
according to the aforementioned procedure. Pseudocode of RELAX(e) is given in

Figure 12.

/ w=3 N {5 W= /\
el el
u v u v
(a) (b)

Figure 11. The relaxation procedure. (a) a tighter bound is found after relaxation, (b) relaxation has no etfect.

1. if d[v] > d[u] + w(e) then
2. dv] = du] + w(e)

Figure 12. Pseudocode of RELAX(e). d[v] is updated according to the aforementioned procedure.

36

Using Bellman-Ford to Solve the Single-Source Shortest Paths Problem

The Bellman Ford algorithm uses relaxation as its primary element to solve the single
source shortest paths problem. Procedure RELAX() is successively applied to every
edge to obtain a tighter bound. After |V'| steps, either a solution is found, or it is
determined that no solution exists in case a negative cycle in the graph is reachable
from the source vertex. To exemplify the operation of the Bellman-Ford algorithm and
the effect of negative cycles on the operation of the algorithm, consider the two graphs
shown in Figures 13 and 14. A graph containing only positive cycles is depicted in
Figure 13, whereas the graph of Figure 14 contains two negative cycles: the dark-
colored path p, : v9 — vy — v3 — vg and the path p: v — v3 = vg — v2. From the
shortest paths viewpoint, having such a negative cycle implies that the distance from
any vertex v, to vertex vg can be arbitrarily decreased by traversing the aforementioned

negative cycle path multiple times since for any path p; : v» — vq,

d(p:) <d(p:)+d(pa) V pz:vr — ve, pan:vtg— vl — U3 — Ug. (2.12)

(2.12) suggests that the shortest path between an arbitrary vertex and vertex vg (d(p:))
is undefined since d(p.) can be made arbitrarily close to ~oc by traversing vy —
v; — vz — vo multiple times. For example, since the shortest path from the source
(vertex vy) to vy can be made arbitrarily small, the shortest path from the source to
vy can also be made arbitrarily small, since there is an edge between vy and v2 with

a weight of three. In the specific example of Figure 14, the Bellman-Ford algorithm

37

is not able to determine the shortest path for any of the edges due to the existence of

the aforementioned negative cycle.

Figure 13. An example graph which does not contain a negative cycle.

Figure 14. Graph of Figure 13 with a negative cycle along the path

vo — u1 — va — vo. Note that the negative edge weight of es causes the negative cycle.

o

8.

9.

d[s] = 0, where s is the source vertex
for Vv € V — {s} do
dlv] =
for : = [to [V]| -1 do
forve:u - v € FE do
RELAX(e)
forVe:u - v € E do
if d[v] > d[u] + w(e) then

return FALSE

10. return TRUE

Figure 15. Pseudocode of the Bellman-Ford algorithm.

38

The pseudocode of the Bellman-Ford algorithm for determining the shortest paths

from a source vertex v, to the other vertices in a graph is shown in Figure 15. The d[]

value for the source vertex v, is initialized to zero (Step 1) and the d[] values for the

other vertices are initialized to oo (Steps 2 and 3). On a graph consisting of |V'| edges,

every edge is relaxed |V'| — | times (the loop of Step 4). Note that |V'| relaxations are

unnecessary since the source vertex always has a fixed value of zero. Every edge in the

graph (Step 5) is relaxed as summarized by the pseudocode shown in Figure 12 (Step 6).

After |V| — 1 passes are completed over all edges, Steps 7 through 10 are performed

to check the validity of the results. As mentioned earlier, if there exists negative cycles

39

in the circuit, the resulting solution is invalid, i.e., a solution does not exist. This event
occurs if a better solution can be obtained after |V/| — | passes over the edges. In the
case where there are no negative weight cycles, a solution is reached after |V| — 1
passes and no better solution exists after |V/| — | steps. However, in the case of a
negative weight cycle, a better solution is found even after the algorithm is completed.
This result indicates a non-convergent set of d[] values. Based on this condition, a
post-iteration validity check can be performed on the d[] values. This validity check
includes going through every edge after the algorithm has been completed (Step 7)
and checking to see if a better d[} value can be obtained using relaxation (Step 8). If
a smaller d[] value can be obtained for any vertex using relaxation on an edge e, it
indicates a negative cycle which consists of edge e, i.e., the solution is invalid (Step
9). If no such edge exists, the solution is valid and the d[] values contain the shortest

paths to the source vertex (Step 10).

Using Bellman-Ford to Solve Linear Programs In the earlier section, the Bellman-
Ford algorithm for the solution of the single source shortest paths problem is described.
In this section, it is shown that with a simple modification, the same algorithm can be
used to solve a Linear Program in the form of (2.10). This simple modification involves
substituting the aforementioned d[] values for the unknowns r, in the linear program,
i.e., d[1] is substituted for z;, d[2] is substituted for 2, etc. Under this assumption, z, is

initially zero, and the other variables are calculated relative to r;. A careful observation

40

of (2.10) shows that this substitution is acceptable since the Linear Program consists of
a set of NV inequalities, thereby permitting at least one variable to be chosen arbitrarily,
which is .y (d[1]) in this case. The relaxation of edge e : u — v is equivalent to solving
for the inequality z, — r, < w(e). For example, the relaxation shown in Figure 11a is
equivalent to solving the incquality z, — z, < 3, where initially z, =2 and z, = 8.
Note that only one variable (x,) is changed after relaxation.

With this modification, the Bellman-Ford algorithm can be used to solve a Linear
Program. The algorithms developed for synchronous circuit optimization in this dis-
sertation create timing constraints which are written in the form of a Linear Program.
This Linear Program is solved using the Bellman-Ford algorithm. Bellman-Ford runs
in O(|V]|E|) time, due to the nested loops in Steps 4 (O(|V])) and 5 (O(|E])). Note
that the relaxation is O(1), and the post-verification between the steps 7 and 9 require

O(|E]) time. The proof showing how the algorithm is guaranteed to converge after

|V| — | passes over all edges can be found in both [49] and [47].

2.5.4. Branch and Bound Algorithms

The Branch and Bound (B&B) algorithms are used to solve problems that cannot be
solved in polynomial time effectively [50] though these algorithms are asymptotically
exponential. Assume a problem P with input variables xq through z,_, linear
constraints cp through c,_; on input variables, and an optimum solution 5. For

simplicity, assume that S is an integer, although it is possible for the outcome to

41

be a real number. Assume that Ly is the initial lower bound for S. S can be set to +o0
or more sophisticated methods can be used to determine an improved lower bound. The
objective of the B&B method is to obtain a lower bound as close to S as possible, i.e.,
to determine a set of input variables zq through z,_| that satisies all of the constraints
cy through c,—; and yields the lowest lower bound. In this dissertation, the minimum
clock period of a synchronous digital system is determined using these B&B methods

where 5 is the optimum clock period for a synchronous circuit.

Here is how the B&B method works: Let a variable x; have three possible values,
-1, 0, and | (for example, the weight of a specific edge in a graph). For these three
values, the original problem set can be partitioned into three subproblems P, P», and A;.
These subproblems now have one less input variable, =g, . . . zj—y, Zji41 ... Tg-1,and
less constraints since the constraints containing the variable r; are now much simpler.
For the subproblems P, P>, and P;3, the following can be true: 1) None of the solutions
obtained in a subproblem P, yield a better lower bound than the current lower bound
L, in this case subproblem P, is pruned (or disregarded). 2) No possible solution
can be determined to satisfy all of the constraints. One or more of the constraints are
unsatisfiable. In this case, the algorithm fathomes the subproblem P,. Assume that
P, is pruned since the lower bound L, obtained from P> is higher than the current
lower bound, i.e., L < L,. Also, assume P, is fathomed since one or more of the
constraints is not satisfied, i.e., P| is infeasible. In this case, P; is the only possible

candidate that yields an improved lower bound than the current lower bound L. If P3

42

produces a lower bound L3 less than L, then L3 is accepted as the solution. It may
be necessary to subdivide the subproblem P; into subsubproblems P3; to determine the
optimal solution for the overall problem P by considering possible values for another
variable, e.g., ri—;. The algorithm can be terminated if a sufficiently small solution is
obtained or a certain amount of time has clapsed.

The process of subdividing the problem space into subproblems is called branching.
At each step of branching, the subproblems are analysed and the bounds are re-adjusted,
thereby forming the aforementioned bounding step. B&B algorithms provide an
efficient approach for solving many of the complex combinatorial optimization problems
introduced later in this dissertation. Additional information about B&B algorithms can

be found in [50].

43

Chapter 3. Synchronous VLSI Circuit Optimization
Techniques

The performance of synchronous circuits can be increased by pipelining at the
expense of increased system latency and area. Pipelining converts a combinatorial
circuit into its sequential equivalent by breaking the global data paths into local data
paths with smaller delay. This change is achieved by inserting registers (memory
elements) between the logic blocks. The intermediate processed results are saved in a
memory element (or register) and used during the following clock cycle [1]. Thus, this
technique increases the rate of data flow by providing concurrent operation, albeit with

increased circuit area and system latency.

Retiming is a technique used to increase the clock frequency in pipelined syn-
chronous circuits without affecting synchronous latency. An initial synchronous system
is converted via retiming into a functionally equivalent system using techniques origi-
nally described by Leiserson and Saxe [14]. The locations of the registers (with respect
to the logic elements) are changed so as to minimize the clock period while preserv-
ing the system function and latency. The primary distinction between pipelining and
retiming is that pipelining converts a combinational circuit into a sequential circuit,
increasing system latency. In retiming, alternatively, the register locations within a
sequential circuit are optimized such that the circuit operates at the highest possible

frequency without increasing the latency.

44

This chapter is intended to provide background information about the aforemen-
tioned two synchronous optimization techniques: pipelining, and retiming. A detailed
review of both pipelining and retiming is provided herein. A discussion of pipelining
techniques and related work in the field is provided in Section 3.1. Retiming of syn-
chronous circuits and related retiming algorithms are discussed in Section 3.2. With
this background information, the incorporation of low-level circuit parameters into the

retiming process will be discussed in the following chapter.

3.1. Pipelining of Synchronous Digital Systems

Pipelining is a technique for increasing the performance of a synchronous circuit.
After pipelining a combinatorial circuit, the clock frequency of the circuit is increased,
resulting in higher synchronous performance. Pipelining has been used to improve
the speed of a number of different applications, ranging from combinatorial circuits to
microprocessors and DSP-based systems. This section is divided into four subsections:
early work in the field of pipelining combinatorial circuits is reviewed in the first
subsection. Pipelining of microprocessors and DSPs is discussed in the following two
subsections, respectively, followed by a brief review of wave-pipelining in the last

subsection.

3.1.1. Pipelining of Combinatorial Circuits

One of the earliest studies of pipelining was by Cotten in 1965 [1] in which he

describes the time required for a data signal to reach the system output once it is applied

45

to the system input as the pipeline fill-up time, and the rate at which the data flow in
the pipeline as the byte-flow. A pipelined circuit is depicted in Figure 16 in which the

registers are placed between logic elements so as to increase the data flow rate.

Combinational Circuit

T Lope 2
i — (
i |

Pipelined Circuit

R ‘ 1
i - < |
L :

Figure 16. Pipelining breaks global data paths into local data

paths with smaller delay so as to increase the data flow rate.

The dependence of the maximum flow-rate on the register delays was further
investigated by Cotten in [2] and others [38, 39]. Their work showed that due to
the inherent delay of the pipeline registers, the computational speed cannot be increased
arbitrarily, but rather is bounded by the register delays. Jump and Ahuja [51] assign
costs to registers and the logic elements and study the average delay, the average
cost/operation, and the average time/operation ratios in a quantitative framework. In

this dissertation, the delay of the circuit § is defined as
6 = N(Ts + Th), 3.1

where NV is the number of pipeline stages in the circuit, and T's and Tg are the
maximum logic and register delays, respectively. This definition corresponds to that

of the temporal latency introduced earlier. Note that Jump and Ahuja assume uniform

46

delays for each stage and only the maximum delay is considered. In this same paper,
the pipeline efficiency is analyzed using measures such as the average cost per operation

n(M) and the average time per operation (). These ratios are defined as

. M+N-=-1
n(M) = (Kp + KpNa)(Ts + TR)(—“L,—;,——), 32)
r(M) = (Ts + Tr) (1”—3"—1-) (3.3)

respectively, where A'p and A'p are the total cost of the logic elements and a single flip-
flop per second, respectively, M is the average number of operations to be performed,
and Vg is the total number of stages. In this context the definition of the cost is
left open-ended, i.e., parameters such as power consumption or area can be used as
a measure of the cost depending upon the application. They further show that as the
number of operations increase, the term (M + .V — 1)/M approaches unity. This term
is defined earlier as the efficiency of a pipeline by Chen [52] and can be interpreted as
V clock periods are required to perform the initial operation and the remaining M — |
operations occur at each following clock period. As the number of operations increase,
the performance degradation due to the pipeline fill-up time becomes less significant.

Another specific application of pipelining to combinatorial circuits is arithmetic
functions, investigated by Hallin and Flynn [53]. They define the efficiency of pipelining
as

pipeline ef ficiency = l;lG’ 34)

47

where V is the number of bits in the operands, D is the delay of each pipeline stage
(assumed uniform), and G is the total number of gates in the total system including the
latches. A wide range of adders (e.g., carry look-ahead, conditional-sum) and multipliers
(e.g., Wallace, fully iterative array) are contrasted. They show that as the pipeline depth
is increased by a factor &, the efficiency does not increase by the same factor due to
the added overhead of the registers.

Global data paths are broken up into local data paths so as to achieve a specified
clock period. Papaefthymiou presents an algorithm in [54] for automating pipelining

of a fully combinational circuit in O(£) time.

All of the previously discussed papers assume the pipelines consist of edge-triggered
registers only. In [44], Sakallah er al. describe synchronizing pipelines consisting of
multi-phase latches. A previously introduced timing model [24] is applied and both

short and long path constraints are introduced.

3.1.2. Pipelining of Microprocessors

The application of pipelining to processor design by parallelizing the fetch, decode,
and execute units was initially studied by Flynn in 1966 [36]. He showed that by
parallelizing the events in a SISD (single instruction, single data) machine, it is possible
to increase the rate at which the input of the system accepts new data and the rate at
which the system outputs processed data. The pipelining concept, applied to the DLX

processor [55], is depicted in Figure 17 in which instruction fetch (F), instruction decode

48

(D), execute (X), memory access (M) and writeback (W) operations are performed in
parallel. Although these five operations are necessary to complete an instruction, each
instruction effectively requires a single cycle due to the inherent parallelization. Note the
pipeline stall (denoted as “s”) which occurs at the fetch phase of the sixth instruction.
Thus, the pipeline is not fully utilized in the sixth clock cycle. The shaded column

denotes the clock cycle in which the pipeline is utilized 100%.

I Clock Cycle
| 2 3 4 5 6 7

Instruction
1 F D X M W
2 F D X M w
3 F D X M w
4 F D X M
5 F D X
6 s F

Figure 17. Pipelining of microprocessors: five primary operations

of the microprocessor are pipelined to increase computational speed.

Although pipelining can increase synchronous operation dramatically, it cannot
be fully exploited in microprocessor architectures due to instruction dependencies,
structural limitations, and branch instructions. Complete parallelization of the code
is not possible since some instructions need operands produced by previous instructions
[56, 57]. Branch delay and branch prediction methods have been employed to overcome

this problem [55, 58, 59]. Those deficiencies that decrease pipeline efficiency are called

49

hazards and cause pipeline stalls (the situation where the execution of an instruction
must be delayed due to a hazard). An example pipeline stall is denoted as *s” in Figure

17. An example of this case is the sixth clock cycle on Figure 17.

Pipelining is widely used in supercomputers. The relationship between the degree of
central processor pipelining and supercomputer performance is discussed by Kunkel and
Smith [60]. They show that overall pipeline performance peaks at six ghtcs per pipeline
segment. Using excessive gates per segment degrades the performance since the clock
period is increased. Pipeline segments that use too few gates degrade the performance
due to data and clock skews within the system. Note that data skew is defined as
the difference in delay between the maximum and minimum signal propagation times

through the combinational logic within the pipeline stages.

3.1.3. Pipelining of DSPs

The application of pipelining to enhance the performance of digital signal processors
(DSPs) has been well studied [e.g., 61-63]. Capello and Steiglitz define completely-
pipelined architectures in [62] in which circuits are pipelined down to the bit level.
They apply pipelining to DSP architectures and show that complete pipelining is
appropriate for array-connected (mesh-connected) DSP architectures. Capello, LaPaugh,
and Steiglitz [64] define an A P-product to measure the efficiency of pipelining, where
A is the area of the VLSI chip and P is the clock period. This definition of efficiency

is similar to Hallin and Flynn’s {53] definition in that the term G has similarities to A

50

(since the number of gates used in the circuit is directly proportional to the chip area)
and D is similar to P. Siomalas and Bowen investigate [63] strategies for designing
DSPs such that all building blocks within the DSP are active at the same time. This
methodology increases the effective speed of the DSP operations since the most efficient
use of pipelining is achieved by maximally exploiting the inherent temporal parallelism.

They also demonstrate their method of pipelining on FFT design.

3.1.4. Wave-Pipelining

The clock frequency of a pipelined synchronous system can be increased without
increasing the number of registers. This improvement in clock frequency is possible by

applying input signals faster than the total delay of the data path.

Successive waves of data are sent through combinatorial logic paths. If the data
skew is small and sufficiently accurate control of the arrival times at every node
is maintained, the successive data waves can act as a pipeline, permitting fewer
synchronizing registers to be used. This technique is called wave-pipelining and was
originally proposed by Cotten in 1969 [2]. A wave-pipelined circuit in which successive

data waves propagate through the pipeline is depicted in Figure 18.

Although wave-pipelining can be successfully applied to highly-structured architec-
tures, it fails to work well in those architectures in which the path delays are unbalanced
(significant data skew exists). The insertion of active elements in the system to per-

mit wave-pipelining of unstructured architectures has been investigated by Wong, De

51

/[

/
Wn}e \Wa}ve \anve \Wulve R f
A
|

/ /) /))

Figure 18. In wave-pipelining, successive data waves propagate

/

e 4

- l--w

through the logic elements. forming an effective pipeline.

Micheli, and Flynn [3]. The primary issue in achieving wave-pipelining is to equalize
the path delays within the circuit by padding delays. Padding is the process in which
those paths that have shorter delays are detected, permitting the insertion of active delay
elements along these paths to ensure that all circuit paths have a delay between a lower
and an upper bound. Recently, Shenoy et al. proposed greedy heuristic algorithms for
padding these unequal delay paths [65]. They consider the padding operation as a post-
processing step and offer linear programs for solving this problem. Wong, De Micheli,
and Flynn also propose algorithms to implement wave-pipelining by padding delays
[4]. They demonstrate padding on a 63-bit population counter and show that the clock
frequency of the circuit can be increased by two to three times using wave-pipelining.
They also show that bipolar technologies, such as CML and super-buffered ECL, are
more suitable for wave-pipelining than CMOS since they have inherent uniform delay

(i.e., are less sensitive to input waveform and output loading).

3.2. Retiming Techniques for Sequential Circuit Optimization

Retiming is a sequential optimization technique used to increase the operating

52

frequency of a synchronous circuit without increasing the sequential latency of the
circuit. The location of the pipeline registers are reorganized so as to achieve the
minimum clock period of a synchronous circuit while preserving the latency and the
function. The relative timing of the internal events may change, however, the overall
behavior of the circuit is preserved. In subsection 3.2.1, the original seminal paper on

retiming published by Leiserson and Saxe is reviewed and a survey of more recent work

3.2.1. Overview of the Retiming Process

Leiserson and Saxe originally showed in 1981 [12] that it is possible to obtain a
functionally equivalent sequential circuit that operates faster by changing the locations
of the registers according to a set of rules. A methodology for optimally determining
the location of these registers such that the minimum clock period is achieved while
retaining the system latency and functionality is known as retiming [12] and is reviewed
in [14].

In retiming, a circuit description containing logic delays and path connections is
transformed into a directed graph in which the vertices represent logic delays and
the edges between these vertices represent connections between these logic elements.
Weights are assigned to each edge, defining the number of registers between logic
elements. A zero weight edge, for example, shows that no registers exist between

those two vertices. Edges are assumed to have no effect on the path delays and each

53

data path is defined from vertex to vertex. In the Leiserson-Saxe algorithm [14], the
edge weights are varied such that the function and latency of the original system is
preserved, while tracking the effective latency at each vertex. The location of these
registers are constrained by specific retiming rules, which ensure functional correctness
and equivalency. Note that in minimizing the clock period, a successive search is
performed to determine the minimum feasible clock period rather than choosing a
register allocation that satisfies a specified clock period. The original sequential circuit
from [14] is shown in Figure 19a along with a retimed version which is depicted in
Figure 19b. The minimum clock period of the original circuit is 24 time units (tu)
and the retimed version has a clock period of 13 tu. The clock period is decreased by
changing the register locations such that the data paths with large delays are broken into
smaller paths with less delay. This process reduces the delay of the limiting critical
path which constrains the overall system clock period. The critical paths in the original

and retimed versions of the circuit are shown in bold in Figure 19.

An important step in the retiming process is producing a set of edge weights that
satisfy a specific set of constraints. The process of solving for a set of feasible edge
weights requires a solution for |£| unknowns, where |E| is the number of edges in
the sequential circuit. A key aspect of retiming, originally described in [12], is the
use of vertex lags to reduce the number of unknowns from |E| to |V/| based on the
observation that, to preserve functional equivalency, edge weight changes cannot be

made independently.

54

Figure 19. a) The original graph introduced in [14] and b) its retimed version. Note that the sequential

latency is four clock periods in both cases. r{v,) denotes the lag of vertex n after retiming.

The lag of a vertex v, r(v), is defined in [14] and adhered to herein. The vertex
lag function r() plays a fundamental role throughout the entire retiming process, and
is therefore repeated here. The retiming process does not change the vertex delays d(),
however, the weights of the edges are changed according to the lags assigned to the

vertices based on the following formula,
wr(e) = w(e) + r(e.end) — r(e.start), (3.5)

where e is an edge and w(e) and w,(e) are the weight of edge e before and after

55

retiming, respectively. Therefore, the retiming process can be thought of as determining
|V| integer vertex lags, r(0)...r(|V|— 1), according to the retiming rules defined in [14].
An observation of (3.5) shows that instead of calculating | £| edge weight values during
retiming, |V/| vertex lags are calculated. Although the result is identical and yields a
functionally equivalent circuit, the computational effort is significantly reduced since

V| is much less than |E| and the CPU time of these retiming algorithms

typically
depend polynomially on both of these unknowns, |V| and |E|. The r() function is
utilized since the edge weights do not change independently during the retiming process.
The r() function represents lags attached to the vertices denoting relative edge weight
adjustments, as shown in Figure 20. Let r(l) denote the lag of vertex 1. As shown in
Figure 20, changing the lag of the vertex from zero to one affects the weights of all of
the edges connected to this vertex. Increasing the lag of a vertex by one has the effect
of decreasing the weights of all the edges in front of the vertex by one and increasing
the weight of all the edges behind the vertex by one. The retiming process consists
of applying these vertex lag adjustments throughout the entire synchronous circuit to

minimize the imbalance among all the path delays.

56

=1 w=0

Figure 20. The lag function changes the edge weights while preserving the circuit function. Increasing
the lag of a vertex by one has the effect of increasing the weights of all edges by one connected

in tront of this vertex and decreasing the weights of all edges by one connected behind this vertex.

The retiming process is based on (3.5) and two primary rules: 1) edge non-negativity
constraints and 2) long path constraints. These two rules generate inequalities in terms
of vertex lags. The set of linear inequalities are solved using the Bellman-Ford algorithm
[47] and the resulting lags are used to calculate the retimed edge weights, w,(e), from
(3.5). The two aforementioned retiming rules are repeated here: the edge non-negativity

constraint is

r(u) —r(v) < w(e), Ve:u — v, 3.6)

which ensures non-negative weights on each edge. The long path constraint is

r(u) —r(v) £ W(u,v) =1, Yu,v: D(u,v) >c, 3.7)

where W (u,v) and D(u,v) are matrices containing the total weight and the total delay
of the path from vertex u and vertex v, respectively, and c is the target clock period.
The last rule states that a register must be placed on all paths with a delay greater

than the desired delay, i.e., a path with an excessively large delay must be broken into

57

smaller paths by placing a register in the middle. Note that in calculating the minimum
clock period of the circuit, a binary search is performed and the minimum achievable

clock periad is selected as the clock period of the circuit.

3.2.2. More Recent Work in the Field of Retiming

The field of retiming has developed to include register minimization and improved
propagation delay models [13, 14]. A single value is assigned to each vertex and edge,
representing the delay of the logic elements and the number of registers between the
logic elements, respectively. Using this approach, the problem of clock period mini-
mization for synchronous circuits can be solved using the aforementioned Bellman-Ford
algorithm [47]. Similar ideas are used to perform minimum clock pipelining, minimum
clock retiming, and approximate minimum clock retiming [54]. Papaefthymiou [66]
shows that the total delay of the cycles (paths initiating and terminating at the same
vertex) in a graph representing a synchronous circuit plays a significant role in defining
the maximum clock frequency of a synchronous circuit. Upper and lower bounds for
the clock period are derived using the edge weights and total delays of the cycles. The
lower bound on the clock period is characterized as the maximum ratio of the delay to
weight for any cycle in the graph. In Figure 19a, for example, there are four cycles
with total delays (10,20,30,33) and total weights (1,2,3,4). Let Cy through C; represent

these cycles, where the lowest index represents the innermost cycle. Thus, Cp has a

58

total delay d(Cy) and weight w(Ca),
d(Co = vg — eg — v} — e7r — v7 — eg) = 10,
(3.8)
w(Co=vy — €g — v > e7 > u; = €g) =1,
where d() and w() are the delay and weight functions, respectively. Thus, the data must

travel Cy (10 tu) in one clock cycle, cycle two (20 tu) in two clock cycles, etc. The

lower bound on the clock period of this circuit is therefore [66]

10 20 30 33
Tmin = max {T, .—2', ?, T} = 10, (39)

where Tin is the minimum achievable clock period of the circuit. Note that this clock
period can only be achieved when the delays are properly distributed. In a circuit in
which the delays are non-uniform, this minimum limit is not achievable. For example,
the retimed version of Figure 19a has a clock period of 13 tu, whereas the theoretical
minimum is 1O tu.

[shii and Leiserson [67] and Sakallah, Mudge and Olukotun [24] develop a theory
for analyzing level-clocked circuitry. In [67], an algorithm is presented for verifying
timing in VLSI circuits. Propagation delays of latches are considered to be constant
and minimum propagation delays of the logic elements are not considered. Retiming
algorithms for synchronous circuits consisting of single-phase [15], two-phase [31], and
multi-phase [17] flip-flops have also been developed.

Retiming can be made more effective by combining it with combinational optimiza-

tion. Algorithms have been proposed by DeMicheli [18] to minimize the cycle time

59

using logic transformations, such as elimination, resubstitution, extraction, and decom-
position, while also retiming the synchronous circuit. Another proposed method is to
temporarily shift the registers to the periphery of the synchronous circuit, perform logic
minimization on the purely combinatorial circuit, and return the registers to within the
circuitry [46]. Although this methodology temporarily creates negative edge weights,
violating the aforementioned retiming rules [see (3.6)], once the registers are replaced,
the negative edge weights are eliminated. This method of performing logic optimization
on the combinatorial circuit between the registers is defined as resynthesis [46, 68].

Application of this method to multi-phase pipelines is discussed in [69].

Retiming to minimize the number of registers in a sequential circuit was proposed
by Leiserson and Saxe and is shown to be equivalent to state minimization in FSMs
[14]. Recently, retiming has been extended to cover gated-clocks and precharged circuit
structures [32]. Retiming to decrease power dissipation by minimizing the switching
activity within the synchronous circuit while preserving functional equivalency has also
been demonstrated [35].

Although retiming can significantly reduce the clock period of a synchronous circuit,
its usefulness is limited by the nature of the circuit structure. The application of retiming
to highly-structured circuits such as FIR filters is studied in [70] by combining retiming
with algebraic speed-up techniques. This method is based on the ERB (eliminating
retiming bottlenecks) method introduced in [71] in which the computational structure

of the original circuit is changed so as to enhance its ability to be retimed.

60

Chapter 4. Register Electrical Characteristics (RECs)

As described in Chapter 2, the primary objective of this dissertation is to introduce
a set of algorithms to optimize synchronous circuits by incorporating low-level circuit
issues into the design, analysis, and optimization process. Among these low-level issues
are the delays of the registers, the local clock skew, the interconnect, and the logic gates.
Before these issues can be successfully incorporated into the synchronous optimization
process, these issues must be properly modeled. The main topic of this chapter is the

systematic modeling of these low-level circuit characteristics.

In Section 4.1, these low-level circuit effects (called Register Electrical Charac-
teristics or REC’s) are introduced and the reason for the introduction of the REC’s is
discussed. The low-level circuit effects that constitute the REC structure are individ-
ually discussed in the following sections: register-related delays, including the set-up
time, hold time, clock-to-Q delay, as well as the clock delays are discussed in Section
4.2. The interconnect delay due to the distributed RC impedances of the interconnect
are discussed in Section 4.3. The dependence of the register and logic element delays
on the load are formulated and discussed in Section 4.4. The REC model is developed
in Section 4.5. According to the REC model, the paths are defined from edge-to-edge.
The calculation of the path delays based on the REC model discussed in the previous

section is presented in Section 4.6.

6l

4.1. The Importance of an Effective Timing Model

A synchronous circuit is composed of a combination of logic and synchronizing
elements. Examples of typical logic elements include AND, OR, XOR, and NOT gates
or more complex structures, whereas synchronizing elements generally consist of one or
more registers located between the logic elements. A certain amount of time is required
to propagate a signal through the logic elements, since a gate is composed of transistors
which require some time to switch on and off. Transmitting a data signal from the
input of a logic element to its output also requires a certain amount of time. Previous
work in the field [12, 14] has assumed that the delay of the registers, the setup and hold
times of the data signals traveling between the logic elements, have negligible delays.
However, this is not true. Not only do the registers have non-negligible delay, but these
delays are also different (or variable). Furthermore, the interconnect between the logic

elements and the registers also typically have non-negligible delays.

In a fully synchronous system, the registers receive the global synchronization
signal (the clock signal) from a clock distribution network. In a synchronous circuit,
the clock source is located at a certain location and the clock signals are distributed
via a clock distribution tree using distributed buffers and interconnect. Ideally, in a
zero skew circuit, each register receives the clock signal at precisely the same time.
In practice, however, the interconnect that is distributing the clock signal has delays

and every register receives the clock signal at a different time. Furthermore, in certain

62

applications, it is advantageous to schedule the clock arrival times in order to increase
circuit performance within a VLSI circuit [22, 72]. A significant difference between
the clock delays of an arbitrary pair of registers may exist. Therefore, the timing

characteristics of these registers typically differ.

Furthermore, the delay of a logic element is dependent upon its load. For example,
if a register is connected to the output of a logic gate, it will present a different load
characteristic than if the gate is connected to another gate. If a register is connected,
the output of the logic element is loaded by the input capacitance of the register.
Alternatively, if there is no register at the output of the logic element, the output of the
logic element is loaded with the distributed RC impedance of the interconnect and the
input capacitance of the following logic element after the interconnect. These two loads
may differ significantly. Thus, if a synchronous circuit optimization technique changes
the number of registers at the output of a logic element, the delay of that logic element

may be significantly changed during the optimization process.

By omitting the aforementioned nonidealities of the interconnect, registers, logic
elements, and the clock distribution network, the accuracy of the simulation of a
synchronous circuit may be significantly limited. In the worst case, these non-idealities
may be sufficiently significant that ignoring these attributes may make the optimization
entirely useless. In this dissertation, these non-idealities are modeled and incorporated
into the proposed algorithms. These non-idealities are first reviewed in the following

section. As described later, these non-idealities are modeled by attaching a number set,

63

Register Electrical Characteristics (REC), to each edge of the synchronous circuit. The

REC’s are used to characterize and quantify the aforementioned non-idealities.

4.2. Register Delays

A typical flip flop (or register) used in a synchronous circuit is depicted in Figure
21. This flip flop is composed of two latches. The initial latch is used to hold the data
and the second latch is used to transfer the data to the output upon arrival of the clock
signal. The characteristics that define the operation of this flip-flop are the subject of
this section. The latching and clocking characteristics of the flip flops are considered
in the following subsections. The register-related delays such as the set-up delay, the
hold time, the clock-to-Q delay, and the clock delay are the topic of subsection 4.2.1.
Although these four delays are register-related, these delays must be divided into two
different categories: The set-up, hold, and clock-to-Q delays are related to the structure
and impedance characteristics of the flip-flop and are discussed in Subsection 4.2.2,
whereas the clock delay is associated with the structure of the clocking circuitry rather

than the actual flip flop and is described in Subsection 4.2.3.

4.2.1. Tset.ups THolds Tc—q, and Tcp

The data signal departing from the input of LATCHI must be allowed sufficient
time to pass the first transmission gate and latch into the initial transmission gate. This
set-up time Tse¢—up Can be described in terms of physical parameters related to the

transistors in the first latch [73] or can be derived from SPICE simulations. The input

LATCH | LATCH 2

C
1
C i
- o
; ! C)
Set-up TC-[o-Q

/ GLOBAL

. CLOCK) T
SOURCE

N CD

Figure 21. A typical edge-triggered master-slave flip flop is composed of two latches. The set-up time is the time
required for the data to successfully latch into the first latch. The hold time is the duration during which the data
at the input of the register must be stable after the arrival of the clock signal. The clock-10-Q time is the

time required for the data to appear at the output of the flip flop upon arrival of the incoming clock signal.

signal must be stable for a short time Tg,yy after the clock transition [74] to ensure
metastable operation does not occur. Once the data is latched into the initial latch, the
time required for the signal to appear at the output of LATCH2 after the clock signal
arrives is the clock-to-Q delay (Tc_.q) and is related to the delay of the transmission
gate and an inverter (if a second buffer is placed at the output of the latch, the delay of

this buffer must also be included in Tc_.q). The setup time, hold time, and clock-to-Q

65

Clock \I,

TSetup T

Data

Qutput

-»

T
c-Q
Figure 22. Timing diagrams of the flip-flop shown in Figure 21. The data signal must be
stable for Tserup before and Thoa after the arrival of the clock signal. The valid data

signal appears at the output of the flip flop Tciock—ro—q after the clock signal arrives.

delay are presented in the timing diagram showm in Figure 22.

An observation noted from Figure 21 is that the initial latch in this structure has a
constant loading C'yy on its output, since this latch is isolated from the output of the
register. This constant load is defined by the drain capacitances of the inverters in the
initial latch and transmission gate and the gate capacitance of the following inverter.
The delay of the second latch, however, depends upon the output load Cr. Since the
output load C; may change depending upon the logic structure connected to the output
of the latch, Tc—q is load dependent. An additional inverter may be used at the output

of the second latch to decrease the load dependancy of Tc_.q. However, this approach

66

may increase the overall delay of the entire flip flop.

The flip flop receives its clock signal from a global clock source located at a specific
location in the circuit. The global clock signal is distributed throughout the entire circuit
by a clock distribution network [42]. A flip flop, such as shown in Figure 21, is located
at a specific physical location within the circuit. The clock signal C reaches the clock
input of the flip flop with a certain delay. This clock delay is characterized as Tep.

The non-idealities of the registers in a synchronous circuit must be properly modeled
to successfully optimize a synchronous circuit. Therefore, the Tset—up, THotd» Te—Q.
and T¢p parameters and the load dependancy of the T¢_.q delay must be incorporated
into the REC model. The effects of these register non-idealities are incorporated into
the synchronous optimization process in this dissertation: REC Level | includes the
Tset—up» THotd» Tc—q» and Tep values. As presented in future work, REC Level 2

adds additional parameters to characterize the load dependancy of Te—q.

4.2.2. Estimating Tgseq.ups THoids and Tc—q

The setup time of a flip-flop Ts..yp is the time required for the flip-flop to enter the
irreversible latching state. An analytical formula for this time is complicated to derive
and is not presented here. Interested readers can find the derivation of the formula for
latching a CMOS Bistable NAND gate based register in [73]. A simple calculation of
the setup time of the flip-flop shown in Figure 21 is the delay through a transmission

gate plus two times the delay of the CMOS inverter located in the first stage of the

67

flip-flop. This time is required for a data signal arriving at the input of LATCHI to
propogate through the transmission gate at the input of LATCHI and through the two
cascaded inverters, thereby entering an irreversible latching state within LATCHI until

the next clock signal arrives.

As mentioned earlier, the valid data signal at the input of a register must be stable
for a short period of time before (T'se.up) and after (T'y,4q) the clock transition [74].
The hold time T'y,y4 is the time required for a flip flop to lock (or hold) the data in the
cascasded inverter pair. For the hold time, the input data signal must be stable so as to
ensure that the data signal passes through the transmission gate connecting the inverter
pair and irreversibly latches. Otherwise, the data signal may not latch or metastable
operation may occur. Typically, the hold time is small and, in some cases, negative,
denoting the fast latching capability of the flip flop due to the lead/lag relationship

between the clock and data signals.

Tse1up does not change due to loading on the output of the flip-flop since the
capacitive loading at the intermediate node (C'y) is constant. Ts.rup can be calculated

using SPICE, or derived from standard cell libraries.

The clock-to-Q delay of the flip-flop is dependent on the loading at the output of
the register. Specifically, when the data is transferred from LATCHI to LATCH2, the
transmission gate in the LATCHI stage is ON, thereby completing the feedback loop,

since the transmission gate between the two latches is ON, transferring the data from

68

LATCH! to LATCH2. Note that before the clock signal arrives, the data is already
available at the input of the transmission gate connecting the two latches. Therefore,
the clock-to-Q time is entirely dependent on the time required by the top inverter in
LATCH2 to charge the output load and the input capacitance of the bottom inverter. A
simple approach for estimating low-to-high (rpy) and high-to-low (rp,) 50% delay
values is shown in [74]. Note that the 50% delay is defined as the difference between
the time for the input to reach 50% of the maximum value and the output to reach 50%

of the maximum value. In [74], rpy and rpry are defined as

(Vou — Vsog)
[aug HL ’
i ’ 4.1)
(Vsoxz — Vor)
[avg,LH

TPHL = ClLoad

TPLH = CLoud \
where Vor. Yo, Vsoss luvg,LH. and [,y 11 are process and design dependent values.
Specifically, Vo is the highest voltage that is interpreted as logic 0, Vo is the lowest
voltage that is interpreted as logic 1, and Ve is the average of the two highest and
lowest voltage existing in the circuit (typically, Vpp/2). luvg,LH, and [aug &L are the
average current draw from the voltage source during the transition from low to high

and high to low, respectively. Approximating the delay as the average of rpy and

rpLu, the following formula can be derived for the clock-to-Q delay:
TC-—-Q = TC—Qo +m X CLomb 4.2)

where Tc_.q, is the intrinsic value of the clock-to-Q delay, Cfoqq4 is the load ca-

pacitance, and m is a process-dependent parameter describing the load dependence of

69

the clock-to-Q delay in terms of the device parameters related to the top inverter of
LATCH2. The parameter m can be derived from SPICE simulations or from the timing
data in a standard cell library. Note that the load dependence of the clock-to-Q output
signal can be decreased by inserting a single buffer or tapered buffers at the output of

the second latch [75], thereby increasing the output drive capability of the latch.

4.2.3. Estimating Tcp from the Layout

A procedure is described to demonstrate how clock delays can be estimated for a
practical circuit. It is assumed that an integrated circuit can be partitioned into regions
of similar clock delay. Each clock delay region is composed of both a deterministic

and a probabilistic delay component, as shown below:

Tcp(region = n) =Tcp,,,,.(region = n) + T, (4.3)

where T is a uniformly-distributed random variable and T¢p..,,. (region = n) is the

deterministic clock delay attached to region n.

The nondeterministic statistically-based component of the clock path delay, repre-
sented by the delay component T, is due to variations in process parameters within the
integrated circuit. Since transistor parameters, such as the channel mobility, threshold
voltage, and oxide thickness, may vary across the die, some variations of the clock
delay are expected. These variations, however, tend to be small for registers belonging

to the same local data path (and therefore physically close to each other). Methods

70

have been proposed in the literature for reducing the process dependence of the clock

skew to less than 10% of the total path delay [76].

The deterministic component of the clock delay for a region »n [T¢p,,,, (region =
n)] can be calculated based on geometric distance information derived from the circuit
layout. The distance information from a source node to any sink node in an IC layout can
be obtained either from routing information or using exploratory Steiner tree approaches
[77, 78]. Calculation of the interconnect resistances and capacitances directly from the
IC layout or Steiner tree can be achieved with standard circuit extraction techniques
[79]. With this information, well known techniques can be employed to estimate the

individual clock delays (e.g., [75, 80-83]).

As observed from (4.3), each region n is attached a deterministic clock delay
Tcp..,, characterizing that region. A floorplan of a simple integrated circuit consisting
of six clock delay regions is depicted in Figure 23. As an example, assume that the total
interconnect capacitance of the clock line driving region A is Cinr = 300 fF, the total
interconnect resistance of the clock line is Riz: = 200 2, the on-resistance of the clock
source is R = 300 €, and this clock line drives 100 registers (four NMOS and four
PMOS devices per register). The geometric size of the NMOS and PMOS devices are
10 pum x 1 pm and 20 pm x | um, respectively. Therefore, the total load capacitance
C of the module A can be approximated by (ignoring bulk capacitance)

CL =100 x 4(WpLp + WyLy)‘;‘i = 21 pF, (4.4)

oz

71

where Wp and Wy are the gate widths of the PMOS and NMOS load transistors,
Lp and Ly are the gate lengths of the PMOS and NMOS load transistors, €, is the
permittivity of the gate oxide, and ¢, is the gate oxide thickness (a value of 200 A
is assumed). Therefore, the deterministic component of the clock delay (defined at the

50% point) from the clock source to module A can be estimated as {75, 82]

TC'DCW“(TEQZ'OR = A) = 0-4Rintcmt + O-T(ercint + erCL + RinlC[.) =

0.4 x 60 ps +0.7(90 + 6300 + 4200) ps = 7.4 ns.

This simple example presents an approach for estimating the delays within a clock distri-
bution network. More sophisticated approaches for estimating [C area and performance

characteristics can be found in [84-86].

Y,
14
A

Clock Source

Figure 23. A block diagram of an example integrated circuit layout. The

chip area is assumed to be partitioned into regions of similar clock delay.

4.3. Interconnect Delays

A section of interconnect between two nodes in a circuit can be described as having
a delay Ty, caused by a distributed RC impedance with distributed resistance Ry, and
distributed capacitance Crn;, respectively. Since each edge in a graph representation
of a synchronous circuit represents an interconnect line, every edge e, can be thought
of as being a distributed RC line with a delay of Ty,;(e,) with a distributed resistance
and capacitance of Rrni(eq) and Cne(eq), respectively. Determining these interconnect
delays forms the topic of this section. Specifically, the interconnect delay Ty, between
two nodes in a synchronous circuit and the division of Ty, into T,y and Tppe in the
case where a register exists is discussed in Subsection 4.3.1. Estimating the interconnect
delay from a circuit layout is discussed in Subsection 4.3.2. In subsection 4.3.3, the

REC Level 2 approach is described for modeling the interconnect delays.

4.3.1. Tipa and Tipp

In the event that a register exists, the interconnect delay of edge e, is assumed to
be separated into two values of Trnyi(en) and Trni2(eq), where Trqpy and Tipyo are
the pre-register and post-register delays, respectively. In Figure 24, a register located
between two vertices is depicted. The pre-register interconnect delay T,,; and the post-
interconnect delay 7,2 are caused by the distributed RC impedances of the connection
elements between the vertices and the register (e.g., a metal layer in a VLSI integrated

circuit). As explained in the following subsection, Ty and T2 depend not only on

73

V. AW ,

T |Res o Y

Tt i T2
T

CD

Figure 24. The pre-register and post-register interconnect delays are caused by the

distributed RC impedance of the connections between the register and the logic elements.

the distributed RC impedance, but also the input capacitance of the logic elements and/or

the registers, and the output impedance of the driving logic element and/or the register.

4.3.2. Tyy Calculated from the Layout

The interconnect resistance can be calculated according to the following formula:

Lint

= p——int @.5)
P Wit Homt

Rint

where p is the resistivity of the interconnect (for example, 3 pQcm for aluminum, 1000
uQem for polysilicon), and Lyn;, Wine, and Hyy,, are the length, width and height of
the interconnection [75].

Interconnect capacitance can be approximated with a maximum 10% error over a

wide range of physical parameters using the following empirical formula [82].

‘,V n H 0.222
Clnt = €ozLint {145(—}1) +2.so(7’"—‘) + 4.6)

or or

vv[nt) (f[[nt) (Hlnt)o'zgg (oz)1'34
0.06 + 1.66 —-0.14 ,
[(tor tox lor I’Vsp

74

R R
tr Int
A A A%\ s W
+ | T L
_I_L -C Int -

Figure 25. A logic stage (or a register) connected to another logic stage or register through an
interconnect. The 50% interconnect delay Trne caused by the RC impedance of the interconnect

and the load capacitance is calculated based on physical parameters of the interconnect [75].

where Hyat, tor, Wip, and e, are process dependent parameters, L5, is the interconnect
length, and W7, is the interconnect width [75].

The circuit shown in Figure 25 characterizes a typical CMOS logic block (or a
register) connected to another logic block (or a register) through an interconnect [75].
The 50% delay through the interconnect can be approximated by the following formula

[75, 82],
Tlnt 50% = 0'4Rlntclnt + O-T(erclnt + RtrCL + Rlnlcl.)v (4-7)

where R;, is the ON resistance of the MOS transistor driving the interconnect, C is
the load capacitance of the input of the logic circuit at the end of the interconnect, and

Ryne and Crq, are the interconnect resistance and capacitance, respectively. Note that

75

although Ry, is voltage dependent, the average value can be used as an approximation.

The approximate value of Ry can be calculated as [75]:

Lir [Wir

, 4.8
l"C_qoz(VDD - VT) (*.8)

Rg,- =~

where Ly, Wir, VT, g, and Cy,. are the length, width, threshold, mobility, and oxide
capacitance of the transistor driving the interconnect.

When (4.5) and (4.6) are combined and incorporated into (4.7), the interconnect
delay can be approximately expressed in terms of the primary design parameters, L,

and "V[nti

0] 2 l . L n
Tso% = k1 L + kzﬁinzw—[m +k3LintWine + kaLyne + ksCr + ke W’[ZC[.-, 4.9)
n

where ky, ka, ki, ..., k, are process dependent constants for a specific driving
transistor size, oxide thickness, interconnect height, and interconnect resistivity. Given
a specific interconnect width, for a significantly large interconnect length and small

capacitive loads, the interconnect length dominates the delay as shown below:
Tso% < Lin: (4.10)

whereas for significantly large capacitive loads and small interconnect length, the load

capacitance dominates the delay as follows:

Tso% [o & CL, (4.11)

76

and in general, for comparable loading from the output capacitance and the interconnect

capacitance, (4.9) can be summarized as
Tso% & k1Line + ksCr, (4.12)

where k7 and kg are process dependent constants which include the effects of the
interconnect width. An important observation from (4.12) is the square dependence
of the interconnect delay on interconnect length. This behavior is due to both the
interconnect resistance and capacitance being linearly dependent on the interconnect
length, thereby making the RC constant and consequently the interconnect delay a

square dependence on the interconnect length.

4.3.3. Load-Dependant Model for Interconnect Delays

As described in Subsection 4.3.2, the interconnect delays can be described in terms
of the output drive of the logic gate, distributed interconnect resistance and capacitance,
and the load capacitance. The 50% interconnect delay in terms of these parameters

are approximated by
Tine = 04R 1 Crat + 0.7(Ri:Crat + R CL + RrmClr), (4.13)

where Rj,; and Cy,, are the interconnect resistance and capacitance, respectively [82],
Ry, is the on resistance of the MOS transistor driving the interconnect, and C, is the

load capacitance. Rewriting the following formula for the interconnect delay,

Tine = 0-4R1ntclnt +0.7R:Crnt + O.TRtrCL + OvTRIntCLv (4.14)

77

which can be formulated as
Tt = 0.TRtr(Crne + Cr) + 0.4R [y (Crne + Cr) + 0.3R 1 Cr. 4.15)

Ry and Rj,:, (4.15) can be approximated in terms of a load-dependant m parameter

and the sum of the capacitances being driven as follows:
T =m(Crae + Cr)- (4.16)

Note that the third term 0.3R;,,C does not depend on (Cy,: + Cp), however, by
appropriately choosing the m parameter in (4.16), the error can be minimized. A more
accurate model of the interconnect delay could be developed by using two m parameters

if higher accuracy is required as follows:
Tine = mCrp + maCrp. 4.17)
In this dissertation, the model in (4.16) is used.

4.4. Non-Ideal Logic and Register Delays

To model the load dependence of the register delays, every flip flop is assigned
an output slope m which is a function of the output drive capability (or output
transconductance) of the inverter in the second latch. An input capacitance c is also
assigned to each flip flop which is a function of the drain capacitances of the first
transmission gate, as shown in Figure 21.

A typical CMOS logic element (such as a NAND gate) is depicted in Figure 26.

A logic element u can be characterized by its intrinsic delay d(u), input load c(u),

78

L

—-—cC

Figure 26. A CMOS NAND gate. Note that the delay of this element is dependent on

the output load. The clement has an output slope m characterizing this load dependence.

and output slope m(u). It is possible to use a different load for each input to obtain
more accurate results. However, the input load is assumed to be the same. The output
slope m(u) is a function of the drive capability of the transistors and is related to design
parameters such as the W/ L ratio of the transistors as well as process parameters such as
the threshold voltage of the transistors V7, carrier mobility x, and the oxide thickness

Cor [75].

An inverter is depicted in Figure 25, which drives a capacitive load of magnitude
C through an RC interconnect. For this structure, the 50% delay is defined by (4.7).
A similar formula could be derived for any logic gate, such as the NAND gate shown
in Figure 26. From (4.7), it is observed that the m(u) parameter is linearly dependent
on the W/L ratio of the transistors as formulated by (4.8). For the NAND gate, the

m(u) parameter is also dependent on the sizes of the NMOS and PMOS transistors.

79

A high performance design practice is to use increasingly larger (or tapered) NMOS
transistors [87, 88] from the bottom to the top of the serial chain of N channel transistors
to balance the capacitance and resistance effects of the transistors so as to obtain the

highest speed from the NAND structure. In general,
m(u) = f("Vp/va ‘/Vrt/Ln, Vrp, Vi, Hps Kn, Ca'.t)~ (4.18)

The intrinsic delay d(u) of the logic element is related to the process parameters and
geometric dimensions of the logic element. The input capacitance of the element c(u)
is dependent on the sizes of the gate and the oxide thickness. All of these three
parameters can be derived from SPICE simulations.

In this section, the model for the load dependent logic elements and registers is
presented. Modeling of the load dependancy in general is mentioned in Subsection 4.4.1
for both the logic elements and the registers. The non-uniform logic delays for multi-
input and multi-output logic elements are reviewed in Subsection 4.4.2. Synchronous
optimization techniques using these more complicated models are introduced as future

work in this dissertation.

4.4.1. Model of Logic Delay

For a logic element with an output slope of m driving a capacitive load of c, the

50% delay Tp can be approximated by

Tp = Ty + mec, 4.19)

80

where Ty is the unloaded delay (or intrinsic delay) of that logic element [89]. Note that
input waveform effects are ignored and a fast ramp input waveform is assumed [73,
90]. Using this additional electrical information, the delay of a logic element can be
denoted as do[m, c|, where dg denotes the intrinsic delay of this vertex, and the [m, c]
pair denotes the output slope m (estimated using linear regression on the propagation
delay vs. the output load curves) and the input load ¢ of the logic element at this
vertex, respectively. To specify the vertex delay information attached to a vertex (or
logic element) u, the notations dg(u) (the intrinsic delay of vertex u), m(u) (the slope
of vertex u), and c(u) (the input capacitance of vertex u) are used.

For each vertex u in the circuit attached to an edge e : u — v, the delay at that

vertex can be calculated as
d(u) = do(u) + m(u)Cro, (4.20)

where e is the edge connected to the output of vertex u, m(u) is the output slope of

vertex u, and C'ro; is the total load at the output of the vertex.

4.4.2. Model of Non-Uniform Logic Element Delays

Each output of a multi-output logic element may be loaded by a different circuit,
therefore, a different output slope is attached to each individual output of the logic
elements. An : x o delay matrix for each vertex must be considered due to non-uniform
delays through different input-to-output paths, where ¢ and o are the number of inputs

and outputs of the vertex, respectively. In Table I, the individual path delays of a

81

1 bit adder

Table 1: Delay of a | bit adder for different input and output pairs using a 0.8 pm 5 V CMOS
technology. Note the non-uniformity due to asymmerry in the logic paths within the adder.

1-bit adder among different input and output pairs are presented for a 0.8 um, 5 volt
CMOS technology. Note the non-uniform delay values due to asymmetry in the logic

paths within the adder.

To fully characterize the non-uniform vertex delays, i x o+ ¢ + o different delays are
attached to each vertex. Specifically, i x o values are required to model the individual
signal path dependent non-uniform delays. / capacitive values are attached to the
inputs to model the input load capacitances and o slopes are attached to the outputs
to characterize the output slew rates. Non-uniform delays become more significant
as the circuit becomes less structured, since the difference among signal path delays
among different input-output pairs increases. The granularity of a vertex can be defined
as the depth of the logic represented by this vertex. If the granularity is high, more
logic elements are represented by a particular vertex. As the granularity of each vertex
increases, the non-uniform signal path delay model becomes more significant. For
example, a NAND gate is represented by a vertex with low granularity, whereas a 4-bit

adder has a higher granularity. Non-uniform delays can be quite significant in a 4-bit

82

4 bit Output

adder _
Cin 209 384 600 813 856
A0 260 410 631 850 895
BO 229 392 615 836 836
Al X 272 414 640 681
Bl X 239 392 620 662
A2 X X 274 413 459
B2 X X 239 393 448
A3 X X X 272 244
B3 X X X 239 228

Table 2: Delay of a 4-bit adder for different input and output pairs using a 0.8

um, 5 V CMOS technology. “x" denotes the delays that cannot be measured

since a change at the specified input is not propagated to the specified output.
adder. The delays of an example 4-bit adder with different input-output delays are
shown in Table 2. The difference among the delays is more noticeable as compared
to the 1-bit adder shown in Table 1. This disparity is due to the more complicated

signal paths leading to an increased difference among the input-to-output signal path

delays within the 4-bit adder.

The data listed in Tables 1 and 2 are obtained from SPICE analysis on a trans-
mission—gate based l-bit and 4-bit adder, respectively, using a 0.8 um, 5 volt CMOS
technology. The different input-to-output delay values emphasize the importance of

considering non-uniform signal path delays. Simply using the maximum delay listed in

83

the table as the delay of the logic element results in inaccurate estimates of the total
path delays, since, as is described in the following sections, the minimum vertex delay

can create short paths, which may cause a catastrophic circuit maloperation [23, 91].

4.5. Modeling the RECs

Research described in this dissertation focuses on modeling the aforementioned non-
idealities of the clock distribution network, registers, and the interconnect by attaching
a number set, the Register Electrical Characteristic (REC), to each edge in the graph
representation of the synchronous circuit. The REC model is developed using two
different complexity levels. REC Level | includes only the basic clock distribution,
register, and interconnect delays, whereas REC Level 2 further incorporates the load
dependence of the register and logic element delays. Both REC models and the
derivation of the path delays under these two models are presented in the following

subsections.

4.5.1. Basic REC Model (Level 1)

A variety of register types selected prior to beginning the synchronous optimization
process may be used at different locations within the circuit due to the specific speed,
power, and area tradeoffs peculiar to that portion of the circuit. Tset—yp and Thou
may also change for different register cell instances. Thus, T'set—up and Tyoiq can vary

per edge. Therefore, selecting a specific register to satisfy a set of performance-based

84

design requirements changes these two parameters for each edge. A similar argument
is valid for Tc_.q, thereby requiring that variable register delays be considered.

The interconnect between a pair of logic elements or between a register and a logic
element have different delays, since the elements may be located at various locations
of the circuit, thereby requiring different interconnect lengths for each connection. This
varying requirement for the interconnect lengths makes consideration of the interconnect
delays necessary.

The clock delays, as mentioned before, play a crucial role in the performance
of a synchronous circuit. The variation between the clock arrival times across a
VLSI circuit creates clock skews that can be exploited to improve the performance
of an IC [80, 92-94]. Alternatively, uncertainity in the clock skew values may cause
maloperation in the circuit, creating race conditions. Therefore, consideration of the
clock delays in synchronous circuit optimization algorithms is crucially important to
achieving satisfactory accuracy in the optimization process.

These three delay components (the register, clock, and interconnect delays) form
the basis for the REC Level 1 model. In the REC Level | model, the clock, register,
and interconnect delays are modeled by attaching the following number set to each edge

in the graph representation of a synchronous circuit,
Tcp : Tset—upl/ Thotd/ Tec—q = Tint1/Trnea- 4.21)

This number set is used to characterize an edge e in the graph representation of the

85

circuit as shown in Figure 27. T¢p is the clock delay from the global clock source
to each register on edge e. Tsei—up and Tpqq are the times during which the data
signal must be stable before and after the clock signal, respectively, to ensure proper
latching operation. Tc_q is the time required for the data to appear at the output of
the register upon arrival of the clock signal for all registers located on edge €, and Ty,
is the total interconnect delay along edge e and can be considered as being composed
of pre-register and post-register components, Ty and Ty, if one or more registers

are located along that edge.

8:1/1/2-1/3 20:3/0/2-2/1

L1
N

Figure 27. A path containing two edges and a vertex between the two edges. The REC values are attached

to each edge to characterize the registers, interconnect, and the clock delays located along the edges.

Consider the example shown in Figure 27. The REC Level | valueof 8 : 1/1/2-1/3
is attached to the first edge. This REC value implies that Tcp = 8 tu (every register
along this edge is in the same clock delay region and receives the global clock signal
with a delay of 8 tu). Register delays are T'se;up = | W0, Tyoue = 1 tu, and To_.qg = 2
tu, Le., every register located along this edge has a set-up delay of | tu, a hold time
of 1 tu, and a clock-to-Q delay of 2 tu. The total interconnect delay along this edge
is 4 tu which is composed of the pre-register interconnect delay, Trni; = | tu, and the

post-register interconnect delay, Tr,2 = 3 tu. Also, note that the delay of the logic

86

element represented by the vertex shown in Figure 27 is 4 tu. This REC Level 1 Model

forms the basis of the algorithms introduced in this dissertation.

4.5.2. The Enhanced REC Model (Level 2)

The clock-to-Q delay T¢_q is edge dependent since each edge is connected to
a different vertex, thereby changing the capacitive loading on the registers located on
each edge. This variation occurs since each vertex represents a variety of possible logic
elements, placing a different output load on the register driving the vertex. Hence, the

same registers driving different vertex inputs will have different T¢c_¢ delays.

The enhanced register delay REC model has the following form,
Tep : TSet—up/ THotd/ Tc—Qo — Crnt1/Crat2 [m.d], (4.22)

where m denotes the output slope of each register and ¢ denotes the input capacitance
of each register located along the edge. The interconnect capacitances rather than the
interconnect delays are used in the REC Level 2 model to more accurately characterize
the effects of the interconnect lines. Cyn and Crgpo are the pre-register and post-
register interconnect capacitances. The parameter m is derived from the output delay
vs. capacitive load curves used to characterize the logic gate delays within a standard
cell library. The set-up time Tse;—up and hold time T,y of a register are the times
required for a register to enter the irreversible latching point. Ts.¢—,, can be derived in
terms of the physical circuit parameters related to the shape of the clock and data signals

and the gain of the positive feedback circuit within the register [73]. In this dissertation,

87

8:1/1/2-1/3 20:3/1/2-2/1
[05,03] [1,0.25]

] [0.5,1]
AN

Figure 28. The graph of Figure 27 with attached load dependent parameters.

The values in the brackets are the enhanced REC values m and c.

the transistor characteristics of a register associated with an edge are assumed to be
constant and the shape of the clock and data signals are assumed to behave as a “fast
ramp [90).” Therefore, the set-up time of the register is assumed to be constant. Tc_q
is a load dependent clock-to-Q delay, where T¢—q, is the unloaded delay for Te—.g

(or the intrinsic clock-to-Q delay). Therefore, Tc—.g can be modeled as

Te—q =Tc—qo + m(Crne2 + Cr), (4.23)

where C is the input capacitance of the cell loading the register. Note that the total
capacitive load on the output of a register is the sum of the post-register interconnect
capacitance and the input capacitance of the cell loading the register. Assuming
negligible interconnect resistance, a first-order approximation can be used to model
a distributed RC impedance [83] as a single lumped capacitance. An example graph
with enhanced REC values is shown in Figure 28. The values in the brackets are the
enhanced REC values used to model the load-dependancy (i.e., m and c) of the logic

elements and registers.

Values of Crpi, Crat2, and Cr are included in Figure 29 for the path shown in

88

Figure 28. According to (4.23), the sum of Crn2 = 3 cu (capacitive units) as shown
in the REC of the first register and the input load of the vertex Cf = 1 cu, form the

load of the first register.

The [m,c] pair is depicted in Figure 29 for the logic element (the vertex). The
parameter m describes the output slope of the vertex derived from a characterized
standard cell library, whereas the parameter c characterizes the input load of the logic
element which can be obtained from the standard cell libraries or estimated from circuit
simulation. An example of a standard logic element is shown in Figure 26. For this
specific element, the input capacitance (per input) consists of the sum of the NMOS
and PMOS gate capacitances. Therefore, the parameter ¢ can be calculated from the

total gate area. For this case, the load c is
Cc = ?-LV.GLGCQI, (4'24)
where W and Lg are the gate width and length and C,, is the oxide capacitance.

8:1/172-1/3 4 20:3/172-2/1
[05,03] [0.5 [1,025]

Figure 29. Crne; and Cp are the loads at the output of the initial register. The circle is the logic

element (or vertex) with a delay of 4 tu, and load dependent m and ¢ values of 0.5 and I, respectively.

89

In Figure 29, a logic element u is depicted by a circle with the load dependent
values [m(u),c(u)] of the logic element shown above the circle. The two edges e;
(on the left) and ea (on the right) have [m, Cy,] values depicted on top of the edges.
The delay d, of the logic element u shown in Figure 29 consists of an intrinsic value
do(u) (e.g., 4 tu), and a load dependent value m(u)Crq, as shown in (4.20). The input
capacitance of the logic element u is 1 cu. The total load Cr,, at the output of the

logic element u in Figure 29 can be calculated as
CTot(w(ez) > 0) = Craui(e2) + c(e2), (4.25)

where Cy,;1(e2) is the pre-register interconnect delay of the second edge, and c(e2) is
the input capacitance of the registers located along the second edge. If a register is not

located on the second edge, the load changes as described by
CTol(w(e'.’) = 0) = Clntl(e'l) + C[nt?(e'.!) + C(U), (4.26)

where Crq1(e2) and Craa(e2) are the pre-register and post-register interconnect delays
on edge e», and c(v) is the input capacitance of the logic element connected to the

output of edge e>. Note that the interconnect resistance on edge ¢ is ignored.

4.6. Path Delays

By attaching delay components to the registers located on the edges (the connections
between the logic elements), the local path must be defined from edge-to-edge {19, 23].

By assigning a clock delay to each edge (see Section 4.2.3), the circuit is assumed to be

90

partitioned into regions of similar clock delay, i.e., registers that are located on the same
edge are physically located within the same clock delay region. Therefore, registers
that end up on the same edge after synchronous circuit optimization are assumed to
have a similar clock delay. Registers that move to different edges are assumed to have
the clock and register delays of the new edge.

Depending on the level of the REC model being used, the calculation of the path
delays change. In the REC Level 1 Model, the load dependence of the register and
logic element delays are not considered. The path delays are defined without the load
dependent components when the REC Level | model is used. In Subsection 4.6.1,
calculation of the path delays using the REC Level 1 model is studied. On the other
hand, if REC Level 2 is used, the path delays are calculated by considering the load
dependent values. Formulation of the path delay using REC Level 2 is described in
Subsection 4.6.2.

If parallel paths exist between two edges, the minimum and maximum local data
path delays, Tpp,_... and Tpp,, ., are defined. Tpp,...(¢.J) and Tpp,,, (2,)) are the
minimum and maximum of all of the path delays between edges e; and e;, respectively.
Tpp,.., is used to determine if any long paths exist. Alternatively, Tpp,,,, is used
to determine the existence of any race conditions caused by the short paths. Register
setup and hold times, interconnect delays, minimum and maximum logic delays, and
the clock skew characteristic values are used to determine Tpp_ , and Tpp,.. . The

calculation of the long path and short path delays is described in subsections 4.6.1 and

91

4.6.3, respectively. If multiple registers exist along an edge, the internal path delays
must also be considered. Subsection 4.6.4 is devoted to determining these internal path

delays [95].

4.6.1. Path Delays using REC Level 1 Model

Using the REC level | model of (4.21), the local data path delay Tpp(z, ;) from

edges e; to e; has four components as follows:

Tpp(i,j) = TReg(isJ) + Trnt(é, 7)) + TrLogic(t,J) + Tskew(s,). (4.27)

TRey(i,J) is the register related delay associated with path p : e; — e;. The
setup time is used to calculate the long paths, and the hold time is used to determine
the permissible time window to prevent race conditions. Therefore, the minimum and
maximum register delays are defined as follows:

TRegminliry) = To—q() = THoua(J)-
(4.28)

TRegmax(i’j) = TC—’Q(l) + TSctup(j)'
Tine(,j) is the interconnect-related delay component for path p : ¢; — e,
describing the interconnect delay before the first logic element on path p and after
the last logic element on the same path. Note that the interconnect delays along the

path between the first and the last logic element on path p are included in the logic

92

delay T'ogic(i, j). According to this definition, T7y,(¢, ;) is defined as follows:

Trae(t,J) = Traea(?) + Tran(y)- (4.29)

Note that although it is possible to consider the minimum and the maximum interconnect
delays, Tjnt,.. and Tyn,... interconnect delays are assumed to be constant, for
simplicity, since the accuracy improvement is negligible by using the minimum and

maximum values.

Trogic(i,J) is the delay of the logic elements between e; and e; including the
interconnect delay of the zero weight edges along the path between these edges.
Minimum and maximum values of the logic delay, Trogic,n,, aNd TLogic,m,,» are used to
determine the path delay boundaries. Note that, although the minimum and maximum
delay values for logic elements can be considered, it is assumed in this dissertation, that
the intrinsic delay of the logic elements is constant. However, the load-dependancy of
the delay values are included in the REC level 2 model.

Tskew(i. J) is the difference between the clock delays of edges e; and e, as defined
in 2.2.
The example path shown in Figure 30 has two edges. The delay of the local data
path between the two edges can be calculated using (4.27). The parameters for the first
and the second edges (e; and e;, respectively), are as follows: For edge e;, Tcp = 8,

TSet—up = L, Thota = 1, Te—~Q = 2, Trann = 1, and Ty = 3 . For edge ey,

Tep = 20, TSct—up =3, Tyoa = 1, TC—Q =2, Tran = 2, and Tppep = 1 tu.

93

8:1/1/2-1/3 20:3/1/2-2/1
l J/D L

v

Tpp = TRcy + Tine + TLogic + TSkew
TPpmn =R=D+B+2)+ 4 +(8-20)=~-2tu
TPD,.. =(2+3)+ B +2)+++(8-20) =2 tu

Figure 30. The path shown in Figure 27. The minimum and maximum path

delays. Tep,.,.. and Tpp,.,. between the two edges are calculated using (4.27).

In Figure 30, the components of the path delay Tpp are grouped into register delay
TRey. interconnect delay T, logic delay T4, and the local clock skew T'skew. The
minimum and maximum register delays are calculated using the clock-to-Q, setup, and

hold times as follows:

TReyrmu' = TC—'Q(L) + TSet—up(j) =2 + 3= 3 tu,
TRegmn = Te—Q(i) = THoa(j) =2 -1 =1 tu.
The total interconnect delay is the sum of Tqea(:) and Truea(j), therefore

Trat = Tlnl‘l(i) + Tlntl(j) =3+2=3tu.

The total logic delay consists of the logic element delay of the vertex between edges

which is equal to Tre4c = 4. Since there are no zero-weight edges along the path

94

from e; to e;, TLogic does not have any additional interconnect delay components. The
clock skew between the two edges is the difference of the clock delays of these edges

and is equal to
Tskew(is) =Tep(t) = Tep(j) =8-20 = —12 tu.
Therefore, the minimum and maximum path delays between edges ¢ and ; are

Tep,n = TRegmn + Tint + TLogicmun + TSkew = L +5 +4 =12 = =2 tu,

TpDmu: = TRegmas + Tint + Tlogicmes + TSkew =5 +5+4 =12 =2 tu,
which suggests that, due to the negative Tpp,,,., this path can cause a race condition.

4.6.2. Path Delays using REC Level 2 Model

Using the REC level 2 model of (4.22), the minimum and the maximum values of
the local data path delay Tpp(i,) from edges ¢; to e; can be calculated as
TPDmlisJ) = Te—qoli) + m(i)(c(ei-end) + Crae2(i)] + Trogicm,n (€i-end. €j.start)
+mlej.start){Crann () + ¢(j)] = THota(s) + Tskew(i:J),
TPDmasliv)) = To—qoli) + m(i)[c(ei.end) + Craea(i)] + TLogicma. (€i-€nd. j.start)

+m(ej.start)[Cran () + ¢(J)] + Tsetup(d) + Tskew(t, 5),
(4.30)

where T'[q4ic(i, /) is the total vertex-to-vertex delay of the logic elements between the
end vertex of e; (e;.end) and the start vertex of e; (e;.start) including the interconnect

delays due to the capacitive loading between vertices e;.end and e;.start.

95

8:1/172-173 20:3/1/2-2/1
[05,03] [1,0.25]

7]
q

[0.5,1]
AN

v

Tpp = TReg + Troad + TLogic + Tskew
Tppn, =(2—=1)+(0.5(1 +3) +0.5(2+0.25)) + 4+ + (8 —20) = —3.875 tu
Tpp,... = (243) +(0.5(1 +3) +0.5(2 + 0.25)) + 4 + (8 — 20) = 0.125 tu

Figure 31. The path shown in Figure 28. The path delay Tpp between the two edges is calculated from (4.30).

The example path shown in Figure 31 has two edges. The delay of the local data
path between the two edges can be calculated using (4.30). The parameters for the first
and the second edges (e; and e;, respectively) are as follows: For edge ¢;, Tcp = 3 tu,
Tset—up = L W, Tou = L 0, Te~@y =2 W, Crpy = L cu, Crpp =3 cu, m = 0.5
ru, and ¢ = 0.3 cu, where “cu” denotes “capacitive units,” and “ru” denotes “resistive
units.” For edge ¢;, Tep = 20 W, Tset~up = 3 W, Thoy = 1 t, Te—g, = 2 W,
Crat1 =2cu,Crppp =1l cu,m =1 ru, and ¢ = 0.25 cu. In Figure 31, the components
of the path delay Tpp are grouped into the load independent register delay Tgr.4, the
load dependent register and logic delay T'f,q4, the logic delay T[4, and the clock

skew Tsk.w. The total load independent register delay is

TRegmn = TC=Qo(i) = THaa(j) =2 —1=1tu,

96

TRCQmu: = TC—'QQ(l) + TSetup(j) =2 + 3 =5 tu.

The total load dependent register and logic delay is the sum of the load dependent
register delay component on edge e; and the load dependent delay component on vertex

e;.end. Therefore.

Troad = m(i)[c(ei.end) + Crna(i)] + m(ej.start)[Cran(J) + c(J)]
=0.5(1 +3) + 0.5(2 + 0.25)

= 3.125 tu.

The total load independent logic delay consists of the logic element delay of the vertex
between edges which is equal to Tog;c = 4 tu. Since there are no zero-weight edges
along the path from e€; to e;, T ,4ic does not have any additional interconnect delay
components. The clock skew between the two edges is the difference of the clock

delays of these edges and is equal to

Tskew(t,j) = Tep(i) = Tep(j) =8 -20 = —12 tu.

Therefore, the path delay between edges : and j is

TeDn = TRegmn + TLoad + TLogicmm + TSkew = 1 +3.125 +4 — 12 = ~3.875 tu,

Tpp,... = TRegmaz + TLoad + TLogicas + TSkew =5+ 3.125 +4 — 12 = 0.125 tu.

97

4.6.3. Short Paths

A short path is defined as a path that causes improper circuit operation due to
a minimum delay value lower than zero. Zero path delay indicates a marginal race
condition. If a path delay between edges e; and e; is zero, the final register on edge
e; is clocked at the exact same time the data is latched. If the path delay is less than
zero, ie., Tpp,,,.(1,7) <0, the final flip flop is clocked before the corresponding data
signal arrives and is successfully latched, thereby causing a race condition. Therefore,

a short path pgper is defined as

TPDmm(PSflart) S 09 (4.31)

where Tpp,,,, is the minimum delay among all parallel paths between e; and e;.

4.6.4. Internal Short and Long Paths

If multiple registers exist on an edge, the delay of the final register may be different
than the delay of the internal registers, since the output load may be different. The
clock-to-Q delay of the final register on an edge must drive the input capacitance of
the vertex loading the last register, C';. The delay of the internal registers on an edge

€, TPD;.crmai(€)s Can be calculated as follows:

TPDInternalmm(e) = TC"‘QO(C) - THO[([(C) + m(e)C(e), (4'32)

TPDtnternatmes (€) = TC—Qo(€) + Tset—up(e) + m(e)c(e), (4.33)

98

where Tset—up(e), Thotd(e), Tec—qo(e), m(e), and c(e) are the REC Level 2 values
attached to edge e. Note that the maximum value of this delay is also called the internal
delay of edge e [23]. The load dependent component m(e).c(e) is not considered if
the REC Level 1 Model is used.

Although the likelihood that the delay of an internal path will be greater than the
largest register-logic-register path (i.e., a local data path) delay is small, the worst case
delay of an internal path is considered in this dissertation for completeness. Furthermore,
certain circuits exist, such as a counter or shift register, in which this type of direct
register-to-register path is common.

Note that the load for the last register is different on edge e. For the last register,
the load is c¢(v) instead of c(e), where c(v) is the input load of the vertex attached
to edge e. If this load is higher than c¢(e), a maximum value higher than the value
calculated in (4.33) is obtained. Therefore, ¢(v) is used rather than c(e) for the load
value. Though unlikely, internal short paths may exist if the hold time of the registers

on an edge is extremely high.

99

Chapter 5. Retiming with RECs

Earlier retiming algorithms have assumed ideal conditions for the nonlogical portion
of the data paths. specifically ignoring the temporal characteristics of the registers.
the interconnect, and the clock distribution network. Without including these delay
components, existing retiming algorithms are not sufficiently accurate for their use in
the development of practical high speed circuits. For this reason, clock distribution,
variable register, and interconnect delays must be integrated into the retiming process

in order to ensure that retiming becomes a practical and useful design methodology.

Both register and interconnect delays are similar in magnitude to the delay of the
logic elements. Also, variations in clock delay between widely separated registers may
create clock skews which can drastically affect circuit operation. Undesirable clock
skew can produce a net negative delay within a local data path. This implies the
existence of a race condition, which must be avoided as a condition imposed on the

retiming process.

In most retiming algorithms proposed to date, registers are assumed to have zero
delay (e.g., [14, 31]) or equal delay (e.g., [18]). In [18], the set-up (¢,) and hold (¢,)
times are non-zero constant values, creating an effective clock period of Tpp + £ + ¢,
where Tpp is the worst case path delay of the synchronous circuit. Since constant

register delays are assumed throughout the circuit, ¢5+£, is added to each individual local

100

data path, biasing the clock period by this amount. However, this simple summation is

not sufficiently accurate since each local data path typically has a different register delay.

Integrating clock skew into the retiming process was first proposed in [22, 43]. The
strategy of integrating clock skew and variable register delays into retiming by attaching
electrical information describing the register to the edges of the graph representing the
synchronous circuit was first introduced in [19]. Following this work, the integration
of clock skew into retiming was discussed in [16]. In this dissertation, constraints are
placed on the clock skew to permit the use of standard linear programming methods.
Variable register and interconnect delays were not considered. In [37], a branch and
bound algorithm is briefly introduced to solve the general retiming problem while
considering variable non-zero clock skew and register and interconnect delays and 1s
explained in greater detail in [23]. In general, there has been a growing interest in
making retiming into a more practical and useful design methodology, evidenced by

(14, 16, 18, 19, 22, 23, 29, 31, 33, 37, 43].

The synchronous circuit optimization problem is approached in this dissertation
as a two-step process: 1) optimization of the clock distribution network by buffer
insertion and clock tree synthesis to meet a specified clock skew schedule {80, 92-94],
and 2) optimization of the synchronous circuit via retiming given that the clock
scheduling process has previously been performed to satisfy a specific set of clock

skew specifications [19, 23, 37, 91].

101

Optimizing the clock distribution network followed by retiming may create a sub-
optimal result. This sub-optimality manifests itself in many practically-applied algo-
rithms, since optimality is sacrificed to prevent excessive CPU times in existing algo-
rithms. Ishii, Leiserson, and Papaefthymiou published research results in simultaneous
retiming and clock tuning [31]. Ishii, et al. report an O(V!!) algorithm to perform
simultaneous retiming and clock tuning and comment that this problem is far too com-
plicated to be practical unless optimality is sacrificed. They present a sub-optimal
O(V3(1/e)lg(L/e) + (VE + V2lgV)lg(V/e)) algorithm which calculates the retiming
result with e% accuracy, where e is a user-selected error factor [31]. In this dissertation,

the following methodology is assumed: clock skew scheduling followed by retiming.

A retiming algorithm is presented in this chapter which incorporates variable register
and interconnect delays and non-zero localized clock skew. Either rising edge or
falling edge triggered D flip flops and a single phase clock are assumed throughout
the synchronous digital circuit. To accomplish the integration of the variable clock
distribution, interconnect, and register delays into the retiming process, a path between
logic elements is defined in this dissertation as the traversal from weighted edge to
weighted edge, an edge being interpreted as a connection between logic elements
containing zero, one, or more registers. With this definition, clock, register, and
interconnect delays are assigned to each edge. Thus, as registers are shifted from edge
to edge, different clock skews and register delays are considered in each of the local

path delays. This process permits both maximum clock periods and race conditions

102

to be detected on a path-by-path basis. Estimates of register delays on zero weight
edges (i.e., interconnections between logic elements that contain no registers) derived
from the circuit layout are required in order to include the effects of variable register
delays on the retimed circuit. This approach, therefore, initially requires approximate
(or estimated) values of the register, clock distribution, and interconnect delays which
can be replaced with more accurate values as the exploratory retiming process becomes
better specified [19, 23, 37].

The retiming algorithm RETSAM presented in this chapter uses a branch and
bound approach. Although RETSAM determines a retimed circuit that will operate
at its maximum clock frequency, enhanced computational efficiency can be obtained by
placing certain conditions related to the monotonicity of the path delays on the REC
values. These monotonicity conditions permit the use of standard linear programming
methods during the retiming process. These conditions and the feasibility of their

application to practical circuits are presented in this chapter.

This chapter is organized as follows. The steps taken to incorporate the REC’s into
the retiming process are introduced in Section 5.1. In Section 5.2, the Sequential Adja-
cency Matrix (SAM), which includes the edge-to-edge delays of a graph, is introduced.
Timing constraints, derived from the SAM, are described in Section 5.3. The proposed
retiming algorithm RETSAM is presented in Section 5.4. Monotonicity restrictions that
may be placed on the RECs to permit the use of standard linear programming meth-

ods to perform retiming with the additional electrical delay information are described in

103

Section 5.5. Results of applying the proposed algorithm RETSAM to MCNC benchmark

circuits are presented in Section 5.6 and some conclusions are drawn in Section 5.7.

5.1. Incorporating REC’s into the Retiming Process

In order to consider the effects of clock distribution, variable register, and inter-
connect delays, REC’s are assigned to each edge of the graph in the following form:
Tep : Tset—up/THotd/ Tc—Qs — Crat1/Cine2 [m,c|. By attaching delay components
to registers located on edges, the local path must be defined from edge-to-edge [19, 23]
rather than vertex-to-vertex, as in existing retiming algorithms [14]. The original digital
correlator introduced in [14] is depicted in Figure 32. A modified version of this graph
in which an REC is assigned to each edge is shown in Figure 33. By assigning a clock
delay to each edge, the circuit is assumed to be partitioned into regions of similar clock
delay, ie., registers that are located on the same edge are physically located within
the same clock delay region. Therefore, registers that end up on the same edge after
retiming are assumed to have similar clock delay. Registers that move to different edges
are assumed to have the clock and register delays of the new edge. Since registers on
different edges may be considered to have different clock and register related delays,
moving a register from one edge to another edge during retiming will not only create
different local data paths with different logic, register, and interconnect delays, but may

also change the localized clock skew of the new local data paths.

104

el

w=] w=] w=l

3

\Z1 el yv2 e2 vy el v4

Figure 32. Graph of the digital correlator in [14]. The edges that are not labeled are assumed to have zero weight.

The clock-t0-Q delay Te_q,(e;) is edge dependent since each edge is connected
to a different vertex, thereby changing the capacitive loading on the registers located

on each edge. This variation occurs since each vertex represents a variety of possible

l

}2:3/1/3-1/1 4 UM-ZII Vo/1-1/3
(1] | (1,1]
7:3/2/6-22 1:4/3/1-2/1

\31 el y2 e2 v3 €3 v4

Figure 33. Graph of the digital correlator [14] with added REC values. The edges that

do not have [m, c] values assigned are assumed to have values m = 0 and ¢ = 0.

105

logic elements, placing a different output load on the register driving the vertex. Hence,
the same registers driving different vertex inputs will have different Tc_.g,(ei) delays.
Furthermore, a variety of register types selected prior to the retiming process may be
used at different locations within the circuit, due to the specific speed, power, and area
tradeoffs peculiar to that portion of the circuit. Tsei—up and T'yoe may also change
for different register cell instances. Thus, T'set—up(ei) and T'yoa(ei) can vary per edge.
Therefore, selecting a specific register to satisfy a set of performance-based design
requirements will change the value of Ts.;—yp and T for each edge. A similar
discussion is valid for Tc—q,(ei). The varying loading exacerbates this delay variation,
thereby requiring that variable register delays be considered during the retiming process.
As defined in Section (4.6), the local data path delay Tpp(:,) from edges e; to

ej 1S

TPDmn(isJ) = Te—qo (i) + m(i)[e(é) + Crae2()] + TLogicmin (i1J)
+m(j)[Crat1(G) + ¢(i)] = Trotd(J) + Tskew (i,),
é.1)
TPDmesi-J) = Te—qo (&) + m(d)[e(d) + Crat2(é)] + TLogicmas (i J)
+m(j)[Cran(J) +)] + Tset—uply) + Tskew(is),

where Trogic(i.j) is the delay of the logic elements between e; and ej, including
the interconnect delay of the zero weight edges along the path between these edges.
If parallel paths exist, minimum and maximum local data path delays, T'rogic,,,, and

TLogicma.» are defined. If Tpp,,..(¢,7) < 0, a race condition between ¢; and e; exists

106

since in this local data path the final register is clocked before the data signal arrives
and is successfully latched.

If registers R; and R, are located on the same edge ¢ and are sequentially adjacent,
then, according to the definition of the RECs, the clock skew between R; and R; is
zero from (2.2) since the clock delays of both registers are the same. This assumption is
made since registers on the same edge would typically be physically close, and therefore
the difference in clock delay to each register and the interconnect delay between these
registers would be negligible. Furthermore, since no vertices (logic elements) exist
between registers R; and R;, when both are on the same edge, the logic delay between
the two registers is zero. Since all registers located on the same edge are defined to have
the same timing characteristics (REC values), all sequentially adjacent registers located
on the same edge have a similar internal path delay. A path composed of multiple
registers on an edge could possibly be the critical worst case path of the overall circuit

and its delay is defined as T'pp,,,.,...(€k), given by (4.32) and (4.33) as follows:

TPDmcernar.. (ek) = To—qolek) = Thowlek) + m(ex)c(er), (5.2)

msn

TP D 1mcernatmay (€k) = TC~Qo(€k) + Tsetup(er) + m(ex)c(ex). (5.3)

The maximum internal path delay is used to provide a safery test to ensure that

registers on any edge create long paths due to excessive register delays. In case of

107

excessively high hold time values for internal registers, minimum internal path delay
may be considered to ensure that internal race conditions do not exist as explained in

Section 4.6.4.

5.2. Sequential Adjacency Matrix (SAM)

A W matrix, defined in [l4], contains all vertex-to-vertex path weights. The

elements of this matrix, W (z,), can be calculated as
W(i,j) = min{w(p): p:v;~ v} (5.4

This matrix can be calculated using an all-pairs shortest path algorithm, such as the
Floyd-Warshall algorithm [47, 49, 96]. Also, a WV, matrix is defined in this dissertation
as the W matrix after the retiming process has been applied to the circuit.

The Sequential Adjacency Matrix (the SAM or the S matrix) is an |E| x | E/| matrix
whose element S(z,) is the path delay from e; to ;. The S matrix element, S(¢,),

is calculated from
S(i.j) =max{Tpp(i.j): p:ei~ej A w(p)=W(j)} (5.5)

[f parallel paths exist between any two edges, the 5 matrix is composed of two matrices,
Smin and Spe.. Equations (5.6) and (5.7) are used to calculate the values of these
two matrices. In order to reduce the number of matrices, a combined matrix, S, is
used. S'(¢,j) contains Spin(i,7) if Smin(?,j) contains a zero or negative entry, and

contains Smaz(¢,J) if no zero or negative entry exists. The importance of Smin(,J) is

108

determined by whether a zero or negative entry exists, thereby denoting a race condition.
If Smin(i,J) is completely positive, the maximum valued entries in Smaz(¢,7) limit the
maximum speed of the circuit. Equation (5.8) is used to calculate the combined matrix,

S

Smin(é,j) = min {Tpp,,..(5,J) 1 prei~e; A w(p)=W(,Jj)}, (5.6)

Smar(isJ) = max{Tpp, (i, J): p:ei~ej A w(p)=W(.))} (5.7

S'I(i,j) = {Smm(i.vj.)v ‘f %rnin({v.’i) <0 (5.8)
Smaz(i,J)y 1f Smin(i,J) > 0.

Note that the S’ matrix contains information for only those paths that can potentially
cause the circuit to function improperly. Therefore, the zero and negative entries in the
Smin matrix override the positive entries in the corresponding Spq; matrix during
the calculation of the S’ matrix. This choice occurs since negative entries flag race
conditions and zero entries flag marginal race conditions which are not permitted to
exist in the retimed circuit. To maintain a sufficient margin within the circuit, entries
below a specific process dependent parameter £ are not permitted. Paths with delays
less than or equal to & tu may create race conditions due to statistical process variations

within the integrated circuit and are therefore not permitted.

109

For the remainder of this dissertation, the notation for the combined matrix S’ is
denoted as S for simplicity. The S matrix of the graph of Figure 33 is shown in Table
3. The light shaded elements of the table indicate those paths with race conditions
(negative values) and the dark shaded elements indicate those paths with a path delay
greater than the desired clock period. In this example, a target clock period of 37 i is
assumed. Paths with zero delay are marginal race conditions that are not permitted and
would appear as light shaded. The unshaded elements of the table indicate those paths

that neither limit the maximum performance of the circuit nor create race conditions.
5.3. Timing Constraints

A branch and bound algorithm is presented in this chapter in which unbounded

Table 3: The SAM for the graph of Figure 33. Light shaded entries represent short paths, whereas

dark shaded entries represent long paths for ¢ = 37 tu. Unshaded entries denote permissible paths.

g

SAM] el 2 3 o e5 6 e? cf & el0
© 2 14) n)) 16 ‘ Y 3)
el 17 2 n 1 2 3
@ 0 8 s [3l 15
!) %28 o U < 36)
o w [EEE o) 12
8 I n 1 1 M
6 9 d pi | 2
a7 % 35 ; ! : | RS Sl =
8 18 n 35 » 1 1 2
@ 13 n 0 35 u 12 19
cl0 3 7 n 15 n 20 9 s 9 2 n

110

values are initially assumed for the lag ranges. These lag ranges are tightened using
timing constraints derived from the SAM. There are four different types of timing
constraints: negative edge weight, long path, short path, and internal path. These

different types of constraints are explained in greater detail in the following subsections.

5.3.1. Negative edge weight constraints

As introduced in [14], a properly retimed graph contains no negative edge weights.
Negative edge weights are permitted for peripheral edges in [46] in order to shift the
registers to the periphery of a synchronous circuit. This approach permits combinatorial
optimization to be performed on the circuitry placed between the peripheral edges.
However, since the retiming algorithm described in this chapter does not exploit this
feature of resynthesis, negative edge weights are disallowed. As shown in Section

2.4.1, using (3.5), the negative edge weight constraint can be written as

wr(e) 20, Vee E. (5.9)

5.3.2. Long path constraints

If a clock period c is desired, then all paths with a delay greater than ¢ must be
eliminated. Long paths are represented by entries in the S matrix that exceed a desired

clock period ¢. In Table 3, long paths for ¢ = 37 tu are depicted using dark shaded

111

elements. In order to eliminate these long paths, the two edges that create the long path
are made nonsequentially adjacent.

Two registers are sequentially adjacent if there exists a zero weight path between
the two registers. According to this definition, in order to make two edges, e; and
¢,, nonsequentially adjacent, three approaches are possible: 1) the source or 2) the
destination edges can be made zero weight, i.e., all registers can be removed from these
edges, or 3) one or more registers can be placed within each zero weight path between
the source and destination registers. The first two conditions exist since by eliminating
the initial and/or final register of a local data path, a longer path is created which may
have a smaller delay (due to negative clock skew). Using the definitions for w, and
W, described in Section 5.2, these three conditions can be written in terms of path and

edge weights as follows:

wr(ei) =0, (5.10)
wy(e;) =0, (5.11)
W:(ei.end, e;.start) > 0. (5.12)

If (5.10) or (5.11) is satisfied, then no registers exist on edge : or j, respectively,

and therefore all local data paths between edges : and j are eliminated. If (5.12) is

112

satisfied, all possible paths between edges : and j have a weight of at least one. This
violates the definition of sequential adjacency, i.e., no paths exist with a zero weight
between these two edges. Intuitively, it is stated in (5.10), (5.11), and (5.12) that either
the initial or the final edge does not have any register located on it or there is at least

one register along every path between these two edges.

5.3.3. Short path constraints

Short paths appear as zero or negative entries in the S matrix. S(¢,) < 0 indicates
a short path originating at e; and terminating at e,. If ¢; and ¢, form a short path,
then the initial and final registers of this path must be made nonsequentially adjacent.
Equations (5.10), (5.11), and (5.12) are used to eliminate any catastrophic short paths

(or race conditions).

5.3.4. Internal path constraints

Internal long paths are created between two sequentially adjacent registers on the
same edge when the edge weight is greater than one and the internal path delay is
greater than a specified clock period c. Internal long path constraints can be formulated

using (5.3) as

we(ei) L, Vi:TPD s (€) > € (5.13)

113

which suggests that if the internal path delay of an edge is greater than the desired
clock period, the weight of that specific edge must be either zero or one to prevent

internal long paths.

An edge with a weight of three is depicted in Figure 34. More precisely, edge e3 of
Figure 32 which connects vertices v3 and vy is shown under the assumption, w(ez) = 3.
In Figure 34, the internal path delay on edge e (the delay between register pairs ry, ro
and r2,r3) is constant since multiple registers on the same edge are assumed to have
the same delay, and the interconnect delay between internal registers is assumed to
be negligible. Since the electrical characteristics of the vertices and registers do not
change, the maximum internal path delays are calculated from (5.3) only once before
the retiming process is applied. This calculation ensures that before the retiming process
begins, any unnecessary internal long paths due to excessive internal path delays are
not created. An example graph in which the internal path delay of edge e exceeds the
path delay between edges e3 and e3, thereby causing an internal long path, is shown in
Figure 35. It can be observed from Figure 35 that the internal long path delay exceeds
the path delay between e and e3 since the negative clock skew between these registers

decreases the path delay, lowering Tpp(e2, e3) below the internal path delay.

Internal short paths constraints are similar to the internal long path constraints.

For those internal paths with negative internal path delay due to (5.2), the following

114

Tlml (cs)

Figure 34. The internal path delay between registers located on the same edge. Tro, , urnaimes *

is equal due to the definition of the RECs. This example demonstrates the case where w(ea) = 3.

8:1/0/2-1/3 v, 20:3/0/2-2/1 v,

(1,1] (1,1]
4 } 3
e, €
~— "
3 2tu

TP D miernstpmas (€2) > TPD o (€25 €3)

Figure 35. An example graph in which the internal path delay on edge e; exceeds the path delay between ez and

ea. This graph exemplifies the importance of considering internal long paths before the retiming process is initiated.

115
constraint is applied:

<0, (5.14)

wr(ei) s 17 VZ . TPDInt:rnal

min

which suggests that if the internal path delay of an edge is less than zero denoting a
race condition, the weight of that specific edge must be either zero or one to prevent

internal short paths.

5.3.5. Constraints due to vertex lags

Constraints (2.3), (5.10), (5.11), (5.12), (5.13), and (5.14) are written in terms of
edge weights. These constraints can be rewritten as (5.15), (5.16), (5.17), (5.18), (5.19),

and (5.20), respectively, to reduce the number of necessary operations.

r(e.start) — r(e.end) < w(e), Ve € E. (5.15)
rle.start) — r(ei.end) = w(e;). (5.16)
r(ej.start) — r(e;j.end) = w(e;), (5.17)

r(ej.end) — r(ej.start) < W(i, j) - 1, (5.18)

r(e;.start) — r(e;.end) > w(e;) — 1, Vi : TPD 1 ermatmas (€i) > € (5.19)

116

r(ei.start) —r(ei.end) > w(e;) — 1,Vi: Tpppierna,,,, (€i) S 0. (5.20)

In order to provide some intuition to (5.15), (5.16), (5.17), (5.18), (5.19), and (5.20),
note that, given two vertices u and v, the value r(u) — r(v) can be thought of as “the
number of registers taken out of the path p : u ~» v.” Given this interpretation, it is
implied in (5.15) that “the number of registers taken from an edge e cannot be greater
than the original weight of the edge,” i.e., none of the edge weights can be negative.
In a similar manner, it is stated in (5.16) and (5.17) that “the number of registers taken
from edge e; and ¢;, respectively, must be equal to the original weight of this edge,”
implicitly stating that this edge should be made zero weight. In (5.18) it is stated that
“the registers taken from the path p : e; ~» e; must be less than the original weight of
this path minus one,” implicitly stating that at least one register should be left along
any path between registers ¢; and e;, thereby making this path nonsequentially adjacent.
Finally, in (5.19) and (5.20) it is implied that either zero or one register should be left

on an edge e that contains an internal long or short path.
5.4. Retiming Algorithm

In this section three algorithms are introduced: 1) Algorithm RETSAM to perform
retiming of synchronous circuits, 2) Algorithm CHECKCP to check the feasibility of

a specific clock period, and 3) Algorithm SOLVELAGS to determine the vertex lags

117

based on a branch and bound method. These three algorithms are explained in the

following subsections.

5.4.1. RETSAM: Retiming Algorithm for Syﬂchronous Circuits
with Attached Electrical Information

Retiming a synchronous circuit is achieved by performing a binary search of all
possible clock periods on a specific circuit graph. The pseudo-code of the retiming
algorithm is shown in Figure 36. The lower and upper bounds of the binary search
are CPpin and CPpa., respectively. Initially the lower bound is zero (Step 1). If
the original graph does not contain any race conditions, the critical path delay of the
original graph defines the upper bound of the binary search (Step 2). The SAM is
calculated in Step 3 and used throughout the algorithm. If the original graph contains
one or more race conditions, the maximum value in the SAM is used as the upper
bound (Step 4). During the binary search, a specific clock period, C Prarget. is checked
for feasibility using algorithm CHECKCP (Steps 5 and 6). Depending on whether a
solution exists (Step 7) or not (Step 8), the lower and upper search bounds are adjusted
and the binary search continues until the minimum clock period is determined (Step 9).
An approximate solution can be obtained for the minimum clock period if RETSAM
is terminated once the binary search bounds become sufficiently tight. This step may
significantly reduce the run time requirement of the algorithm, since any target clock

periods close to the minimum clock period may require excessive computational time.

2 N

© 90 N2 o

118

CPnmin =0

C Prar = clock period of the original graph

Calculate SAM

If the original graph has race conditions C Py, = max {S5(i,j), Vi.j},
Choose C Prurger = | SmaztCPoun |

2

Check for feasibility of ¢ = C Pryer using algorithm CHECKCP
If set of inequalities can be successfully solved, then C Ppar = C Piarger
[f not, then C’Pmm = CPturgcl

Continue this process until C Ppnin = C Prax
Figure 36. Pseudo-code for RETSAM

5.4.2. CHECKCP: Clock Period Feasibility Check

A feasibility check for a specific clock period C Py,ge: is achieved by solving the

set of nonlinear inequalities for the vertex lag ranges. If all the constraints are satisfied

for every path in the graph, the clock period is considered feasible. Pseudo-code for

the algorithm that determines the feasibility of a clock period is shown in Figure 37.

Lag ranges are stored in an array called r[]. The timing constraints are derived from

the SAM.

The most important step in CHECKCP is solving for the vertex lags r() using

Algorithm SOLVELAGS. The objective of the retiming algorithm is to yield a set of

vertex lags that satisfy (5.15) through (5.19). To achieve this objective, the vertex

119

lag ranges are initialized with unbounded values [—occ . .. oc]. Timing constraints are
continuously applied to these vertex lags in order to tighten the ranges until eventually
all the constraints are satisfied. Once the vertex lags are each defined, these lag values

are used to determine the edge weights of the retimed graph according to (3.5).

5.4.3. SOLVELAGS: Determination of the Vertex Lags
Using a Branch and Bound Approach

The following types of equalities and inequalities are created from the aforemen-

L rfo] =[0...0]

!\)

rlk] = [~oc ... +ocl,k=1, ..., E~-1
3. Create a constraint list L for clock period ¢
4. Adjust lags to satisfy all constraints using algorithm SOLVELAGS

5. [If all lags are fixed and all constraints are unsatisfied
— Clock period is not feasible

6. If all constraints are satisfied
— Clock period is feasible

7. If c is feasible and all lags are not fixed

— Use lower bounds of the unfixed lags

Figure 37. Pseudo-code for clock period feasibility test, CHECKCP

120

tioned timing constraints:

r(va) = r(v) =k, (5.21)

r(ve) — r(uvs) < &, (5.22

F(va) = rvg) = k1 or r(oe) = r(vg) = ka. (5.23)

r(va) = r(vy) = ky or r(ve) — r(va) < ko, (5.24)

r(va) = r(v) = ki or r(ve) = r(vg) = k2 or r(ve) —r(vy) < ks, (5.25)

where r() are vertex lags and k, are constants. The or statements that appear in
(5.23), (5.24), and (5.25) prohibit the use of standard linear programming methods [47]
and necessitate the use of branch and bound techniques for the general unconstrained
retiming problem. However, it is shown in Section 5.5 that a polynomial-time sub-
optimal solution is feasible when the path delays are constrained to monotonically
increasing delay values.

Note the existence of multiple choices in each inequality in (5.23), (5.24), and (5.25)
in the form of sl or s2 or s3, where sl, s2, and s3 are different choices. s3 = nil

(non-existant) implies the form shown in (5.23) and (5.24), whereas s3 = n:l and

121

s2 = nil imply the form shown in (5.21) and (5.22). Notationally, sl must always
exist, and s2 = nil and s3 # nil is not permitted. Therefore, (5.25) is characterized
by s3 # nil. Note that it is possible to reduce the complexity of a multiple choice
inequality by either eliminating s2 or s3. Thus, an inequality originally in the form of

(5.25) can be converted to the form of (5.23), thereby reducing its complexity.

To gain insight into how these multiple choice inequalities are created, consider
retiming the graph of Figure 33, for which the SAM is shown in Table 3. To achieve
a clock period of ¢ = 37 tu, the dark shaded and light shaded paths must be avoided,
since they represent long paths for ¢ = 37 tu and short paths, respectively. To avoid,
for example, the path p : e; ~ eg, there exists three possible choices, derived from

(5.10), (5.11), and (5.12), resulting in the multiple choice inequality,
r(3) =r(4) =lor r(0) —r(l) =1orr@4)-r(0) < -1, (5.26)

which states that to eliminate the path starting at e; and terminating at eg, either e3 or
eg must be zero weight, thereby making the path p : e3 ~ eo non-existent, or at least

one register must be placed between the initial and terminating vertices of the path p.

The pseudo-code of the branch and bound algorithm SOLVELAGS that calculates
the vertex lags is shown in Figure 38. A list L is maintained to store the timing
constraints derived from the SAM (Step 1) which are individually eliminated until no

more constraints remain unevaluated (Steps 2 and 18). Within this loop, each constraint

122

[is evaluated separately (Step 3) to determine if s3 (Step 4) or s2 (Step 12) is non-

existant.

If 53 can be eliminated (i.e., s3 can never be satisfied using the current vertex lag
list), the complexity of the constraint [can be reduced (Steps 5 through 7). Alternatively,
if s3 is satisfied using the current vertex list without further tightening the boundaries
of the vertex lag list, the constraint { can be eliminated (Steps 8 through 11). The same

operations are performed on condition s2 between Steps 12 and 13.

After s3 and s2 are evaluated, the lags are adjusted to satisfy constraint sl (Step
14). If s1 cannot be satisfied, a vertex lag set does not exist that satisfies all constraints
(Steps 15 and 16), since sl is the last possible solution in the or chain. If a vertex lag
set can be found that satisfies sl, the vertex lag that satisfies s1 is used (Step 17). After
L is completely evaluated and the entire list of constraints is satisfied, a solution exists

and the current status of the vertex list is the set of final vertex lags (Step 19).

The solution method for determining the vertex lags of the graph shown in Figure
33 is exemplified in Table 4. The target minimum clock period in this example is 24 tu.
To solve for a set of vertex lags that provides a proper retiming, an inequality similar
to (5.26) is written for each short or long path shown in Table 3. In this algorithm,
the unbounded value [—~oo ... od] is initially assigned to each vertex lag range. Only
one vertex lag [r(0) for simplicity] is initialized to 0 and the other lags are calculated

relative to r(0). Bounds of the vertex lag ranges are continuously tightened to determine

1. Let L be the constraint list.

2. while L # 0

3. Let!=(slors2ors3) € L be the nexttiming constraint, where sl, s2, or s3
is one of the timing constraints. s2 and/or s3 may be ni! (non-satisfiable)
if s3 = n:l goto 12.

Constrain vertex lags to satisfy s3. Iterate if necessary.

4
5
6. if s3 is non-satisfiable with the current vertex lag list
7 | = | — 33 (delete condition s3).

8. else

9 L = L — [(delete the entire constraint)

10. goto 18.

11. endif.

12. if s2 = nil goto 14.

13. repeat steps § through 11 for s2.

14. Constrain vertex lags to satisfy sl. Iterate if necessary.
15. if sl is non-satisfiable using the current vertex lag list
16. exit. no solution exists.

17. else L = L — [(delete the entire constraint).

18. endwhile.

19. Use the vertex list as the solution
Figure 38. Pseudo-code for the branch and bound algorithm SOLVELAGS that calculates the vertex lags.

124

Table 4: Example solution for ¢ = 24. A single value is shown for equal lower and upper bounds.

Constraint Type n0) (1) "2) n3) r(4) ns) ne) LY

0 -00.0 | -00..00 -00..00 -03..00 ~00..00 -00..00 -00..00
rt0)-r(1)st Negativity on ¢p 0 -1l..00 -00..00 ~-00..00 —-0..00 —-00..00 | —00..00 -00..00
r(1)-e(N<0 Negativity on e7 0 -1..00 -00..00 —-00..00 -00..00 -03.00 | —03..00 =1l.00
Negativity on ey, ¢, €3, ¢s, €5, ¢a, 7. | 0 -1..0 -2..0 -3..1 -4..0 -3..0 -2..0 -1..0
s, ¢9
a0)y-r(l)=t ar Lang path: 0 3 -2.0 -3.! -1.0 =30 ~-2.0 -1.0
f(i)r0)s-1 €o—¢t0
Negativity on all edges 0 ! -2.0 -3..1 -4..0 ~3.0 -2.0 -1..0
1(1)-1(N=0 or Long path: 0 1 -2.0 =31 -4..0 -3..0 -2.0 -1
n7N-e(11s0 er—er
el Negativity on ¢; 0 1 -2.0 -3..1 -4.0 -3.0 -2.0 -1
n6)-r(7)sn Negativity on e 0 i -2.0 -3..1 -4..0 -3..0 -2. =114
r(S5)-r(6)<0 Negativity on ey [1] l -2.0 -3..1 -4..0 =3.=1]=2.<1}-
#(2)-1(6)S0 Negativity on e, 0 -1 -2.-11}-=-3.1 -4..0 -3.-1{-2.-11-
lteration #1: choose r(3)=-3 0 -1 2 -3 -2 2 -1

rQ)r(3)=l or Short puth: Condition | satistied

r3rrd)=1 €1y

r(3rr(d)s1 Negutivity on e3 0 J -1 l -2 [-3 L-Z I-l -2 L-l
f(3)r(d)=1 or Long path: Constraiats are not satistiable

o(6)-r(T)=0 ey —ey

a set of vertex lag ranges that satisfies all of the constraints.

In Table 4, the vertex lag non-negativity constraint from (5.15) is applied to each

vertex to further tighten the vertex lag ranges (shown in the first three rows). When

the constraint from (5.15) cannot be used to further tighten the vertex lag ranges, the

125

long path constraints from (5.16), (5.17), and (5.18) are used (see row 4). Short paths
are also eliminated using (5.16), (5.17), and (5.18). Each time the bounds are tightened
by applying long (or short) path constraints, (5.15) is applied to the new set and the
neighboring vertex lag ranges to ensure non-negative edge weights on each edge. The
algorithm may reach a point where the application of the constraints can no longer
tighten the bounds (the dark shaded row). Once this occurs, all possible values for each
vertex lag are tested. On the first dark shaded row in Table 4, there are two unfixed lags
with cardinalities two and three, respectively. Therefore, 2 * 3 = 6 possible solutions
exist and must be evaluated. If a solution is reached, the algorithm is terminated and
the resulting vertex lag ranges are used to determine the edge weights of the retimed
graph. If all possible solutions are considered and a set of vertex lag ranges cannot
be determined that satisfy all constraints, a solution for that specific clock period does

not exist.

5.5. Path Delay Monotonicity Constraints

The algorithm RETSAM is capable of including arbitrary register properties such as
clock delays. In the event, however, that the design freedom permits consideration
of the REC delay values as part of the design process, certain constraints can be
placed on the REC values which will permit the use of standard linear programming
techniques, such as the Bellman-Ford method [47], for solving for the vertex lags. This

process yields more computationally efficient results. In the following subsections,

126

the path delay monotonicity constraints that must be applied to the REC values to
permit computationally efficient retiming are introduced, design issues relating to the
clock distribution network with respect to satisfying the monotonicity constraints are
described, and the feasibility of applying these monotonicity constraints to practical

circuits is discussed.

5.5.1. Intuition for the Monotonicity Constraints

In practical integrated circuits, variations in clock delay between widely separated
registers may create clock skews which can drastically affect circuit operation. An
observation of (4.27) is that arbitrary clock skews (in particular, negative clock skews)
may cause longer data paths (paths with more edges and vertices) to have less delay than
shorter data paths (paths with less edges and vertices). Therefore, unless constraints
are placed on the possible clock delays, the data path delays are arbitrary and can quite
possibly be negative. This decrease in path delay can occur either due to negative clock
skew or to the delay components of the newly placed register being less than the delay
components of the original register. Thus, a sub-path p; of a longer path p (composed
of added edges and vertices) may have a delay greater than path p. An example graph
in which this occurs is depicted in Figure 39. In this graph, the sub-path p; has a
greater delay than path p. The primary cause is due to the effect of negative clock
skew which effectively subtracts delay from the local data path p, thereby causing the

sub-path p; to have greater delay (or the longer path p to have less delay). In the

127

v 3:1/1/4-1/2 v 8:1/0/2-1/3 v 20:3/1/2-21 v,
: [0,0] 2 [0,0] 2 [0,0]

3 } 3 4 } 3
[+ | Cz 63

2

Stu

Figure 39. An example graph in which the path delays do not monotonically increase. The sub-path
p1 has a delay greater than its original path p. The cause of this non-monotonic behavior is due
to the negative clock skew between edges e; and e;. Note that only the maximum path delay, Tpp,,, ..

1s considered and the load-dependence of the delays is assumed to be negligible for simplicity.

specific example shown in Figure 39, sub-path py is | tu greater than path p. This
1 tu difference results from the negative clock skew between edges ¢; and ea, ie.,
Tskew(el.€2) =3 -8 = =5 .

When a sub-path of a larger path has a greater delay, there are three choices for

removing that path. These choices are:

1. Place a register between the initial and the terminal edges, since a shorter path may
have a smaller delay (or a short path may have a larger delay).

2. Remove the initial edge so that the path becomes longer (more edges and vertices).
This longer path may have a smaller delay.

3. Remove the terminal edge so that the path becomes longer. This longer path may

have a smaller delay.

128

Conditions 2 and 3 are required since the data path delays are completely arbitrary
and any of these conditions may possibly remove the undesirable path. Since these
three conditions are used in RETSAM, standard linear programming techniques are
not possible due to the boolean or operation, thereby resulting in the multiple-choice
inequalities represented by (5.21)-(5.25).
A strategy to improve the time efficiency of the retiming algorithm is as follows:
If certain temporal constraints are placed on the clock delays, it is possible to guarantee
that a sub-path p; of a larger path p will always have a larger delay, thereby removing
the aforementioned conditions 2 and 3. This simplification permits using the standard
Bellman-Ford method, since by removing conditions, 2 and 3, the remaining inequalities
are linear in the form of z; ~r; < a;j, since no boolean or operation is being performed.
Assume a path with three edges e¢;, e; and e, and two vertices v, and v, between
these edges. The following condition ensures monotonically increasing path delays:
Tskew(dy) < min {Ty(2. j). (i, J)}
Tskew(k. j) < min {T2(j, k), 20,)}, (5.27)
Tskew(i,) < T(2,5)-
where Ty, 71, Ta, ™, and T are constant values calculated using the REC parameters
attached to edges ¢, J, and k, and vertices v, and v, between these edges. Details of

the derivation of (5.27) can be found later in Section 5.5.4.

Equation (5.27) guarantees monotonically increasing delays for each edge-to-edge

local data path. If (5.27) is satisfied and all path delays increase monotonically, standard

129

linear programming methods can be applied when retiming a graph, thereby dramatically
improving the computational efficiency of the retiming process. Relationship (5.27) does
not permit race conditions since race conditions may create sub-paths with delays larger
than the original paths. Therefore, race conditions must be eliminated in advance to
permit the use of the Bellman-Ford method. Therefore this strategy does not verify
the existence of race conditions but instead assumes that all race conditions have been
eliminated a priori. Given that (5.27) is satisfied for each path in the synchronous
circuit, inequalities for longer paths can be written and solved using the Bellman-Ford
method. Equations (5.28) and (5.29) must be satisfied to ensure that a proper retiming
with RECs has been accomplished. These conditions are similar to those derived in
(14].

r(u) = r(v) < w(e), Ve:u — v, (5.28)

r(u) — r(v) < W(u.v) = 1,Vi,j € E:S8(i,j) > c,u=¢e;end,v = ej.start. (5.29)

5.5.2. Designing the Clock Distribution Network

In a practical integrated circuit, clock delays to each individual register may vary
significantly due to the layout characteristics of the clock distribution network, creating
localized clock skew between sequentially adjacent registers. These initial clock delays

can be changed by redesigning the clock distribution network, for example, by inserting

130

buffers into certain clock paths. By applying this type of methodology, a clock
distribution network can be designed which maintains monotonically increasing path
delays and no race conditions, thereby satisfying (5.30) and (5.31). These inequalities
are imposed on a path with three edges, ¢, j, and k, and two vertices, v, and vy,

between the registers.

Tep(i) = Tepli) £ min {Ti(, j), nu(i,J) b
(5.30)

Tep(k) = Tep(j) < min {Ta(j, k). 724, k)},

Tep(i) = Tep() < T(). (.31

Equations (5.30) and (5.31) represent the minimum and maximum clock skew that
each individual local data path may have without causing improper circuit operation.
As described in Section 5.5.4, values of r and T are derived from the REC parameters
of the path, e; ~ vy v €j v vy ~> €.

Careful observation of (5.30) and (5.31) will show that these expressions represent a
family of inequalities which can be solved using the Bellman-Ford method [47]. There-
fore, a clock distribution network can be systematically designed with this methodology,
as shown by the algorithm presented in pseudo-code form in Figure 40. The process
described in Step 5, designing the clock distribution network from the individual clock

delays, is discussed in greater detail in [80, 92-94].

131

In the event that no solution for this set of inequalities exists, a clock distribution
network design is not feasible. If this occurs, these monotonicity conditions cannot be

satisfied and the algorithm RETSAM can be used.

1. Calculate the (¢,) and 7(¢,) values for each local data path ¢; ~» ¢, in the
synchronous circuit

2. Calculate the T(:.j), T1(Z,J), and T2(z, j) values for each local data path €; ~ ¢;
in the synchronous circuit

3. Write the inequalities for each local data path using (5.30) and (5.31)

4. Solve the inequalities with the Bellman-Ford method

5. Use the resulting clock delays to design the clock distribution network

Figure 40. Pseudo-code version of algorithm for designing the clock distribution network

A key aspect of the results of this research dissertation is the close interaction
that exists between the design of the clock distribution network and the computational
efficiency of the retiming process. It is shown herein that if the clock distribution
network is poorly designed, the retiming process may be greatly degraded. Alternatively,
a well designed clock distribution network may significantly enhance the efficiency of

the retiming process.

132

5.5.3. Feasibility Check for the Clock Distribution Network

To verify whether the conditions imposed on the clock delays are feasible in practical
circuits, typical values for the RECs are used to exemplify the design process. The
original digital correlator presented by Leiserson-Saxe and shown in Figure 32 is used
as an example circuit. The logic elements represented by the vertices v1, va, v3, and vy
are comparators and are modeled as XNOR gates with a nominal delay value of 3.5 ns.
The logic elements represented by vertices vs, vg, and v are full adders with a nominal
delay value of 4.0 ns. Typical register set-up, hold, and clock-to-Q times of 4.0 ns,
0.5 ns, and 3.0 ns are used. These temporal values are derived from industrial-based
standard cell libraries.

The parameters are provided below for an arbitrary path p : g ~» €] ~ €2 shown
in Figure 32. Interconnect capacitances, Crni; and Cgy2, are assumed to each be 0.5
pf, and the output siope of both registers and vertices are assumed to be m = 1 kQ for
every edge and vertex along path p. Input capacitances of both the logic elements and
registers are assumed to be 0.2 pf. In this case, the 7 and T values can be calculated

as follows:
Ti(eo,e1) =[3 -3 ns - 1 kQ[0.5pf +0.2 pf] + 1 kQ2[0.5 pf + 0.2 pf]
+3.5ns + 1 kQ[0.5 pf +0.5pf + 0.5 pf] = 5 ns,
r1(eo,e1) = 1 kQ[0.5 pf + 0.5 pf] — € — [0.5 ns — 3 ns]

(5.32)
+3.5ns+1kQ05pf +05pfl=8ns—e.

Assuming a small e value,
min {T)(eq,€1), T1(€0,€1)} =3 ns.
Taer,e2) =[4 =4 ns — 1 kQ[0.2pf — 0.5 pf — 0.2 pf]
+3.5 ns + | kQ[0.5 ns + 0.2 ns] = 4.7 ns,

1“-2(6[76-3) =1 kQ[O.s pf+ 0.2 pf] - [0.5 ns — J.O ns] — €

+35ns + 1 kQ[0.53ns + 0.2 ns] = T4 ns —e.
Assuming a small ¢ value,

min {Ta(e1,€2), 2(e1,€2)} = 4.7 ns.

According to (5.27),
Tskewler.e0) < 5 ns,

and

Tskew(er. €2) < 4.7 ns,

133

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

These two inequalities place restrictions on the clock skew values for edges eg, e;, and

e2. For example, (36) suggests that as long as the clock signal on edge e, does not lead

the clock signal on edge eq by more than 5 nanoseconds, or, as (5.37) suggests, as long

as the clock signal on edge e; does not lag the clock signal on edge es by more than 4.7

nanoseconds, the path delays on eg ~» e; ~» e2 will increase monotonically. Therefore,

134

for example, clock delays of Tcp(eo) =1 ns, Tep(e1) = 2 ns, Tep(e2) = 3 ns would
operate properly since
Tskew(e1,e0) = 1 ns < 3 ns, (5.38)
and
Tskewl€l,€2) = —1 ns < 4.7 ns. (5.39)
A methodology for designing clock distribution networks based on non-zero localized

clock skew is described in greater detail in [80, 92-94].

5.5.4. Derivation of the Monotonicity Constraints

Computationally efficient retiming cannot be guaranteed on a synchronous circuit
with arbitrary clock delays yielding arbitrary data path delays. It may be preferable
to design the clock distribution network to improve the computational efficiency of
the retiming algorithm by ensuring that all maximum path delays are monotonically
increasing, and minimum path delays do not indicate any race conditions. The derivation
of the inequalities, (5.30) and (5.31), are provided in this section.

In Figure 41, a path with three registers and two vertices with delays d(v,) and

d(vp), respectively, is depicted.

Figure 41. A path p with 3 registers and 2 vertices.

135

For this path consisting of three registers, ¢, j, and k, necessary conditions for

monotonically increasing maximum path delays (smaller delays for sub-paths of larger
paths) are

TPDm“(iv k) 2 TPDmax(£7j)’
(5.40)

Tppma(i k) 2 Tpp,, s k).

To provide intuition into how these inequalities are created, consider the graph of Figure
39. In this figure, inequalities in (5.40) can be used to ensure that the sub-paths p; and
p2 each have a delay less than the longer path p. More generally, inequalities in (5.40)
ensure that paths e; ~» e, and e; ~» e; each have a maximum delay less than the

longer path e; ~» e .

The minimum path delays must be greater than zero to ensure that the retimed
circuit does not have any race conditions, i.e., every subpath is free of race conditions.
For the path above, the conditions that must be imposed on minimum path delays are

TPDmnlt:d) 2 €,
5.41)

TPDmln(j7k) —>- C,

where ¢ is a process-dependant safety parameter. Note that the parameter > e is used

instead of > 0 to create a consistent set of inequalities, i.e., similar to (5.40).

Using (4.30), the following inequalities can be derived from (5.40) and (5.41).

136

Te—Qq (i) + m(i)[Craea(i) + c(va)] + dolva) + M(va)[Craar () + Crneald) + ()] +
do(vb) + m(vb)[Clml(k) + C(k)] + TSe!-up(k) + TSkew(iv k) Z TC-Qo“)'*'

mi)}{Craeal i) + c(a)] + do(va) + M(Va){Crner(J) + c(J)] + Tset—up(f) + Tskewli, J)»

(5.42)
Te~qoli) + m()[Craea(i) + c(va)] + do(va) + M(va)[Crner(§) + Crnea(J) + clve)]+
do(vs) + m(vs)[Crner (k) + c(k)] + Tsee—up(k) + Tskew (i, k) 2 Te—qo ()
m(j)[Crnea(J) + c(vs)] + dovs) + m(vs)[Craer(k) + (k)] + Tser—up(k) + Tsiew(J, k)-
Te—~qo (i) + m(i)[Craeali) + c(va)] + do(va) + m(va)[Crner(J) + (4]
—Troa()) + Tskew(i, j) > €.
(5.43)

Te—=qolJ) + m(J)[Crasald) + clvs)] + dalvs) + m(v3)[Crner (k) + c(k)]

—Thota(k) + Tskew(J, k) > €.

Carrying out the cancellations, the following inequalities are obtained from (5.42)

137

and (5.43).
Tskew(isj) 2 [To=qoli) = Te—qo(8)] + m()[Crneald) + e(vp)]-

m(i)[Crata(i) + c(va)] = do(va) — m(va)[Cran1 (j) + Crnea(j) + c(ws)],

(5.44)
Tskewlis k) 2 [Tset-upld) = Tset—up(k)] + m(va)[e(f) = Crara() = e(v3)]
—~do(vs) = m(vs)[Crani (k) + c(k)],
Tskew(i-) 2 €+ [Trou(J) — Te=qo(i)] = m(@)[Craa(i) + c(va)]
~do(va) = m(va)[Cranr(j) + ()]s
(5.45)

Tskew(js k) = € + [Thota(k) = Te—qo(4)] = m()Crara(y) + c(vp)]

—dg(vp) — m(vp)[Crnur (k) + c(k)].

These two conditions, (5.44) and (5.45), can be transformed into a single condition
by defining two constants, r and T|. Assume a path with three edges, i, j, and &,
respectively, and two vertices between these edges. The following condition is required
to ensure that the maximum path delays increase monotonically with increasing path

length and that there are no race conditions,

Tskew(J, i) < min {T1(i, 1), 1i(é,5)},
(5.46)
Tskew(k,j) < min{T2(j. k), 72(J, k)},

138

where for a path with two edges, ¢ and b, and a vertex v in between the two edges,

1,7, T1, and T are defined as follows
T1(a,b) = [Te—qy(a) = Te—qo (b)] = m(B)[Crar2(b) + c(v)]+

m(a)[Crae2(a) + c(v)] + do(v) + m(v)[Cranr(b) + Crae2(b) + c(v)],

(5.47)
r1(a,b) = m(a)[Cra(a) + ¢(v)] — € = [THota(b) — Tc—qq(a)]
+do(v) + m(v)[Cran(b) + c(v)],
Ta(a,b) = [Tset—up(d) = Tser—up(a)] = m(v)[e(a) = Crara(a) = c(v)]
+do(v) + m(e)[Crae(b) + c(b)].
(5.48)

ra(a. b) = m(a)[C'rara(a) + c(v)] = [THota(b) — Te—qola)] —¢

+dy(v) v)[Crne1(b) + c(b)].

The equations in (5.46) set a lower limit on the skew of a local data path to ensure
that only one inequality is required, making the system of inequalities linear, thereby
permitting the use of the Bellman-Ford method. There is also an upper limit that can

be defined as

Tpp,,.(a,b) < C. (5.49)

139

where C is the maximum permitted clock period of the circuit. This upper limit is used
to guarantee that each local data path has a delay smaller than the maximum permitted
clock period of the synchronous circuit. Since monotonicity is guaranteed by (5.46),
a longer path will have a greater delay. Therefore, the upper limit of (5.49) must be
imposed on each local data path, since if (5.49) is not satisfied for each local data path,
the excessively long local data path delay will place a new lower limit on the clock
period of the circuit. If this upper limit is greater than required, the long path must

be removed.

(5.49) can be rewritten in terms of the clock delays as follows:

Te—qo(a) + m(a)[c(v) + Cran(a)] + do(v) + m(v)[Cran(b) + c(b)]
(5.50)
+TSet—up(b) + Tskew(a,b) < C,

which translates to the following equation placing a constraint on the clock delays:

Tskew(a,b) < C — Te_q,(a) — m(a){e(v) + Crar2(a)] — do(v)

(5.51)
—m(v)[Clntl(b) + C(b)] - TSet—up(b)
(5.51) can be converted to a constraint that is similar to (5.46) as follows,
TSkew(arb) < T(avb)v (5.52)

where, for a path with two edges a« and b, and a vertex v between the two edges,

T(a.b) is defined as

T(a,b) = C - Tc—q,(a) — m(a)c(v) + Crnra(a)]-
(5.53)
do(‘U) - m(v)[C[ntl(b) + C(b)l - TSet-up(b)'

140

5.6. Experimental Results

The retiming algorithm RETSAM is implemented in C on a SUN SPARC worksta-
tion. To permit evaluating the proposed retiming algorithm, modified MCNC benchmark
circuits [97, 98] have been analyzed with this algorithm and an implementation of the
Leiserson-Saxe retiming algorithm [14]. The resulting minimum clock period for each
of the retimed benchmark circuits is reported. In the following two sections, the results
of the application of the two algorithms to modified MCNC benchmarks is presented. In
section 5.6.1, the method that is used to modify the MCNC benchmarks to incorporate
the REC values is discussed and the results of the application of the RETSAM algorithm
to those modified benchmarks is presented. In section 5.6.2, the impact of the pipelining

depth on the clock period is discussed on a specific example benchmark circuit.

5.6.1. Application of RETSAM to Modified MCNC Benchmark Circuits

To evaluate the proposed retiming algorithm, 1989 and 1991 MCNC LGSynth
benchmark circuits [97, 98] have been modified to include the effects of variable register,
clock distribution, and interconnect delays as well as load-dependant register and logic
delays. To incorporate these delay components into the benchmark circuits, RECs are
artificially generated using a random number generator. However, to better simulate the
effects of the actual clock distribution, interconnect, and register delays, the uniformly
distributed numbers generated by the C library function random() are converted to a

normal Gaussian distribution [99]. For clock delays, a uniform distribution is applied,

141

since the registers are typically distributed over the entire integrated circuit. Physically
distant registers may have very different clock delays, since the interconnect impedance
between the clock source and these registers and the capacitive loading of the registers
may vary over a wide range. This broad variation suggests a wide spectrum of
clock delay values and therefore a uniform distribution is applied. For interconnect
capacitances, a uniform distribution is also used, since the distance between the registers
and the logic elements is assumed to vary uniformly. A Gaussian distribution is used for
the register delays and output impedances, since similar instances of the same register
cell or register cells of similar delay are most often used; therefore, the delays are
approximated as being normally distributed. For those instances in which a negative
value for the clock distribution, register, or interconnect delays is obtained from the
Gaussian distribution, the approach applied in these experiments is to discard the
negative values and redo the sample. The “truncation towards zero” approach (i.e.,
mapping of negative values to zero) is not applied since this would bias the probability
of obtaining zero values (specifically, the probability of obtaining a zero sample would

be the integral of the Gaussian distribution from —oo to zero).

The application of RETSAM to the example MCNC benchmark circuits is described
in Table 5. The initial five columns describe the properties of the modified benchmark
circuits. These properties are 1) the name of the benchmark example as it appears in
the MCNC archive, 2) the number of edges and 3) vertices in the graph of each circuit,

4) the latency of the circuit, and S) the original clock period. The minimum clock

142

period of the retimed circuit using algorithm RETSAM is shown in the sixth column.
The same circuit shown in the sixth column is then converted to its no-interconnect and
no-load delay form (i.e., Crann = Crni2 = 0 and m = ¢ = 0 for every edge) and retimed
using algorithm RETSAM and the resulting minimum clock period is provided in the
seventh column. In the eighth column, the minimum T¢ p biased with To—.@ + Tset—up
using the classical LP retiming algorithm FEAS [14] is presented. The parameter,
Tc—q + Tset—up, shown separately on the eighth column, is the average register delay
in the circuit and is included to provide a fairer comparison. For example, the circuit
cmd42a has an initial clock period of 126 tu (fifth column), which is reduced to 56 tu
after retiming with the RETSAM algorithm (sixth column). When the load-dependence
is ignored on all edges (m = ¢ = 0) and the interconnect delays are assumed to be zero
for every edge (Crni1 = Crne = 0), ie., when only the effects of variable clock-to-Q
and setup delays are considered, the retimed minimum clock period is reduced to 44 tu
(seventh column). The LP based algorithm yields a clock period of 28 tu on a circuit
with zero registers, interconnect delays, and zero load-dependence (the eighth column).
The average register delay of the original circuit, i.e., the average Tc_.g + T'Set—up» iS
12 tu (the eighth column). Therefore, the sum of the retimed clock period using an LP

based algorithm and the average register delay is 40 tu.

The sequential circuit represented by the retimed graph contains R registers with
various REC values. If the register delays in the circuit are different, as shown in

Figure 42 (Tc—q + TSet—up = 241 tu vs. 243 t), Tge¢—yp for the initial register and

143

Tc—q for the final register must be considered when calculating the path delay. In the
unusual case where all register delays are equal, Tc_.q + Tset—up can be used as a
global parameter, as is assumed in [18]. The greater the variance between the register
delays and between the clock delays (the more significant the affects of negative clock
skew), the greater the minimum clock period becomes, as exemplified by the minimum
clock period of certain benchmark circuits listed in the sixth column. This increased
delay is due to the imbalance among the path delays, thereby increasing the worst case
path delay, requiring a larger minimum clock period. Since the circuits listed in Table
5 are relatively balanced, negative clock skew does not significantly impact most of the
circuits listed in Table 5, i.e., the seventh and the eigth columns are similar (e.g., 44 tu

vs. 40 tu, respectively, in the example of cm42a).

In the ideal case where all delays and load factors are similar, these two columns
are expected to be identical. However, the seventh column displays smaller values in
many cases due to the fact that, since the clock delays are assumed to be zero in the
eighth column, the affect of the negative clock skew is non-existant. However, in a
few examples such as the last circuit of the LGSynth89 benchmarks (parity), the fourth
circuit in the LGSynth91 benchmarks (cm150a), and the circuit of Figure 33 (fig33),
the seventh column has lower values. This occurs since the negative clock skew has
affected the retimed result in favor of the minimum clock period, i.e., the negative clock

skew permits improved retiming results [43].

To provide a comparison between the CPU efficiency of the retiming process with

144

8:1/1/2-1/3 20:3/1/2-2/1

| w |

TPD = Tch +T1nt +TLogic+TSkew
Tpp=(2+3)+(L*3+1%2)+ (4+1x1) +(8-20)
Tpp =3 tu

Figure 42. A path containing two registers and a vertex between the two registers.
The path delay Tpp contains components related to the register delays. If all

registers in the circuit are similar, the register delay components would be equal.

and without monotonic delays, the CPU times are included in columns 9 and 10 of
Table 5. The CPU times required to retime a circuit with monotonic path delays using
a linear programming based algorithm similar to FEAS proposed in [14] is listed in
column 9. The CPU times using RETSAM are listed in column 10. Note the dramatic
improvement in CPU efficiency when a linear programming based algorithm is used.
This emphasizes the importance of applying path delay monotonicity constraints when

retiming a high complexity circuit.

5.6.2. The Impact of Latency on the Retimed Clock Period

In Table 5, the original clock periods of certain modified MCNC benchmark circuits

Table 5: Results of the application of the retiming algorithm to MCNC benchmark circuits

145

c17 6 19 3 12 46 19 91t 0.33 4.5
c17 6 19 4 12 43 k] 26+18 0.33 105
a7 6 19 s n2 k) 9 14ell 0.33 58
c1i? 6 19 6 "n 36 28 1411 033 116
1 % 19 7 1 36 28 lde11 033 423
L]} M 19 3 93 52 47 2311 032 1.2
anila 65 M 3 126 56 2Be2 0.60 $0
cmila 59 n 4 157 55 £ Jos12 0.67 34
majority 26 17 H 1H2 40 35 Well [+k1) 71
parity 138 3 2 244 17 106 99+11 36 te
m
LGSynth91 - multi level (blif)
c17 19 12 5 n k1 30 14411 028 6.7
bl i6 10 2 66 41] 16+11 .27 033
cmi2a 2 12 3 59 38 M 14+l 0.26 Q.66
cniS0s [38 2 108 47 37+11 0.67 58
cmiSta 38 2 3 108 2 <0 26+12 0.38 64
devud 89 4 4 9 56 47 26+11 1.49 97
parity 37 R 2 103 67 51 30+12 0.53 6l
Figure 33 with the added REC values
tig33 1 8 4 37" b2 17 13§ o 0.45

* denotes a graph that contains race conditions before retiming.

is compared to their corresponding retimed clock periods. The artificial REC values

are added to these benchmark circuits using either uniform or normal distribution. To

convert the combinatorial LGSynth89 and LGSynth91 circuits, a dummy vertex is added

146

at the input of the circuit which connects all of the circuit inputs to all of the circuit
outputs. Thus, a closed-loop circuit is created out of every benchmark circuit similar to
that of the Leiserson-Saxe example circuit. This artificial host vertex is used to convert
the combinatorial MCNC benchmark circuits to a synchronous one by adding multiple
registers at every input of the host vertex. The number of added registers determines

the latency of the circuit as listed in the fourth column of Table 5.

Arbitrary latencies are chosen for all of the benchmarks circuits listed in this table,
with the exception of LGSynth89 benchmark circuit C17. The latency of this circuit is
varied from two to seven and the results of the application of both LP based retiming
and algorithm RETSAM are shown on the first six rows of Table 5. These six rows
permit analysis of the impact of pipelining depth on the retimed clock period. At lower
latency values (e.g., 2 and 3), the impact is much more significant. The saturation
point is reached at a latency of six (I = 6). For [> 6, further increasing the latency
has no effect on the retimed clock period, since the retimed clock period is limited
by the vertex delays between any two registers. This phenomenon of the theoretical
minimum clock period has been investigated by Papaefthymiou in [66]. Papaefthymiou
deduces an approximate Tc p/! theoretical minimum clock period, although the effects

of negative clock skew is ignored in [66].

120 . T . '
Inial Icp —
00 b Tep after RETSAM -—— | ¢
= Tcp with Cint=0 -----
:f Tcp with LP based ret. -
2 80 i
Q
a
g e0f]
b 40 b e T -
§ i "‘“"“““"n'-.-._:.:_- R et
C.t‘.’. ."":--.,._'._'""""""_'”'_ """"
20 - i
0 : ’ ' -
2 3 4 5 6 7

Sequential Latency

Figure 43. Effect of the pipelining depth on the clock period on C17.

The initial clock period is 12 t which is shown as a solid line.
5.7. Conclusions

A retiming algorithm is presented which considers variable clock distribution,
register, and interconnect delays as well as the load-dependence of the register and
logic delays. To permit the consideration of these delay components, register electrical
characteristics (RECs) are attached to each edge of the graph representing the circuit
and the original path delays are redefined to be from edge-to-edge rather than vertex-
to-vertex. A set of inequalities are created based on these edge-to-edge path delays,
permitting a retimed version of the circuit to operate at the minimum clock period.

A general algorithm, RETSAM, is presented which supports arbitrary REC values,

148

including excessive negative clock skew. An iterative method using ranges of vertex
lags rather than constant vertex lags is used within this retiming algorithm to solve for

the edge weights.

A set of monotonicity conditions may be imposed on the REC values to improve the
computational efficiency by permitting the use of standard linear programming methods.
These monotonicity conditions place constraints on the magnitude of the negative clock
skew of each local data path, thereby no longer permitting the clock delays to be of
arbitrary value. The feasibility of applying these conditions to practical circuits is
discussed. It is shown that retiming cannot be efficiently and accurately performed on
a circuit with an improperly designed clock distribution network. Thus, the quality
of the design of the clock distribution network can significantly affect the automated
design of high performance synchronous circuits when utilizing retiming as a synthesis

methodology.

The limitations and advantages of the proposed retiming algorithm are compared
with existing retiming strategies using a set of modified MCNC benchmark circuits.
The results of applying RETSAM to the benchmark circuits show that a more accurate
retiming can be performed than with existing retiming algorithms which do not consider
variable clock distribution delays and load-dependant register and interconnect delays.
Additionally, the clock period can be further minimized due to localized negative clock

skew. Finally, clock skew induced race conditions are detected and eliminated.

149

Summarizing, a new retiming algorithm which considers the effects of variable
clock distribution delays and load-dependant register and interconnect delays has been
presented. This algorithm represents a significant extension of existing retiming al-
gorithms, permitting the use of retiming for the automated synthesis of higher speed,

more reliable pipelined digital systems.

150

Chapter 6. Conclusions

As achieving higher clock frequencies becomes a more important design issue and
the circuit area becomes a less constrained design parameter, the need to develop new
methodologies to improve the synchronous speed at the expense of increased circuit
area arises. This dissertation addresses methodologies to optimally locate and clock the
flip-flops inside a synchronous circuit so as to improve the synchronous clock speed,

typically at the expense of circuit area.

A new timing model that permits characterizing the low-level circuit details in
a VLSI circuit is presented in Chapter 4. This model, called the Register Electrical
Characteristic (REC) model, permits modeling low-level circuit characteristics such as
the clock delays, load-dependent register and interconnect delays, and variable and load-
dependent register and logic delays. The REC model presented in this dissertation is the
first research result that incorporates lower level delay characteristics into the retiming
process. More specifically, the set-up time (T'ses—yp), hold time (Tyoq), and the load-
dependent clock-to-Q delay (T¢—.q) of the registers, interconnect capacitances along
the connections between the registers and logic elements (Cr,;), the output impedance
of the registers and logic elements (m), the input capacitance of the registers and
logic elements (c), and the clock delays from the global clock source to each flip-flop

(Tcp) have been characterized in the REC model. Incorporating the RECs into the

151

synchronous optimization process permits achieving significantly more accurate (e.g.,
20-30%) optimization results.

A new branch and bound based retiming algorithm, called RETSAM, has been
introduced in Chapter 5 that permits retiming a synchronous circuit with arbitrary REC
model parameters. The fundamental deviation between LP based algorithms existing in
the literature and RETSAM is the redefinition of the path delays to be from edge-to-edge
rather than vertex-to-vertex. With this new definition, paths initiate and terminate at
registers rather than logic elements. The timing constraints that are used in existing
retiming algorithms have been reformulated to incorporate the REC model. Due to the
complexity of these new timing models, LP based algorithms could not be used for the
retiming process. This necessitates the use of branch and bound techniques in algorithm
RETSAM, thereby yielding exponential run-time.

[f the REC parameters are not restricted and are totally arbitrary, branch and bound
techniques must be used and polynomial run-time can not be achieved. However,
an important observation of this dissertation is that it is possible to place monotonicity
constraints on the path delays to permit using LP based algorithms on circuits containing
restricted REC parameters. These path delay monotonicity constraints, presented
in Section 5.5, permit using LP based algorithms by ensuring that the path delays
increase monotonically. As described in Section 5.5.2, it is possible in many cases to
design the clock distribution network to permit computationally inexpensive retiming.

This is achieved by specifying the clock delays along a given path so as to achieve

152

monotonically increasing path delays. As described in Section 5.5, in a graph with
monotonically increasing path delays, the aforementioned complex timing constraints
can be reduced to the simple inequalities found in [14], thereby permitting the use of LP
based methods. This important result of this dissertation demonstrates the significant
correlation between the clock distribution design process and the retiming process. It is
shown in Section 5.5 that a poor design of the clock distribution network deteriorates
the quality of the retiming process. Thus, the retiming and clock distribution design

processes are inextricably intertwined.

Both algorithm RETSAM and an implementation of the LP based methods have
been evaluated on several MCNC benchmark examples. Since the standard MCNC
benchmark circuits do not incorporate the REC parameters, these parameters have
been created artificially using standard and uniform distribution models. Although
the algorithm RETSAM is impractically slower than LP based retiming algorithm, as
demonstrated in Table 5, this algorithm may prove useful for small portions of a more
complex circuit (e.g., a sub-circuit of an ALU in a complex microprocessor). In other
words, improved accuracy may be obtained by retiming small subcircuits of a larger
circuit using RETSAM, which may provide better intuition into how best to retime the
entire circuit. However, for the larger circuits, LP based methods should be used due
to the computational complexity of algorithm RETSAM. However, LP based methods
can only be used after ensuring monotonically increasing delays, i.e., the clock delays

must be calculated using the formulas presented in Section 5.5.2.

153

In summary, this research described in this dissertation presents an approach to
retiming synchronous circuits with added low-level circuit characteristics by modeling
the lower level circuit details using the REC model. The development of the REC
model is the key result of the research presented in this dissertation which permits
incorporating low level circuit characteristics into the retiming process for the first
time. This objective is achieved at the expense of CPU time for generic circuits that
contain unrestricted clock delays. The exponential time algorithm RETSAM, presented
in this dissertation, is useful for retiming small circuits, such as a sub-portion of a larger
circuit. The extremely accurate results obtained from this unrestricted retiming can be
used to gain intuition into the functionality of a larger circuit. Alternatively, for circuits
with restricted clock delays, the path delays increase monotonically, and the LP based
algorithms that exist in the literature can be used. Thus, circuits with restricted REC
values can be retimed asymptotically as fast as the circuits not containing REC values,

thereby not requiring additional time complexity for the added generality.

154

Chapter 7. Future Work

The research results presented in Chapter 5 describe a timing model that incorporates
low-level circuit details such as non-zero clock skew, load-dependent interconnect delay,
and load-dependent register and logic delays. Incorporating these characteristics into
a retiming algorithm permits automating the pipelining process of large VLSI circuits
without losing accuracy. Significant improvements in the accuracy and reliability of
the synthesized circuits using automated techniques is achieved by considering these

low-level circuit effects.

As mentioned in Chapter S, the combinatorial MCNC benchmark circuits are
converted to their pipelined counterpart by using an artificial host vertex and adding
multiple registers to the input of the input of the host vertex. The retiming process
distributes these registers to proper locations inside the benchmark circuit, thereby
yielding a minimum clock period. It is not clear, however, what the relationship is
between the pipelining depth and the minimum obtainable clock period after retiming.
As the results from investigating the example C17 suggests in Table 5, increasing the
pipelining depth does not decrease the minimum clock period beyond the saturation
latency (e.g., 6 for the example of C17). Therefore, a study of the relationship between
the latency and the minimum obtainable clock period may lead to important research

results that shine light on undiscovered aspects of the pipelining-retiming relationship.

155

In Section 7.1, the relationship between the pipelining depth and the minimum
obtainable clock period is discussed. This relationship is compared to the maximum
average-weight cycle research by Papaefthymiou [66]. Possible future research this

effect is exemplified by the retiming results on the benchmark circuit C17.

In this dissertation, the primary tocus has been on applying retiming to general
synchronous circuits. With the aforementioned enhancements to the retiming process,
synchronous circuits can be accurately retimed using the proposed algorithms. Another
possible future research area is the application of these techniques to more specific
recursive structures such as IR filters. Due to the long feedback path, applying
automated pipelining to recursive structures such as IIR digital filters poses a great
challenge. Although this issue has been addressed by a few research groups, a thorough
study incorporating low-level details embodied by the REC models is necessary for
improved accuracy. Demonstration of the application of the REC model on IIR filters
and quantifying the sampling rate improvement of IIR filters due to pipelining can lead

to significant new research results.

In summary, there are two primary areas of possible future research: 1) studying the
relationship between the pipelining depth and the minimum obtainable clock period, and
2) applying automated pipelining techniques to recursive structures. In Section 7.1, the
relationship between the latency and the minimum clock period is exemplified. A brief
theoretical background on pipelining recursive structures such as IIR filters is provided in

Section 7.2. With this foundation, possible future research includes enhancing existing

156

methods for applying retiming algorithms to the pipelining of recursive digital signal

processing structures.

7.1. Studying the Impact of Pipelining Depth on
Retimed Minimum Clock Period

LGSynth89 and LGSynth9!l benchmark circuits from the MCNC archive consist
of multi-level netblif and blif type combinatorial circuits [97, 98]. These circuits are
specified using logic gates and connections among these gates. The retiming algorithm
described in Chapter 5, however, requires sequential circuits incorporating the REC
values. To convert the MCNC benchmarks to this desired form, a host vertex is added

to each benchmark circuit as described in Section 5.6.1.

The latency of the circuits is chosen arbitrarily in all but one case. The latency of
the LGSynth89 circuit C17 is varied from 2 to 7 to analyze the impact of the latency on
the minimum clock period. The minimum clock period is calculated by applying three
different retiming methods and the resulting clock periods are plotted in Figure 43. The
original clock period of the circuit is [12 tu, which is shown by the straight line in Figure
43. The minimum clock period obtained by using the RETSAM algorithm is depicted
using the dashed line below the initial clock period. The third line shows the retimed
minimum clock period by assuming zero interconnect delays and load-dependence (i.e.,

Crat1 = Crnin = m = ¢ = 0 for every edge in the circuit). Finally, the bottom line

157

represents the retimed minimum clock period period using LP based retiming biased

with the average register delay.

Retiming with RETSAM always yields higher minimum clock periods among the
three different retimed circuits. This behavior is due to the fact that the negative clock
skew increases the imbalance between the path delays, thereby resulting in a higher
critical path delay. The LP based retiming results yield the minimum clock period
among the three methods, simply due to the non-existence of clock skew and load-
dependence delays. When the load-dependence and interconnect delays are ignored, a
result that is in between the two methods is obtained, i.e., only the effect of the negative

clock skew is considered, and the load-dependence is ignored.

When three of these results saturate at a latency of six, there is a fixed distance
between any two methods. In other words, 36 tu, 28 tu, and 25 tu are the minimum
saturated clock periods for these curves. Further increasing the latency (i.e., the
pipelining depth) does not result in a circuit with a lower minimum clock period beyond
the saturation point since the maximum depth pipelining level is reached at this point

and the circuit cannot be pipelined any deeper.

Another important observation from Figure 43 is that the greater the pipelining
depth, the less the gains achieved from pipelining. For example, the gain achieved by
increasing the latency from two to three is significant, whereas the gain by increasing

the latency from three to four is fairly negligible. This limit on the minimum obtainable

158

clock period raises the question of whether it is possible to determine the theoretical
limit on the retimed circuit or the optimal pipelining depth.

Previous work in this field is described by Papaefthymiou [66]. In [66], the
theoretical lower bound on the minimum clock period of a retimed circuit in terms

of cycle delays is studied. The theoretical bound is determined to be:

Z; d(v)
veC, - .
W, Vl, C, € C (71)

eeC,

max

where the numerator represents the total delay along a given cycle C; in the graph, and
the denominator represents the total latency of the cycle C;. The ratio of the total delay
to the latency for a given cycle C; sets a lower bound on the theoretical minimum clock
period. Thus, the maximum of these ratios for every cycle in the set of all existing
cycles in the circuit (C) is the theoretical limit on the minimum obtainable clock period.

Since a dummy host vertex is used to connect the input of the benchmark circuits
to the output, every global data path in these benchmarks is converted to a cycle.
Therefore, the theoretical limit on any given benchmark circuit is Tcp /!, where Tcp is
the original unretimed clock period and [is the latency of the circuit. For the specific
circuit of C17, the ratio of T¢p/! is depicted in Figure 44.

As shown in Figure 44, all three retimed results are higher than the theoretical
limit. Although the work in [66] presents powerful results, the effect of the clock
skew is ignored. The proposed research includes revising (7.1) to provide a better

understanding of the limiting effect of cycles in the circuit by considering non-zero

159

clock skew and load-dependent register and interconnect delays. Also, the study of
the aforementioned optimal pipelining depth can lead to potentially powerful research

results.

7.2. Pipelining Recursive DSP Circuit Architectures

Pipelining and retiming techniques described in the previous chapters offer per-
formance improvements for digital synchronous circuits, thereby permitting dramatic

performance enhancements. Pipelining techniques may increase the speed of operation

120 - : l :
Initial Tcp ——
100 Tcp after RETSAM ----
2 Tep with Cint=0 -----
> Tcp with LP based ret. -
-8 80 Theoretical Limit <~ _|
o
a
§ 60 £]
6 .v'.;_.“ ‘\\
8 .&.i‘;-.‘ R
.§ 40 B N ‘é"‘:‘:;“"“-‘-*-.:‘.“::: j“~-_____‘__-_‘_----:
‘6 ‘\‘~@_‘ "":-:,_'_
@ o~ g
20 - & S|
0 L 1] 1

Sequential Latency

Figure 44. The theoretical limit from Figure 43. Note that the effect of negative clock skew is ignored.

160

by a few orders of magnitude at the expense of increased circuit area due to the added
pipeline registers. As technology advances, physical area has become less significant,
since the integration density has improved dramatically due to the reduced size of the

transistors and interconnect.

Although pipelining techniques ofter significant speed improvements, the appli-
cation of these techniques to structures containing recursive feedback loops must be
carefully evaluated. Possible future research is the application of these pipelining tech-
niques to [IR digital filters. Previous work in the field of pipelining recursive structures

is briefly overviewed in the following section.

7.2.1. Theoretical Background on IIR Filter Characterization

An [IR filter can generally be characterized by a transfer function A(z) as shown

below,

N(z
H(z)= D—E—:-;- (7.2)

where the roots of the numerator polynomial V(=) are the zeros and the roots of
the denominator polynomial D(z) are the poles of the digital filter. The numerator
N(z) characterizes the feed-forward section of the filter, whereas the denominator
D(z) characterizes the feedback portion. A generic IIR filter is not easily pipelined
due to the existence of these long feedback path [11] characterized by D(z). However,

augmentation of the transfer function using a polynomial P(z) permits the system to

161

be pipelined (5, 6] as follows:

N(z)P(z)

B = 55p6)

(7.3)

The roots of the polynomial P(z) introduce cancelling pole-zero pairs in the new transfer
function. Since the new nominator V(z)P(z) contains more terms than the original
nominator V(z), the complexity of the feed-forward portion of the filter is increased.
However, the new denominator D(z)P(z) can now be pipelined. Depending upon the
form of the function P(z), different levels and qualities of pipelining can be achieved.
The two main techniques that exist are scattered look-ahead and clustered look-ahead
pipelining techniques as introduced by Parhi in [5]. A sub-category of the clustered
look-ahead technique, called the Minimum Denominator Multiplier (MDM), is also

introduced by Soderstrand et al. in [11] and is reviewed in this section.

7.2.2. Clustered Look-Ahead Pipelining

The clustered look-ahead technique is based on modifying the transfer function
shown below by introducing M cancelling pole-zero pairs.

N)
_Z biz—t
H(z)= 2L — (7.4)

= T -
1 - Z a;z"!
=1
The pole-zero pairs that are introduced transform H(z) such that the coefficients of

==l 272 ... M-l the denominator function are zero. The transformed transfer

function becomes an M -stage pipelined digital filter.

162
As an example, a filter with the following original transfer function is considered
[51:

H(z) = : (1.5)

—
-&-IO‘
.—
+
mlu

This filter is not pipelineable since the lowest non-zero coefficient term in the denomi-
nator is =~ !. However, the filter represented by H(z) is stable since the poles of H(z)
are located at = = % and = = % (inside the unit circle).

By introducing a pole-zero pair at = = —g, i.e., by multiplying both the numerator
and the denominator by (L + 5 z7!), the transfer function is transformed to

+ -1

-
-

(7.6)

lw BTl

H(z)=

Iu‘

| - 4324 183

=la| —
[2
Iv

which is a two stage pipelined system. Note, however, that the resulting filter rep-
resented by H'(z) is not stable since the introduced pole is not inside the unit circle

although the original filter is stable.

The transfer functions resulting from the aforementioned conversion correspond to
an M-stage pipelined implementation since the output sample y[n| can be described in
terms of the cluster of N pastoutputs, y[n—M], y[n—M—1], ... ,andyln—-M-N+1].

This technique is therefore called clustered look-ahead pipelining.

7.2.3. Scattered Look-Ahead Pipelining

The scattered look-ahead technique is based on modifying the transfer function

163

based on the following formula [100],

- -2 M -
1 —ZJU l+pl.zz\/1 ++P:1 I

z—p; M _ hW !

(7.7)

where p; is a given pole of the transfer function, and M is the resulting degree of
pipelining that is being achieved. Note that although (7.7) converts pole p; into a
pipelined form, M — 1 superfluous terms are introduced in the numerator (the feed-
forward section of the filter). For a filter having V poles, N(M — 1) superfluous
terms are introduced in the numerator, and the resulting denominator is in the form
of D'(zY) rather than D(z). This transformation introduces NV pole-zero cancellations
and the resulting transfer function is stable as long as the original transfer function is
stable. This behavior occurs since the poles of the modified transfer function are inside
the unit circle as long as the original poles are inside the unit circle. The poles of the
modified function are located inside the unit circle at the same distance from the origin.
Therefore, although this system introduces more terms in the numerator, the resulting

filter is guaranteed to be stable as long as the original system is stable.

As an example, consider a filter with the following transfer function [5],

1
H(z) = > (7.8)

T
which, by using the proper P(:z), can be converted into the form,

— M =92 -— V-
l+aiz7t + (af +a2)27% —aja2z™% + a3z~

7.9
1- (a:f + 3“[“2).‘:‘3 _ a?_,z-ﬁ (7.9)

H'(z)

164

As shown in (7.9), the transfer function is in the form of H(z™%) rather than
H(z"!). As long as the roots of the denominator of H(z) are inside the unit circle, the
roots of the denominator of H'(z) will also be inside the unit circle. Since the terms in
the denominator are scattered in H'(z) (the terms are =3 apart from each other), this

technique is called scattered look-ahead pipelining.

7.2.4. Minimum Denominator Multiplier (MDM)

The MDM technique introduced in [11] is a slight modification of the clustered look-
ahead pipelining method based on augmenting the transfer function in such a way that
the stability of the pipelined IIR filter is achieved only by increasing the pipeline delay
without adding non-zero denominator coefficients. This technique, therefore, offers a
combination of the two aforementioned techniques by exploiting the stability advantage
of the scattered look-ahead pipelining while exploiting the low circuit complexity of

the clustered look-ahead pipelining scheme.

To exemplify the MDM technique, consider a second-order IIR filter with the

following transfer function described in [11]:

H(z) = N(z) _ L+niz7 4+ naz™
U D(z) l4dizl +daz

(L S 1

. (7.10)

When the denominator is augmented by P(z), the new denominator takes the form,

B(z) = D(:)P(z) = 1 + blz_(‘M"'E‘) + bzz—(l“!'FE[‘i‘Ez"’l)’ (7.11)

165

where M is the required pipeline delay, and E; and F» are the extra delay parameters
to ensure stability. b, and b2 parameters are calculated according to

- —(E\+E3+1)q -1
[bl] - [Pl b P1(1+Eatl) "Piw
b prBr py(B+ED _plt

(7.12)

by changing F,; and F> according to 0 < £} + F2 < M — 1. In the second-order case,
the £, + £, + | scattering patterns exist and the solution with the smallest maximum

magnitude of the superfluous poles provides the lowest round-off errors.

The aforementioned three techniques consider the primary methods existing in
the literature for pipelining IIR filters. Possible research includes an investigation of
the sampling rates of the pipelined filters and stability considerations by applying the
enhanced REC model to the circuit graph of these filters. The application of the REC
model is necessary to accurately determine the possible sampling rate enhancements
after pipelining these filters. The sampling rate of a group of selected IR filters must
be determined on pipelined and unpipelined IIR filters for different pipelining levels.
The results can be used to demonstrate both the effectiveness of pipelining and the
limitation of pipelining due to low-level circuit effects, such as interconnect delay,

register delay, and clock skew.

166

Bibliography

[1]

[4]

(51

(61

[7]

(8]

(9]

[10]

L. W. Cotten, “Circuit Implementation of High-Speed Pipeline Systems,” Pro-
ceedings of the AFIPS Fall Joint Computer Conference, Vol. 27, pp. 489-504,
November 1965.

L. W. Cotten, “Maximum-Rate Pipeline Systems,” Proceedings of the Spring Joint
Computer Conference, Vol. 34, pp. 581-586, May 1969.

D. Wong, De Micheli, Giovanni, and M. Flynn, “Inserting Active Delay Elements
to Achieve Wave Pipelining,” Proceedings of the IEEE Conference on Computer-
Aided Design, pp. 270-273, November 1989.

D. C. Wong, G. De Micheli, and M. J. Flynn, “Designing High-Performance
Digital Circuits Using Wave Pipelining: Algorithms and Practical Experiences,”
IEEE Transactions on Computer-Aided Design, Vol. 12, No. 1, pp. 2546, January
1993.

K. K. Parhi and D. G. Messerschmitt, “Pipeline Interleaving and Parallelism in
Recursive Digital Filters — Part I: Pipelining Using Scattered Look-Ahead and
Decomposition,” [EEE Transactions on Acoustics, Speech, and Signal Processing,
Vol. 37, No. 7, pp. 1099-1117, July 1989.

K. K. Parhi and D. G. Messerschmitt, “Pipeline Interleaving and Parallelism
in Recursive Digital Filters — Part II: Pipelined Incremental Block Filtering,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 37, No. 7,
pp. 1118-1134, July 1989.

M. Lapointe, H. T. Huynh, and P. Fortier, “Systematic Design of Pipelined
Recursive Filters,” IEEE Transactions on Computers, Vol. 42, No. 4, pp. 413—
426, April 1993.

P. S. R. Diniz, J. E. Cousseau, and A. Antoniou, “Improved parallel realisation
of IR adaptive filters,” IEE Proceedings — G, Vol. 140, No. 5, pp. 322-328,
October 1993.

J. Chung and K. K. Parhi, “Pipelining of Lattice IR Digital Filters,” [EEE
Transactions on Signal Processing, Vol. 42, No. 4, pp. 751-761, April 1994.

E. Q. Wong, M. A. Soderstrand, and H. H. Loomis, “Computer-Aided Design
of Pipelined IR Digital Filters,” IEEE International Symposium on Circuits and
Systems, pp. 795-7199, May 1992.

[L1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

167

M. A. Soderstrand and A. E. de la Serna, “Minimum Denominator-Multiplier
Pipelined Recursive Digital Filters,” IEEE Transactions on Circuits and Systems,
Vol. CAS—42, No. 10, pp. 666672, October 1995.

C. E. Leiserson and J. B. Saxe, “Optimizing Synchronous Systems,” Proceedings
of Annual Symposium on Foundations of Computer Science, pp. 23-36, October
1981.

C. E. Leiserson, F. M. Rose, and J. B. Saxe, “Optimizing Synchronous Circuitry by
Retiming,” Proceedings of the Caltech Conference on VLSI, pp. 87-116, March
1983.

C. E. Leiserson and J. B. Saxe, “Retiming Synchronous Circuitry,” Algorithmica,
Vol. 6, pp. 5-35, January 1991.

N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli, “Retiming of Circuits
with Single Phase Transparent Latches,” Proceedings of the IEEE International
Conference on Computer Design, pp. 86-89, October 1991.

B. Lockyear and C. Ebeling, “The Practical Application of Retiming to the Design
of High-Performance Systems,” Proceedings of the IEEE International Conference
on Computer-Aided Design, pp. 288-295, November 1993.

B. Lockyear and C. Ebeling, “Optimal Retiming of Multi-Phase, Level-Clocked
Circuits,” Proceedings of the Brown/MIT Conference on Advanced Research in
VLSI and Parallel Systems, pp. 265-280, March 1992.

G. De Micheli, “*Synchronous Logic Synthesis: Algorithms for Cycle-Time
Minimization,” IEEE Transactions on Computer-Aided Design, Vol. CAD-10,
No. 1, pp. 63-73, January 1991.

T. Soyata, E. G. Friedman, and J. H. Mulligan, Jr., “Integration of Clock Skew
and Register Delays into a Retiming Algorithm,” Proceedings of the [EEE
International Symposium on Circuits and Systems, pp. 1483-1486, May 1993.

K. N. Lalgudi and M. C. Papaefthymiou, “Efficient Retiming under a General
Delay Model,” Proceedings of the Chapel Hill VLSI Conference, pp. 368-382,
1995.

K. N. Lalgudi and M. C. Papaefthymiou, “DELAY: An Efficient Tool for
Retiming with Realistic Delay Modeling,” Proceedings of the ACM/IEEE Design
Automation Conference, pp. 304-309, June 1995.

J. P. Fishburn, “Clock Skew Optimization,” IEEE Transactions on Computers,
Vol. C-39, No. 7, pp. 945-951, July 1990.

[24]

[25]

(26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

168

T. Soyata and E. G. Friedman, “Retiming with Non-Zero Clock Skew, Variable
Register, and Interconnect Delay,” Proceedings of the [EEE International
Conference on Computer-Aided Design, pp. 234-241, November 1994.

K. A. Sakallah, T. N. Mudge, and O. A. Olukotun, “Analysis and Design of
Latch-Controlled Synchronous Digital Circutis,” Proceedings of the ACM/IEEE
Design Automation Conference, pp. 111-117, June 1990.

R. B. Deokar and S. S. Sapatnekar, “A Fresh Look at Retiming via Clock Skew
Optimization,” Proceedings of the IEEE/ACM Design Automation Conference,
pp. 310-315, June 1995.

B. Lockyear and C. Ebeling, “Optimal Retiming of Multi-Phase, Level-Clocked
Circuits,” Tech. Rep. 91-10-01, University of Washhington, October 1991.

T. M. Burks, K. A. Sakallah, and T. N. Mudge, “Multiphase Retiming Using
minTc,” ACM/SIGDA Workshop on Timing Issues in the Specification and Synthesis
of Digital Systems, pp. 1-9, March 1992.

B. Lockyear and C. Ebeling, “Optimal Retiming of Level-Clocked Circuits Using
Symmetric Clock Schedules,” [EEE Transactions on Computer-Aided Design,
Vol. 13, No. 9, pp. 1097-1109, September 1994.

L. Chao and E. H. Sha, “Retiming and Clock Skew for Synchronous Systems,”
Proceedings of the IEEE International Symposium on Circuits and Systems,
pp. 1.283-1.286, May/June 1994.

T. M. Burks, K. A. Sakallah, K. Bartlett, and G. Borriello, “Performance
[mprovement through Optimal Clocking and Retiming,” International Workshop
on Logic Synthesis, pp. 1-9, May 1991.

A. T. Ishii, C. E. Leiserson, and M. C. Papaefthymiou, “Optimizing Two-Phase,
Level-Clocked Circuitry,” Proceedings of the Conference on Advanced Research
in VLSI and Parallel Systems, pp. 245-264, March 1992.

A. T. Ishii, “Retiming Gated-Clocks and Precharged Circuit Structures,” Proceed-
ings of the IEEE International Conference on Computer-Aided Design, pp. 300~
307, November 1993.

S. Simon, E. Bernard, M. Sauer, and J. A. Nossek, “A New Retiming Algorithm
for Circuit Design,” Proceedings of the IEEE International Symposium on Circuits
and Systems, pp. 4.35-4.38, May/June 1994.

(34]

[35]

(36]

(37]

(38]

[39]

[40]

(41]

[42]

[43]

[44]

(45]

169

S. Simon, J. Hofner, and J. A. Nossek, “Retiming of Circuits Containing
Multiplexers,” Proceedings of the IEEE International Symposium on Circuits
and Systems, pp. 1736-1739, May 1995.

J. Monteiro, S. Devadas, and A. Ghosh, “Retiming Sequential Circuits for Low
Power,” Proceedings of the IEEE International Conference on Computer-Aided
Design, pp. 398402, November 1993.

M. J. Flynn, “Very High-Speed Computing Systems,” Proceedings of the IEEE,
Vol. 54, No. 12, pp. 1901-1909, December 1966.

T. Soyata and E. G. Friedman, “Synchronous Performance and Reliability
Improvement in Pipelined ASICs,” Proceedings of the IEEE ASIC Conference,
pp. 383-390, September 1994.

E. G. Friedman and J. H. Mulligan, “Clock Frequency and Latency in Synchronous
Digital Systems,” IEEE Transactions on Signal Processing, Vol. SP-39, No. 4,
pp. 930-934, April 1991.

E. G. Friedman and J. H. Mulligan, “Pipelining of High Performance Synchronous
Digital Systems,” International Journal of Electronics, Vol. 70, No. 5, pp. 917-
935, May 1991.

E. G. Friedman, Clock Distribution Networks in VLSI Circuits and Systems. IEEE
Press, 1995.

R. Jain, A. C. Parker, and N. Park, “Predicting System-Level Area and Delay
for Pipelined and Nonpipelined Designs,” [EEE Transactions on Computer-Aided
Design, Vol. 11, No. 8, pp. 955965, August 1992.

E. G. Friedman, “Clock Distribution Design in VLSI Circuits — an Overview,”
Proceedings of the IEEE International Symposium on Circuits and Systems,
pp- 1475-1478, May 1993.

E. G. Friedman, “The Application of Localized Clock Distribution Design to
Improving the Performance of Retimed Sequential Circuits,” Proceedings of the
IEEE Asia-Pacific Conference on Circuits and Systems, pp. 12-17, December
1992.

K. A. Sakallah, T. N. Mudge, T. M. Burks, and E. S. Davidson, “Synchronization

of Pipelines,” I[EEE Transactions on Computer-Aided Design, Vol. CAD-12,
No. 8, pp. 1132-1146, August 1993.

T. Soyata, E. G. Friedman, and J. H. Mulligan, Jr., “Incorporating Interconnect,
Register, and Clock Distribution Delays into the Retiming Process,” I[EEE

[46]

(47]

[48]

[49]

[50]

(53]

(54]

[55]

[56]

(571

[58]
(591

170

Transactions on Computer-Aided Design, Vol. 16, No. 1, pp. 105-120, January
1997.

S. Malik, E. M. Sentovich, R. K. Brayton, and A. Sangiovanni-Vincentelli,
“Retiming and Resynthesis: Optimizing Sequential Networks with Combinatorial
Techniques,” IEEE Transactions on Computer-Aided Design, Vol. CAD-10, No. 1,
pp. 74-84, January 1991.

E. L. Lawler, Combinatorial Optimization: Networks and Matroids,. Holt, Rinehart
and Winston, NewYork, 1976.

C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms
and Complexity,. Prentice-Hall, Inc., 1982.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms,.
McGraw-Hill, 1990.

K. G. Murty, Operations Research — Deterministic Optimization Models.
Prentice-Hall, 1995.

J. R. Jump and S. R. Ahuja, “Effective Pipelining of Digital Systems,” [EEE
Transactions on Computers, Vol. C-27, No. 9, pp. 855-865, September 1978.

T. C. Chen, “Parallelism, pipelining, and computer efficiency,” Computer Design,
Vol. 10, pp. 69-74, January 1971.

T. G. Hallin and M. J. Flynn, “Pipelining of Arithmetic Functions,” [EEE
Transactions on Computers, pp. 880-886, August 1972.

M. C. Papaefthymiou, “On Retiming Synchronous Circuitry and Mixed-Integer
Optimization,” Master’s thesis, Massachussetts Institute of Technology, August
1990.

J. L. Hennessy and D. A. Patterson, Computer Architecture A Quantitative
Approach,. Morgan Kaufmann Publishers Inc., 1990.

G. S. Tjaden and M. J. Flynn, “Detection and Parallel Execution of Independent
Instructions,” IEEE Transactions on Computers, Vol. C-19, No. 10, pp. 889-895,
October 1970.

E. M. Riseman and C. C. Foster, “The Inhibition of Potential Parallelism by
Conditional Jumps,” [EEE Transactions on Computers, Vol. C-21, No. 12,
pp. 1405-1411, December 1972.

G. Kane, MIPS RISC Architecture,. Prentice-Hall, 1988.

INTEL Corporation, The Intel Pentium™ Processor. A Technical Overview, 1994,

[60]

[61]

[62]

[63]

(64]

[65]

[66]

[67]

[68]

(691

[70]

171

S. R. Kunkel and J. E. Smith, “Optimal Pipelining in Supercomputers,” Proceed-
ings of the Annual Symposium on Computer Architecture, pp. 404411, 1986.

N. R. Strader II, “VLSI Bit-Sequential Architectures for Digital Signal Process-
ing,” Proceedings of the IEEE Conference on Acoustics, Speech and Signal Pro-
cessing, pp. 931-934, February 1987.

P. R. Capello and K. Steiglitz, “Completely-Pipelined Architectures for Digital
Signal Processing,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, Vol. ASSP-31, No. 4, pp. 1016-1023, August 1983.

K. O. Siomalas and B. A. Bowen, “Synthesis of Efficient Pipelined Architectures
for Implementing DSP Operations,” [EEE Transactions on Acoustics, Speech, and
Signal Processing, Vol. ASSP-33, No. 6, pp. 1499-1508, December 1985.

P. R. Capello, A. LaPaugh, and K. Steiglitz, “Optimal Choice of Intermediate
Latching to Maximize Throughput in VLSI Circuits,” Proceedings of the I[EEE
International Conference on Acoustics, Speech and Signal Processing, pp. 935—
938, April 1983.

N. V. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli, “Minimum Padding
to Satisfy Short Path Constraints,” Proceedings of the IEEE International
Conference on Computer-Aided Design, pp. 156-161, November 1993.

M. C. Papaefthymiou, “Understanding Retiming through Maximum Average-
Weight Cycles,” Proceedings of the Annual Symposium on Parallel Algorithms
and Architectures, pp. 338-348, July 1991.

A. T. Ishii and C. E. Leiserson, “A Timing Analysis of Level-Clocked Circuitry,”
Proceedings of the MIT Conference on Advanced Research in VLSI, pp. 113-130,
March 1990.

S. Malik, K. J. Singh, R. K. Brayton, and A. Sangiovanni-Vincentelli, “‘Perfor-
mance Optimization of Pipelined Logic Circuits Using Peripheral Retiming and
Resynthesis,” [EEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, Vol. CAD-12, No. §, pp. 568-578, May 1993.

N. V. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli, “Resynthesis of
Multi-Phase Pipelines,” Proceedings of the 30th Design Automation Conference,
pp. 490-496, June 1993.

Z. Igbal, M. Potkonjak, S. Dey, and A. Parker, “Critical Path Minimization Using

Retiming and Algebraic Speed-Up,” Proceedings of the 30th Design Automation
Conference, pp. 573-577, June 1993.

(71]

[72]

(73]

[74]

(751

(76]

(77

[78]

[79]

(80]

(81]

(82]

172

S. Dey, M. Potkonjak, and S. G. Rothweiler, “Performance Optimization
of Sequential Circuits by Eliminating Retiming Bottlenecks,” Proceedings of
the IEEE International Conference on Computer-Aided Design, pp. 504-509,
November 1992.

T. G. Szymanski and N. Shenoy, “Verifying Clock Schedules,” Proceedings of
the IEEE Conference on Computer-Aided Design, pp. 124-131, 1992.

E. G. Friedman, “Latching Characteristics of a CMOS Bistable Register,” IEEE
Transactions on Circuits and Systems-I:Fundamental Theory and Applications,
Vol. CAS—40, No. 12, pp. 902-908, December 1993.

S.-M. Kang and Y. Leblebici, CMOS Digital Integrated Circuits Analysis and
Design. Mc Graw Hill, 1996.

H. B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI. Addison
Wesley, 1990.

M. Shoji, “Elimination of Process-Dependent Clock Skew in CMOS VLSI,” [EEE
Journal of Solid-State Circuits, Vol. SC-21, No. 5, pp. 875-880, October 1986.

J. Cong, A. Kahng, G. Robins, M. Sarrafzadeh, and C. K. Wong, *“Performance-
Driven Global Routing for Cell Based IC’s,” Proceedings of the IEEE Interna-
tional Conference on Computer Design, pp. 170-173, October 1991.

T. Chao, Y. Hsu, J. Ho, K. D. Boese, and A. B. Kahng, “Zero Clock Skew Routing
with Minimum Wirelength,” IEEE Transactions on Circuits and Systems — II:
Analog and Digital Signal Processing, Vol. CAS 1I-39, No. 11, pp. 799-814,
November 1992.

W. S. Scott and J. K. Qusterhout, “Magic’s Circuit Extractor,” I[EEE Design and
Test of Computers, Vol. 3, No. 1, pp. 24-34, February 1986.

J. L. Neves and E. G. Friedman, “Circuit Synthesis of Clock Distribution Networks
Based on Non-Zero Clock Skew,” Proceedings of the IEEE International
Symposium on Circuits and Systems, pp. 4.175-4.179, May/June 1994.

J. Rubinstein, P. Penfield, and M. A. Horowitz, “Signal Delay in RC Tree
Networks,” IEEE Transactions on Computer-Aided Design, Vol. CAD-2, No. 3,
pp- 202-211, July 1983.

T. Sakurai, “Approximation of Wiring Delay in MOSFET VLSI,” IEEE Journal
of Solid-State Circuits, Vol. SC-18, No. 4, pp. 418-426, August 1983.

(83]

[84]

(85]

[86]

(871

(88]

[89]
[90]

[91]

[92]

[93]

173

T. Sakurai, “Closed-Form Expressions for Interconnect Delay, Coupling, and
Crosstalk in VLSI’s,” IEEE Transactions on Electron Devices, Vol. ED—40, No. I,
pp. 118-124, January 1993.

C. Ramachandran and F. J. Kurdahi, “Combined Topological and Functionality
Based Delay Estimation Using Layout-Driven Approach for High Level Applica-
tions,” Proceedings of the ACM/IEEE European Design Automation Conference,
pp. 72-78, September 1992.

C. Ramachandran, F. J. Kurdahi, D. D. Gajski, A. C. H. Wu, and V. Chaiyakul,
“Accurate Layout Area and Delay Modeling for System Level Design,” Proceed-
ings of the IEEE International Conference on Computer-Aided Design, pp. 355-
361, November 1992.

S. D. Rao and F. J. Kurdahi, “Hierarchical Design Space Exploration for a Class
of Digital Systems,” IEEE Transactions on VLSI Systems, Vol. VLSI-1, No. 3,
pp. 282-295, September 1993.

B. S. Cherkauer and E. G. Friedman, “A Unified Design Methodology for CMOS
Tapered Buffers,” I[EEE Journal of Solid State Circuits, Vol. SC-30, No. 2,
pp. 151-155, February 1995.

B. S. Cherkauer and E. G. Friedman, “Design of Tapered Buffers with Local
Interconnect Capacitance,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, Vol. 3, No. 1, pp. 99-111, March 1995.

M. Shoji, CMOS Digital Circuit Technology,. Prentice-Hall, 1988.
A. L. Kayssi, K. A. Sakallah, and T. M. Burks, “Analytical Transient Response of

CMOS Inverters,” IEEE Transactions on Circuits and Systems — I: Fundamental
Theory and Applications, Vol. 39, No. 1, January 1992.

T. Soyata, E. G. Friedman, and J. H. Mulligan, Jr., “Monotonicity Constraints
on Path Delays for Efficient Retiming with Localized Clock Skew and Variable
Register Delay,” Proceedings of the IEEE International Symposium on Circuits
and Systems, pp. 1748-1751, May 1995.

J. L. Neves and E. G. Friedman, “Topological Design of Clock Distribution
Networks Based on Non-Zero Clock Skew Specifications,” Proceedings of the
IEEE Midwest Symposium on Circuits and Systems, pp. 468—471, August 1993.

J. L. Neves and E. G. Friedman, “Synthesizing Distributed Buffer Clock Trees for

High Performance ASICs,” Proceedings of the IEEE ASIC Conference, pp. 126—
129, September 1994.

[94]

[95]

[96]

(97]
[98]

[99]

174

J. L. Neves and E. G. Friedman, “Design Methodology for Synthesizing
Clock Distribution Networks Exploiting Non-Zero Localized Clock Skew,” IEEE
Transactions on VLSI Systems, Vol. VLSI-4, No. 2, June 1996.

S. H. Unger and Chung-Jen Tan, “Clocking Schemes for High-Speed Digital
Systems,” IEEE Transactions on Computers, Vol. C-35, No. 10, pp. 880-895,
October 1986.

D. B. Johnson, “Efficient Algorithms for Shortest Paths in Sparse Networks,”
Journal of the Association for Computing Machinery, Vol. 24, No. 1, pp. 1-13,
1977.

R. Lisanke, “Logic Synthesis and Optimization Benchmarks User Guide: Version
2.0,” Tech. Rep., Microelectronics Center of North Carolina, December 1988.

S. Yang, “Logic Synthesis and Optimization Benchmarks User Guide: Version
3.0,” Tech. Rep., Microelectronics Center of North Carolina, January 1991.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical
Recipes in C,. Cambridge University Press, 1990.

[100] H. G. Martinez and T. W. Parks, A Class of Infinite-Duration Impulse Response

Digital Filters for Sampling Rate Reduction,” [EEE Transactions on Acoustics,
Speech, and Signal Processing, Vol. ASSP-27, No. 2, pp. 154-162, April 1979.

175

Publications
Journal Publication

* T. Soyata and E. G. Friedman, “Incorporating Interconnect, Register, and Clock
Distribution Delays into the Retiming Process.” [EEE Transactions on Computer-
Aided Design of Circuits and Systems, Vol. CAD-16, No. 1, pp. 105-120, January

1997.

Conference Publications

* T. Soyata, E. G. Friedman, and J. H. Mulligan, Jr., “Monotonicity Constraints on
Path Delays for Efficient Retiming with Localized Clock Skew and Variable Register
Delay,” Proceedings of the I[EEE International Symposium on Circuits and Systems,
pp. 1748-1751, May 1995.

* T. Soyata and E. G. Friedman, “Retiming with Non-Zero Clock Skew, Variable Reg-
ister, and Interconnect Delay,” Proceedings of the IEEE International Conference
on Computer-Aided Design, pp. 234-241, November 1994.

* T. Soyata and E. G. Friedman, “Synchronous Performance and Reliability Improve-
ment in Pipelined ASICs,” Proceedings of the IEEE ASIC Conference, pp. 383-390,
September 1994.

* T. Soyata, E. G. Friedman, and J. H. Mulligan, Jr., “Integration of Clock Skew and
Register Delays into a Retiming Algorithm,” Proceedings of the IEEE International

Symposium on Circuits and Systems, pp. 1483-1486, May 1993.

